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Tilt-to-length (TTL) noise from angular jitter in LISA is projected to be the dominant noise source in the
milli-Hertz band unless corrected in post-processing. The correction is only possible after removing the
overwhelming laser phase noise using time-delay interferometry (TDI). We present here a frequency
domain model that describes the effect of angular motion of all three spacecraft on the interferometric
signals after propagating through TDI. We then apply a Fisher information matrix analysis to this model to
calculate the minimum uncertainty with which TTL coupling coefficients may be estimated. Furthermore,
we show the impact of these uncertainties on the residual TTL noise in the gravitational wave readout
channel, and compare it to the impact of the angular witness sensors’ readout noise. We show that the
residual TTL noise post-subtraction in the TDI variables for a case using the LISA angular jitter
requirement and integration time of one day is limited to the 8 pm=

ffiffiffiffiffiffi
Hz

p
level by angular sensing noise.

However, using a more realistic model for the angular jitter we find that the TTL coupling uncertainties are
70 times larger, and the noise subtraction is limited by these uncertainties to the 14 pm=

ffiffiffiffiffiffi
Hz

p
level.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) [1,2],
the space-based gravitational wave (GW) detector led
by the European Space Agency (ESA) with contributions
from the National Aeronautics and Space Administration
(NASA), is scheduled for launch in the 2030s and will
complement ground-based detectors with sensitivity in the
low-frequency range, 0.1 mHz to 1 Hz [3–5]. LISA consists
of three spacecraft (SC) in an almost equilateral triangular
formation with sides of 2.5 Gm. Each SC has two movable
optical subassemblies (MOSA) that include a gravitational
reference system (GRS), an optical bench (OB) and a
telescope; Fig. 1 shows a very simplified drawing of two of
the six MOSAs while the constellation is sketched in Fig. 2.
The telescope will simultaneously receive light from and
also transmit light to the far spacecraft. It exchanges light
bidirectionally with the OB. Each GRS houses one free
falling test mass (TM), which acts as one endpoint for the
critical TM to TM distance. However, the entire distance is
measured on the OB in three steps: local TM to local OB,
local OB to far OB, and then far OB to far TM.
The science interferometer measures distances between

the OBs connected along an optical arm in the constella-
tion. This measurement will be contaminated by additional

length noise from OB motion which is attached to its
MOSA and the local SC. The distance from the TM to the
OB is measured by the local interferometer. To subtract
out the OB displacement noise, we use [7]’s method of
subtracting the TM-OB measurement from the science
interferometer. We then apply time-delay interferometry
(TDI) 2.0 [6,8–11] to suppress laser phase noise (LPN) by
considering the simple Michelson variables X, Y, and Z,
and assume the arm-lengths are perfectly known.
During the operational run of LISA Pathfinder (LPF),

TTL dominated the sensitivity curve between 20 and
200 mHz with noise levels at the pm=

ffiffiffiffiffiffi
Hz

p
level before

they were subtracted in postprocessing [12–14]. A similar
approach will be taken in LISA to correct for TTL in the
local interferometer. In this paper, we focus on TTL in the
science interferometer where the effects are magnified
by the telescope magnification [15] of around 300 (134
telescope magnification and about 2.2 from the OB) and
which are a critical concern for the LISA mission.
The noise levels induced by TTL will exceed the noise

floor unless mitigating actions are taken. These include
precise SC attitude control, active alignment corrections in
orbit, and subtraction in postprocessing. Postprocessing
requires to measure the angular motion using LISA’s
differential wavefront sensing (DWS) system [16] in-situ,
then scale this data with the proper TTL calibration factor
before the spurious length changes can be subtracted.*daniel.george@ufl.edu
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The TTL calibration factors need to be measured regularly
to account for slow changes over time, with high enough
accuracy before TTL subtraction can be successfully
applied. Furthermore, knowledge of the individual TTL
coefficients can ease alignment processes in-orbit and
identify issues in specific subsystems, e.g., whether a
telescope exhibits significantly higher WFE wave-front
error, or perhaps a large misalignment in a MOSA.
The TTL coupling coefficients will be measured using

correlations between the DWS signals and the length
signals after TDI has been applied. The accuracy will
depend on the angular jitter itself—in general larger jitter
helps to determine coefficients better, but also requires
more accurate coefficients to subtract to a given residual
level. We will consider two cases: case Awill use the LISA
requirement jitter and length noise, while case B utilizes a
jitter and length noise estimates from LISASim [17].
TTL coefficients depend on multiple alignment degrees of

freedom and require redoing calibration regularly. In this
paper, we answer the question of howwell each component of
TTL noise can be estimated, and consequently, subtracted
within the framework of TDI. This is achieved by building a
quantitative model of how TTL effects couple into the
interferometric signal. One can then calculate the expected
errors for each coefficient by calculating its Fisher information
[18–20]. Based on the results we obtain, we can also estimate
the required integration times to calibrate TTL sufficiently.
We calculate the lower limits on the TTL coefficients

using the Cramér-Rao bound [21,22] and then compare

them with time-domain Monte Carlo simulations where we
find good agreement. This paper is organized as follows:
Sec. II describes the model we use to quantify TTL noise.
Section III goes through the Fisher information analysis of
TTL noise in TDI. We end by displaying the results in
Sec. IV, followed by the discussion in Sec. V.

II. THE MODEL

Angular jitters in an interferometric measurement may
result in spurious longitudinal displacements termed TTL
noise, due to geometrical and non-geometrical contributions
[23–26]. For a sufficiently small dynamic range, the effects
for each degree of freedom can be described by a linear
relationship between angle and displacement characterized
by the TTL coupling coefficients in units of m=rad.
We assign a unique TTL coefficient to eachMOSA for the

angular degrees of freedom of interest, i.e., yaw (ϕ) and
pitch (η); Fig. 2 displays theMOSAs, the reference axis, and
the nomenclature we use in labeling theMOSAs and delays.
If a MOSA is jittering, it will impart TTL noise to the
received (RX) beammeasured locally, and to the transmitted
(TX) beam, measured on the far SC. As seen in Fig. 2, we
will have 24 TTL coefficients from 6 MOSAs ×2 angular
degrees of freedom ×2 directions (RX, TX).
To cancel the OB motion noise present in the science

interferometer signals, we utilize the method in [7] of
constructing a new variable ξi that subtracts the local εi and
reference τi interferometers from the science si interfer-
ometer [see Eqs. (A1)–(A8)], as we are mainly considered
with TTL noise from the science interferometer:

ξi ¼ kRX
i Ψi þ kTX

j0 Ψj0∶k þ noisei ð1Þ

ξi0 ¼ kRX
i0 Ψi0 þ kTX

k Ψk∶j0 þ noisei0 ð2Þ

where the noise comes from the interferometer, residual test
mass acceleration, the GW background, and LPN which
will be removed in TDI 2.0. ðc; dÞ ¼ k are the TTL
coefficients associated with the yaw and pitch degrees of
freedom respectively. These angular degrees of freedom are
measured by the DWS signals Ψ ¼ ðϕ; ηÞ, where ϕ and η
are the DWS signals comprising of the angular motion and
the associated readout noise. The delay nomenclature
follows the literature where, e.g., Ψj0∶k ≡Ψj0 ðt − τkÞ.
The coefficients are defined to be positive when for a
positive rotation the optical path length increases. The
angles are defined with respect to the incoming flat wave-
front and described in their own reference frame: ϕ positive
means counterclockwise rotation, η positive means also
counterclockwise when looking toward x—see Fig. 2. All
the six phasemeter signals can be obtained with cyclic
permutations of the indices ijk ¼ 123, 231, and 312.
To keep the heterodyne signals within the bandwidth of

the photodetectors (5–20 MHz), the so-called primary-
secondary laser transponder configuration must be adopted:

FIG. 1. Simplified schematic of the movable optical subassem-
blies (MOSAs) on a single SC. TM: test mass; OB: optical bench,
connected through the backlink fiber; Tel: telescope. The tele-
scope transmits the local beam with magnification of around 300
(134 telescope magnification and about 2.2 from the OB), and
simultaneously receives light from the far SCs.
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the laser of one MOSA is set as the primary one, while the
remaining lasers are frequency offset phase-locked to it. We
adopt the same laser transponder configuration as seen in
the literature (N1c in [27]), where Eqs. (1) and (2) are the six
one-way ranging signals needed to synthesize Michelson-
like interferometers. Without loss of generality, we consider
the laser on MOSA1 as the primary laser. The laser in
MOSA10 is frequency offset locked to the MOSA1 laser. In
turn, the laser on MOSA20 is locked to the incoming beam
from MOSA1 and MOSA3 laser to one from MOSA10 .
MOSA2 and MOSA30 are locked to 2’ and 3, respectively.

A. Time delay interferometry 2.0

To cancel the laser phase noise seen in Eqs. (1) and (2),
one must construct TDI variables using these interferom-
eter signals. For this paper, we do an initial study using the
Michelson variables that simulate equal-arm interferome-
ters, essentially canceling laser phase noise when the delays
are known perfectly.
TDI 1.0 fails to suppress LPN when the relative velocity

between the SCs is too large. For this reason, TDI 2.0
combinations are needed as it senses each arm twice,

while considering flexing arms [28,29]; the second-
generation TDI X is essentially a Michelson interferometer
with two reflections of the laser beams, which, when
including the transponder scheme described above, is
given by

X ¼ ðξ1∶220 − ξ1Þ − ðξ10∶303 − ξ10 Þ − ðξ1∶220220303 − ξ1∶303220 Þ
þ ðξ10∶303303220 − ξ10∶220303Þ: ð3Þ

Moreover, one can always obtain the other basic TDI
variables Y and Z through cyclic permutations of the
indices; for Y: 1 → 2, 2 → 3 and 3 → 1 and similarly for
Z starting in Y. Now we are ready to start building the TTL
model within TDI using Eqs. (1) and (2). Wewill then apply
a Fisher information treatment after moving to the Fourier
domain, where we consider the TTL coupling1 to be the

FIG. 2. LISA constellation and reference frames. The blue rectangles represent the MOSAs with the primed and nonprimed
nomenclature as in the literature [6], with their respective coordinate axes. Yaw (ϕ) is positive for counterclockwise rotation around the
z-axis; pitch (η) is positive for counterclockwise rotation around the y-axis; roll (θ) is positive for counterclockwise rotation around the
x-axis. Every SC has two MOSAs with an opening angle of roughly 60°, forming a roughly equilateral triangle constellation. Each
primed MOSA forms a science interferometer with a non-primed MOSA. The ith delay, τi, along an arm corresponds to the opposite
SCi, with counterclockwise (clockwise) light travel paths being denoted by primed (nonprimed) delays.

1One thing to note is that the following equations consider
equal delays for the sake of brevity; the results we present use the
full model with different delays, as seen in Appendix C. It can be
shown that the effect of different delays from the constellation
flexing over the mission lifetime has a small impact on the results
(≤5% change).
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signal in addition to the rest of the noise terms, i.e.,
X ¼ XTTL þ noise

X̃TTL ¼ H̃ × ½þΨ̃1ðkRX
1 þ e−iω2τkTX

1 Þ
− Ψ̃10 ðkRX

10 þ e−iω2τkTX
10 Þ

þ Ψ̃20e−iωτðkRX
20 þ kTX

20 Þ − Ψ̃3e−iωτðkRX
3 þ kTX

3 Þ�
ð4Þ

where

H̃ ¼ −1þ e−iω2τ þ e−iω4τ − e−iω6τ ð5Þ

is the associated transfer function for TDI X, τ is the delay
along the arms, ω ¼ 2πf is the angular Fourier frequency,
and Ψ̃i is the Fourier transform of the DWS signal
associated with MOSAi. Notice that the coefficients asso-
ciated with the TX and RX beams for the DWS signals from
MOSA20;3 are grouped, meaning one cannot find each
coefficient individually using only the TDI X combination.
X̃TTL (and ỸTTL, Z̃TTL) is the quantity we will analyze in our
FIM calculations to identify how well we can estimate each
TTL coefficient. Notice that we also make the approxima-
tion of time-independent coefficients k since expected drifts
with the order of 20 μm=rad=day lead to only minor
TTL noise.

B. Differential wavefront signals

We now move on to define the DWS signals themselves
and then build up the noise profile for the TDI variable X.
We are only interested in the relative orientation between
the MOSA and the incoming beam in the directions of ϕ
and η; θ (roll—see Fig. 2) does not play a role due to
cylindrical symmetry. These relative motions are
determined by the science interferometer DWS signals

Ψ ¼ ðϕ; ηÞ themselves through the drag-free attitude con-
trol system (DFACS); we do not explicitly consider the
control-loops involved in the DFACS, but just assume there
is some residual jitter after being suppressed by it. The SC
orientation with respect to the inertial frame, or more
specifically, with respect to the incoming beam from the far
spacecraft will be measured by the DWS, which for yaw is

ϕ̃i;i0 ¼ ϕ̃SCi
þ ϕ̃Mi;i0 þ ϕ̃n; ð6Þ

where ϕ̃SCi
is the SC jitter in yaw, ϕ̃Mi;i0 is the MOSA jitter

with respect to the SC inertial frame, and ϕ̃n is the readout
noise associated with a DWS measurement. We assume the
readout noise is not imprinted onto the actual angles since
the DFACS is gain limited. For η (pitch)

η̃i ¼ η̃SCi
cos 30° − θ̃SCi

sin 30°þ η̃Mi
þ η̃n ð7Þ

η̃i0 ¼ η̃SCi
cos 30°þ θ̃SCi

sin 30°þ η̃Mi0 þ η̃n ð8Þ

since the pitch and roll of the SC are coupled with each
other asymmetrically—see Fig. 2. For the calculations, we
use two cases: (i) the current LISA requirements [30] as
case A, and (ii) the predicted jitter from LISASim (a time-
domain LISA simulator described in [17]) as case B. The
signals are defined in Appendix B 2 and shown in Fig. 3.

C. Noise sources

Accurate estimation of TTL coefficients require suffi-
cient signal-to-noise ratio (SNR) in the length noise.
Subsequent subtraction of TTL noise also requires
adequate SNR in the DWS readout. Assuming LPN is
already removed with the help of TDI, we consider the
secondary noise sources to be from residual TM accel-
eration, interferometric noise (including the science, the
local and the reference interferometers, and the back-link

FIG. 3. Total angular jitter (left: yaw, right: pitch) profiles considered for the LISA requirement (case (A) and total, SC, and MOSA
jitter profiles from LISASim (case B). We do not display the SC and MOSA curves of case A as they are all similar.
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fiber), GW background, and DWS readout noise. The effect
of DWS noise is two-fold as it plays a role in both the
estimation of TTL coefficients and the subtraction of TTL
noise, which will be seen later. Here we list the noise
sources associated with case A for equal delays, and leave
the full expressions in Appendix B 1. For case B
(LISASim), one can refer to [17] for the individual sources.
Assuming none of these sources are correlated with each
other, the total noise power spectral density (PSD) is

Sn ¼ SIFO þ STM þ SDWS þ SGW: ð9Þ

Keep in mind that each term has been propagated through
the TDI transfer functions, and is not simply an addition of
the LISA noise estimates; each term can be seen in Fig. 4.
The main difference in the two cases is that case A
considers a GW background, while case B does not; one
can ascertain that the noise profiles are very similar apart
from this feature. Due to TDI, the interferometric noise
transforms to

SIFO ¼ 4jH̃j2Ss ð10Þ

where

jH̃j2 ¼ 16sin2ωτsin22ωτ; ð11Þ

and Ss is the interferometer noise defined in Eq. (B1).
Similarly, the residual TM acceleration motion is trans-
formed by TDI into the form

STM ¼ 4jH̃j2
ω2

ð3þ cos 2ωτÞSδ ð12Þ

with Sδ the residual acceleration in a single TM and defined
in Eq. (B2). Since we are simultaneously considering the

TTL associated with jitter in both pitch and yaw, we
have to consider the total DWS measurement noise
SDWS ¼ Sϕ þ Sη. Strictly speaking, the DWS noise in
terms of displacement noise is unknown since the TTL
couplings are yet to be estimated, e.g., one TTL term in yaw
c1ðϕ1 þ ϕn1Þ would have a DWS noise of c1ϕn1 . This issue
can be temporarily circumvented if we assign a value of
3 mm=rad per coefficient. If one assumes all the coeffi-
cients to be equal, and all the jitters are correlated, and the
same noise level for yaw and pitch, we get

SDWS ¼ 8k2jH̃j2ð3þ cos 2ωτÞSnDWS; ð13Þ

where SnDWS is given in Eq. (B3). Although DWS length
noise does not play much of a role in estimating the TTL
coefficients, it can be a limiting factor when one subtracts
TTL noise in TDI, as seen in Sec. IV. The degree to which it
will limit us will be based on the initial values of TTL
coefficients themselves, as the DWS noise projection onto
TDI will scale by the coefficients. Finally, the gravitational
wave background, Sh is roughly based on the Mock LISA
Data Challenges (MLDC) dataset [31] that considersmassive
black holes, extreme mass ratio inspirals, cosmic-string
bursts, an isotropic stochastic background, and a largegalactic
binary population. It appears in the TDI combination as

SGW ¼ 4L2jsincðωτÞj2jH̃j2 sin2 60°Sh; ð14Þ

whereL is the LISA’s arm length, 2.5Gm, andSh is defined in
the appendix, Eq. (C8).
The signals and noise floors we defined in both cases

will dictate the uncertainty associated with recovering each
TTL coefficient. With the finite SNR we have in both cases,
the Fisher information will yield the associated uncertainty
without explicitly finding the values of the coefficients
themselves using time-domain simulations.

III. FISHER INFORMATION OF TTL WITHIN TDI

The Fisher information matrix (FIM) [18–20] in our case
quantifies the amount of information a TDI variable has
encoded in the TTL coefficients vector k. It is given by

Fi;j ¼ 4

Z
ωmax

ωmin

dω
2π

1

SnðωÞ
Re

��
∂X̃TTL

∂kRX;TXi

��� ∂X̃TTL

∂kRX;TXj

��
;

ð15Þ

where ωmin ¼ 2π=T accounts for the integration time T,
ωmax ¼ 2πfs=2 considers the sampling frequency fs, Sn is
the one-sided PSD of the noise defined in Eq. (9), X̃TTL is
the TTLmodel presented in Eq. (4), and kRX;TX are the TTL
coefficients we are interested in. The covariance matrix
(inverse of the FIM) indicates how well we can recover
individual coefficients but is also used to compute the TTL
residual. Herein lies the crux of this paper. We will use the

FIG. 4. Noise contributions for case A after going through
second-generation TDI X. TM: test-mass acceleration; IFO: IFO
noise; DWS: DWS readout noise. Case B’s noise curve is given
by LISASim total. Delays used: τ2;20 ¼ 8.29 s; τ3;30 ¼ 8.40 s.
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information from the previous sections that built the TTL
model to constrain the TTL coefficients using the FIM and
estimate the residual TTL contribution to the overall LISA
noise curve. The Cramér-Rao bound predicts the lower
limit of the errors on the TTL coefficients without actually
obtaining the posteriors on the true values

σ2ðkÞ ≥ diagðF−1Þ: ð16Þ

Singular matrices will also inform us that the DWS
signals associated with an individual TTL coefficient are
too similar to another, and therefore the two (or more)
coefficients cannot be estimated independently. The only
possible recourse at that point is to reduce the dimension-
ality of the FIM by combining the coefficients with similar
DWS signals [20]. Notice this still allows to subtract TTL
effects but prevents from knowing all the TTL coefficients
individually. However, all the coefficients can, in principle,

be found independently when considering the three TDI
combinations X, Y, and Z.
The FIM for the current formulation of both yaw, ϕ,

and pitch, η is given in Eq. (17). Note that this is the FIM
for the X combination and includes ϕ and η coefficients,
i.e., k ¼ fc; dg. The matrix is sized 12 × 12 due to
considering the coefficients that appear in the X combina-
tion after grouping coefficients that are fully correlated—
see Eq. (4), otherwise, the matrix would have been 16 × 16
(4 MOSAs × 2 coefficients × 2degrees of freedom).

FX̃ ¼
"
FX̃
ϕ 0

0 FX̃
η

#
ð17Þ

where the upper right and lower left quadrants are zero
because we assume that yaw and pitch jitter are orthogonal
to each other, which holds if the DWS read-out has no
cross-talk.

FX̃
ϕ ¼

cRX1 cTX1 cRX
10 cTX

10 cRX
20 þ cTX

20 cRX3 þ cTX32
6666666664

F1;1 F1;2 F1;3 F1;4 0 0

F1;2 F1;1 F2;3 F2;4 0 0

F1;3 F2;3 F3;3 F3;4 0 0

F1;4 F2;4 F3;4 F3;3 0 0

0 0 0 0 F5;5 0

0 0 0 0 0 F6;6

3
7777777775

cRX1
cTX1
cRX
10

cTX
10

cRX
20 þ cTX

20

cRX3 þ cRX3

ð18Þ

FX̃
η ¼

dRX1 dTX1 dRX
10 dTX

10 dRX
20 þ dTX

20 dRX3 þ dTX32
6666666664

F7;7 F7;8 F7;9 F7;10 0 0

F7;8 F7;7 F8;9 F8;10 0 0

F7;9 F8;9 F9;9 F9;10 0 0

F7;10 F8;10 F9;10 F9;9 0 0

0 0 0 0 F11;11 0

0 0 0 0 0 F12;12

3
7777777775

dRX1
dTX1
dRX
10

dTX
10

dRX
20 þ dTX

20

dRX3 þ dRX3

ð19Þ

where, for example

F1;1 ¼
Z

dω
2π

jϕ̃SC1
j2 þ jϕ̃M1

j2
Sn

ð20Þ

F1;2 ¼
Z

dω
2π

jϕ̃SC1
j2 þ jϕ̃M1

j2
Sn

cosω2τ ð21Þ

F1;3 ¼ −
Z

dω
2π

jϕ̃SC1
j2

Sn
ð22Þ
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F7;7 ¼
Z

dω
2π

jη̃SC1
j2 cos2 30°þ jθ̃SC1

j2 sin2 30°þ jη̃M1
j2

Sn
ð23Þ

considers TTL coefficients cRX1 ; cTX1 ; dRX1 ; dTX1 . F1;1 com-
putes the curvature in the likelihood function purely due to
cRX1 . Physically, cRX1 refers to the TTL coupling appearing
onMOSA1 due to local jitter in yaw. On the other hand, cTX1
is also measured on MOSA1 due to the transponder scheme
onboard SC2 that maintains the phase information of TTL
due to jitter on SC1 in the transmit beam, and sends it back
to SC1, resulting in a delay of 2τ, which shows up in F1;2
and indicates the cross-correlation between cRX1 and cTX1 .
One can also notice that the cross-correlation in F1;3 occurs
due to SC jitter being common to MOSA1 and MOSA10 in
yaw. Moreover, since Sϕ ¼ jϕ̃j2=T, Fi;j will then depend
linearly on T, meaning the uncertainties on the TTL
coefficients will scale as 1=

ffiffiffiffi
T

p
.

We assume that the jitter on board one SC is not
correlated to another, meaning there are no off-diagonal
terms for cRX

20 þ cTX
20 and cRX3 þ cTX3 , which in turn means

that, in principle, these grouped coefficients can be recov-
ered with lower uncertainties in TDI X. One can also repeat
the exercise with the other TDI variables and apply the
same reasoning for the pitch degree of freedom as well.

IV. EFFECTS OF ANGULAR JITTER
SPECTRUMS ON TTL CALIBRATION

Here, we present the effects of considering the two cases
introduced in Sec. II B (Fig. 3), with their similar noise
profiles shown in Fig. 4; case A considers a GW back-
ground while case B does not, however setting Sh ¼ 0 has a
minimal effect. To cross-check the Fisher information
results, we perform time-domain simulations as well: in
case A, we inject kinj from a random uniform distribution
with amplitude of �5 mm=radto simulate TDI data with
appropriately colored noise sources and delays as in
Eq. (3); case B uses data simulated by LISASim also from
the same distribution. The injections are then recovered
using a weighted least-squares (WLS) in the frequency
domain. A Monte-Carlo approach is used to build a
distribution where the standard deviations can be compared
with the Cramér-Rao inequality, which gives the theoretical
lower-bound on k that any time-domain simulation result
would hope to approach.
Table I shows the errors from the FIM in columns 1 and 3

for cases A and B respectively, and columns 2 and 4 show
the results from the respective time-domain simulations
used for cross-checking the FIM results. In both cases, the
FIMs are calculated assuming a sampling rate of 4 Hz and a
measurement duration of approximately one day; this sets
the integral limits in Eq. (15) from ∼11 μHz to 2 Hz.
Table I shows agreement within ≃15% for all coefficients

with the time-domain LS simulations. Case A outperforms
case B by having standard deviations that are about 50×
smaller for the individual coefficients, and about 5×
smaller for the grouped coefficients. However, the physical
reason for this has to be taken into consideration: case A
has jitter that is not very realistic since it does not capture
the natural roll-off of jitter expected at higher frequencies
due to SC inertia. Therefore, one has to be careful when
using the LISA requirements in their jitter models for TTL
calibration as it does not capture this roll-off at higher
frequencies.
There are other subtleties to consider that do not make

the FIM and LS a perfect apples-to-apples comparison: due
to the linear model of TTL coupling we use, the Fisher
information does not depend on the value of the actual
coefficients. However, in the time-domain implementation,
the appearance of DWS noise in the length noise will be
scaled by the injected TTL coefficients. Further work is
required to consider this subtlety within the Fisher infor-
mation formalism. Even so, the columns do agree well
enough to show that these are not significant issues. Note
that these values also hold for the TDI Y and Z combi-
nations as well by cyclic permutation of the indices.
Though finding individual components of TTL is useful

in pinpointing locations of potentially problematic sources,
we are more interested in finding the residual TTL noise
after subtraction in postprocessing. The error covariance
matrix Σ ¼ F−1 allows us to find the theoretical residual
(see Appendix D for the full equation using no approx-
imations of the delays)

TABLE I. 1-sigma standard deviations on k ¼ c; d obtained
from two noise and jitter profiles using the FIM approach and the
corresponding time-domain simulations. Case A: Using LISA
requirement angular jitter for T ¼ 86400 s; case B: Using
LISASim angular jitter for T ¼ 76400 s. LS: parameters esti-
mated from Monte Carlo time-domain simulations using
weighted least-squares. These numbers were calculated using
TDI X, but also holds for Y and Z.

Coefficients in TDI X FIM Case A (LS)
[μm=rad]

FIM Case B (LS)
[μm=rad]

cRX1 3.23 (2.97) 206 (209)
cTX1 3.23 (2.91) 200 (205)
cRX
10 3.23 (2.88) 205 (208)
cTX
10 3.23 (2.93) 200 (205)
cRX
20 þ cTX

20 2.91 (2.59) 25.4 (24)
cRX3 þ cTX3 2.90 (2.53) 25.4 (29)

dRX1 2.98 (2.74) 245 (262)
dTX1 2.98 (2.82) 212 (260)
dRX
10 2.98 (2.71) 245 (258)

dTX
10 2.98 (2.79) 213 (262)

dRX
20 þ dTX

20 2.87 (2.65) 29.9 (31)
dRX3 þ dTX3 2.86 (2.68) 29.9 (27)
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Sres;ϕ ¼ ðX̃ − ˆ̃XÞϕðX̃ − ˆ̃XÞ�ϕ
¼ fSϕSC1

½σ211 þ σ222 þ σ233 þ σ244 − 2ðσ13 þ σ24Þ þ 2ðσ12 þ σ34 − σ14 − σ23Þ cos 2ωτ�
þ SϕM1

½σ211 þ σ222 þ 2σ12 cos 2ωτ�
þ SϕM10

½σ233 þ σ244 þ 2σ34 cos 2ωτ�
þ ðSϕSC2

þ SϕM20 Þσ255 þ ðSϕSC3
þ SϕM3

Þσ266
þ SDWSϕ ð24Þ

where σ2ij are the elements of Σ, Sϕi
are the respective

angular jitters, and SDWSϕ ¼ 4k2jH̃j2ð3þ cos 2ωτÞSnDWS is
the DWS readout noise projection onto TDI X scaled by
TTL coupling. A similar treatment can be performed to
obtain the total residual including pitch (η), giving Sres ¼
Sres;ϕ þ Sres;η as seen in Fig. 5. Note t hat the TTL
uncertainty contribution to the TTL noise residual is
independent of the coefficients themselves: the coefficients
appear in the residual through the DWS readout noise
SDWS. In case A, we are limited by the DWS measurement
noise projection onto TDI X, which is given assuming
k ¼ 3 mm=rad. Case B is limited by the TTL coefficients’
uncertainties that are roughly 70× greater, occurring due to
the lower SC jitter at high frequencies, along with the DWS
noise projection. If one assumes all the TTL coefficients
k ¼ 3 mm=rad, we find suppression of about 80× (11×) in
case A (case B) predicted by the covariance matrix, such
that the TTL residual in case A is around 8 pm=

ffiffiffiffiffiffi
Hz

p
in

one day of integration time. However, a calibration of the
TTL coefficients over T ¼ 76400 s for case B reaches a

maximum residual TTL noise of 13.6 pm=
ffiffiffiffiffiffi
Hz

p
at 20 mHz

falling off on either side in the frequency-domain. More-
over, both residuals are below the projected noise floor for
the case that all the coefficients are equal k ¼ 3 mm=rad.
At higher TTL coefficient values, DWS readout noise will
dominate, erasing the effect of the two angular jitter models
in the TTL noise residual. In the event that TTL coefficients
are ≳20 mm=rad, one might have to implement an in-orbit
alignment procedure to ensure DWS readout noise does not
limit the interferometer performance when trying to sub-
tract TTL noise.
Since the length noise curves in both cases are very

similar, as seen in Fig. 4 (apart from the GW background
in case A which has a small effect), the differences in
performance must be purely due to the differences in angular
jitter, in particular at higher frequencies—see Fig. 3. The
angular noise power at higher frequencies contributes the
most SNR in the Fisher information, giving 70× lower
uncertainties in individual TTL coefficients, and a 1.7×
lower noise residual. However, as stated earlier, case A is a
jitter requirement while case B is a model of the expected
jitter based on a specific and simple DFACS model.

V. DISCUSSION

We have shown that the Fisher information analysis
allows us to predict how well one can suppress noise due
to TTL coupling after TDI removes laser phase noise. The
Cramér-Rao bound gives the lower bound we have in
estimating TTL coefficients, thereby telling us the accuracy
to which we can theoretically resolve them. We find our
results agree well with Monte-Carlo time-domain simula-
tions from our own code, and with LISASim. The Fourier
domain approach allows one to quickly make calculations of
how well TTL can be suppressed based on the spectrum of
angular jitter. Our approach allows us to modify noise
profiles, use various angular jitter spectra, or find the
minimum integration times required to be below the
noise floor.
We considered two main cases in this work: case A

utilizes the LISA requirement angular jitter, while case B
considers a more realistic angular jitter from LISASim. The
two cases have very similar noise floors, while the former
also considers a GW background, which does not have

FIG. 5. TDI X residual computed from the error covariance
matrix Σ. Sn: All noise sources as seen in Fig. 4 for case A,
excluding the gravitational background; SA, SB: Noise contribu-
tions from TTL assuming k ¼ 3 mm=rad; Sresidual: Expected
residual SresA (SresB ) for case A (case B) using expected jitter
and an integration time of T ∼ 1 day as computed in Eq. (24);
case A has a roughly 6× lower residual. DWS: readout noise
assuming k ¼ 3 mm=rad.
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much of an effect on our results. We find the unrealistic
levels of jitter above 20 mHz in case A leads to an
unrealistic TTL calibration residual below 2 pm=

ffiffiffiffiffiffi
Hz

p
for all frequencies in one day of measurement time. On
the other hand, the residual in case B is approximately
below 12 pm=

ffiffiffiffiffiffi
Hz

p
across all frequency bins. Both cases

are at least 5× below the length noise floor, even though the
uncertainties associated with individual TTL coefficients
for case B were high, as seen in Table I. In case A, the lower
uncertainty in the TTL pitch coefficients arises from having
the additional projection of SC roll jitter; in case B
however, this does not have as much of an effect as the
yaw jitter is roughly an order of magnitude greater. We also
find that care has to be taken when the system has a larger
magnitude of TTL coefficients, as this will translate to
residuals approaching the length noise floor. A related
analysis was recently published in [32] albeit starting from
different angular profiles. While the results are similar in
magnitude, a detailed comparison is still outstanding.
We also find that using the TDI X, Y, Z variables, one

can find the values of every TTL coefficient independently.
This is important to identify the TTL coefficients across the
six MOSAs and re-align them. If considering only TDI X,
we see that we cannot distinguish between the RX and TX
coefficients from MOSA20 and MOSA3 as seen in Eq. (4).
There are other questions we can answer with the Fisher

information formalism: first, do other TDI forms give us
more information? As an initial step, we used the
Michelson combinations, but we can also consider the
Sagnac, orthogonal, or other TDI combinations presented
in [33]. Moreover, we will explore the effects of linear
combinations of the aforementioned variables in future
work. Second, we use given noise and jitter models,
whereas there could be several unknowns in a space
mission. In future work, we will consider the case of
having no prior knowledge of the noise profile, and find it,
e.g., with an iterative reweighted least-squares or log-
likelihood as done in [34]. We also wish to explore the
effects of correlated angular jitters and sensing noise. Third,
by finding TTL coefficients in regular intervals, one can
notice the trend at which TTL changes over time. Any
deviation from a nominal trend could point to possible
issues such as a misalignment in the OB, unwanted
temperature gradients, or other effects. Finally, the final
performance of the DFACS system is still under inves-
tigation such that the residual spacecraft jitter that deter-
mines the required integration time to calibrate TTL
sufficiently well is not well known. It might even be
necessary to inject spacecraft jitter [35], as done for
example in [36] to calibrate TTL swiftly.
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APPENDIX A: INTERFEROMETER SIGNALS

These are the science interferometer signals after using
the method used in [7] to remove OB motion, with a phase
lock loop as defined in the laser frequency transponder
scheme [27].

ξ1 ¼ p1∶303 − p1 þ n20∶3 þ n1

þ e3ðδ1 þ δ1∶303Þ þ 2e30δ20∶3

þ h1 þ h20∶3

þ Δθ20∶3 ðA1Þ

þkTX
1 Ψ1∶303 þ kRX

1 Ψ1 þ ðkRX
20 þ kTX

20 ÞΨ20∶3 ðA2Þ

ξ10 ¼ p1∶220 − p1 þ n3∶20 þ n10

þ e20 ðδ10 þ δ10∶220 Þ þ 2e2δ3∶20

þ h10 þ h3∶20

þ Δθ3∶20 ðA3Þ

þ kTX
10 Ψ10∶220 þ kRX

10 Ψ10 þ ðkRX
3 þ kTX

3 ÞΨ3∶20 ðA4Þ

ξ2 ¼ p1∶21 − p1∶30 þ n3∶1 þ n2 − n20

þ e1δ2 þ e10δ30∶1 þ e2δ3∶1 þ e20δ10∶21

− e3δ1∶30 − e30δ20

þ h2 − h20 þ h3∶1

þ kRX
3 Ψ3∶1 þ kTX

10 Ψ10∶21 − kRX
20 Ψ20 − kTX

1 Ψ1∶30

þ kRX
2 Ψ2 þ kTX

30 Ψ30∶1 ðA5Þ

ξ20 ¼ Δθ20 ðA6Þ

ξ3 ¼ Δθ3 ðA7Þ

ξ30 ¼ p1∶3010 − p1∶2 þ n20∶10 þ n30 − n3

þ e1δ2∶10 þ e10δ30 − e2δ3 − e20δ10∶2

þ e3δ1∶3010 þ e30δ20∶10

þ h30 − h3 þ h20∶10

þ kRX
20 Ψ20∶10 þ kTX

1 Ψ1∶3010 − kRX
3 Ψ3 − kTX

10 Ψ10∶2

þ kRX
30 Ψ30 þ kTX

2 Ψ2∶10 : ðA8Þ

where pi is the laser phase noise, ni is the interferometer
noise, eδ is the projection of the test-mass motion along the

CALCULATING THE PRECISION OF TILT-TO-LENGTH … PHYS. REV. D 107, 022005 (2023)

022005-9



sensitive axis, hi is a gravitational signal, and Δθ is the
phase error induced from an imperfect phase-lock loop
(PLL) in the transponder SC. k ¼ ðc; dÞ are the TTL
coefficients associated with the yaw and pitch degrees of
freedom respectively. These angular degrees of freedom are
measured by the DWS signals Ψ ¼ ðϕ; ηÞ.

APPENDIX B: NOISE AND JITTER SPECTRA

1. Noise

Here we show the equations for the curves given in
Fig. (4). The total interferometer noise PSD is

Ss ¼
�
10

pmffiffiffiffiffiffi
Hz

p
�

2
�
1þ

�
2 mHz

f

�
4
�
: ðB1Þ

The TM acceleration noise is

Sδ ¼
�

3

ω2

fm=s2ffiffiffiffiffiffi
Hz

p
�

2
�
1þ

�
0.4 mHz

f

�
2
��

1þ
�

f
8 mHz

�
4
�
;

ðB2Þ

and the DWS noise is modeled as

Snϕ;η ¼
ð50 nradffiffiffiffi

Hz
p Þ2
M2

�
1þ

�
2 mHz

f

�
4
�

ðB3Þ

where M ¼ 300 is telescope and optical bench beam
magnification.

2. Jitter signals

Here we show the equations for the curves given in Fig. 3
for both cases. Case A signals for SC and MOSA are

Sðϕ;η;θÞSC ¼ ð10 nrad=
ffiffiffiffiffiffi
Hz

p
Þ2
�
1þ

�
0.8 mHz

f

�
4
�

ðB4Þ

SϕMOSA
¼ ð10 nrad=

ffiffiffiffiffiffi
Hz

p
Þ2
�
1þ

�
0.8 mHz

f

�
4
�

ðB5Þ

SηMOSA
¼ ð10 nrad=

ffiffiffiffiffiffi
Hz

p
Þ2
�
1þ

�
0.5 mHz

f

�
4
�
: ðB6Þ

Case B signals for SC and MOSA are

Sðϕ;ηÞSC ¼ ð40 frad=
ffiffiffiffiffiffi
Hz

p
Þ2
�
1þ

�
f
f1

�
2
�
2
�
1þ fðf þ α2f − 2α2f2Þ

α2f22

�−2

×

�
1þ fðf þ α2f − 2α2f3Þ

α2f23

�−2�
1þ

�
f
f4

�
2
�
−2

ðB7Þ

SθSC ¼ ð4 frad=
ffiffiffiffiffiffi
Hz

p
Þ2
�
1þ

�
f
f1

�
2
�
2
�
1þ fðf þ α2f − 2α2f2Þ

α2f22

�−2

×

�
1þ fðf þ α2f − 2α2f3Þ

α2f23

�−2�
1þ

�
f
f4

�
2
�
−2

ðB8Þ

SϕMOSA
¼ ð10 mrad=

ffiffiffiffiffiffi
Hz

p
Þ2
�ðf2 þ f25Þ2
ð1þ f2Þf25

�
2

ðB9Þ

SηMOSA
¼ ð1 mrad=

ffiffiffiffiffiffi
Hz

p
Þ2
�ðf2 þ f25Þ2
ð1þ f2Þf25

�
2

; ðB10Þ

where the frequency terms are given in Table II.

TABLE II. Frequency values for Eqs. (B7)–(B10).

α f1 f2 f3 f4 f5

0.7 2 × 10−5 0.01 0.05 8 1 × 10−4
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APPENDIX C: TIME DELAY INTERFEROMETRY

The main text assumes some approximations of the following equations for brevity’s sake. These are the full equations
for TDI 2.0, starting with the time-delay combinations of the interferometer signals, as seen in [7], the X combination is:

X ¼ ξ10 þ ξ3∶20 þ ξ1∶220 þ ξ20∶3220 þ ξ1∶303220 þ ξ20∶3303220 þ ξ10∶303303220 þ ξ3∶20303303220

− ðξ1 þ ξ20∶3 þ ξ10∶303 þ ξ3∶20303 þ ξ10∶220303 þ ξ3∶20220303 þ ξ1∶220220303 þ ξ20∶3220220303Þ ðC1Þ

and assuming MOSA1 contains the primary laser with transponder scheme, it reduces to

X ¼ ξ10 þ ξ1∶220 þ ξ1∶303220 þ ξ10∶303303220 − ðξ1 þ ξ10∶303 þ ξ10∶220303 þ ξ1∶220220303Þ: ðC2Þ

Our calculations are primarily in the frequency domain, so presented here is TDI and some noise sources in the Fourier
domain.

X̃TTL ¼ þðkRX
1 þ kTX

1 e−iωðτ3þτ30 ÞÞΨ̃1f−1þ e−iωðτ2þτ20 Þ þ e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ3þτ30 Þg
− ðkRX

10 þ kTX
10 e

−iωðτ2þτ20 ÞÞΨ̃10f−1þ e−iωðτ3þτ30 Þ þ e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ3þτ30 Þþτ2þτ20 Þg
þ ðkRX

20 þ kTX
20 ÞΨ̃20e−iωτ3f−1þ e−iωðτ2þτ20 Þ þ e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ3þτ30 Þg

− ðkRX
3 þ kTX

3 ÞΨ̃3e−iωτ20 f−1þ e−iωðτ3þτ30 Þ − e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ3þτ30 Þþτ2þτ20 Þg ðC3Þ

The Y combination can be obtained from X by cyclic permutation, i.e.,

ỸTTL ¼ þðkRX
2 þ kTX

2 e−iωðτ1þτ10 ÞÞΨ̃2f−1þ e−iωðτ3þτ30 Þ þ e−iωðτ1þτ10þτ3þτ30 Þ − e−iωð2ðτ3þτ30 Þþτ1þτ10 Þg
− ðkRX

20 þ kTX
20 e

−iωðτ3þτ30 ÞÞΨ̃20f−1þ e−iωðτ1þτ10 Þ þ e−iωðτ1þτ10þτ3þτ30 Þ − e−iωð2ðτ1þτ10 Þþτ3þτ30 Þg
þ ðkRX

30 þ kTX
30 ÞΨ̃30e−iωτ1f−1þ e−iωðτ3þτ30 Þ þ e−iωðτ1þτ10þτ3þτ30 Þ − e−iωð2ðτ3þτ30 Þþτ1þτ10 Þg

− ðkRX
1 þ kTX

1 ÞΨ̃1e−iωτ30 f−1þ e−iωðτ1þτ10 Þ þ e−iωðτ1þτ10þτ3þτ30 Þ − e−iωð2ðτ1þτ10 Þþτ3þτ30 Þg ðC4Þ

and similarly to obtain Z from Y. Next we derive the interferometer noise in TDI X 2.0

SXIFO ¼ ðSs1 þ Ss20 Þj − 1þ e−iωðτ2þτ20 Þ þ e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ3þτ30 Þj2
þ ðSs10 þ Ss3Þj þ 1 − e−iωðτ3þτ30 Þ − e−iωðτ3þτ30þτ2þτ20 Þ þ e−iωð2ðτ3þτ30 Þþτ2þτ20 Þj2 ðC5Þ

where Ssi is the one-link interferometer noise. SYIFO and SZIFO can be derived by cyclic permutation from X and Y,
respectively. The TM acceleration noise after TDI is

SXTM ¼ Sδ1 j − 1þ e−iωðτ2þτ20 Þ − e−iωðτ30þτ3Þ þ 2e−iωðτ2þτ20þτ3þτ30 Þ þ e−iωð2ðτ30þτ3Þþτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ30þτ3Þ

− e−iωð2ðτ2þτ20þτ3þτ30 ÞÞj2
þ Sδ10 j1þ e−iωðτ2þτ20 Þ − e−iωðτ30þτ3Þ − 2e−iωðτ2þτ20þτ3þτ30 Þ þ e−iωð2ðτ30þτ3Þþτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ30þτ3Þ

þ e−iωð2ðτ2þτ20þτ3þτ30 ÞÞj2
þ 4Sδ3 j þ 1 − e−iωðτ30þτ3Þ − e−iωðτ20þτ2þτ30þτ3Þ þ e−iωð2ðτ3þτ30 Þþτ2þτ20 Þj2
þ 4Sδ20 j − 1þ e−iωðτ2þτ20 Þ þ e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ3þτ30 Þj2 ðC6Þ

where Sδi is the acceleration noise of the a single TM. SYnTM all
and SZnTM all

can be derived by cycling permutation. The DWS
noise in ϕ after propagation through TDI is
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SXnϕ ¼ ½ðcRX1 Þ2 þ ðcTX1 Þ2 þ 2cRX1 cTX1 cosωðτ3 þ τ30 Þ�Snϕ1
× j − 1þ e−iωðτ2þτ20 Þ þ e−iωðτ30þτ3þτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ30þτ3Þj2
þ ½ðcRX

10 Þ2 þ ðcTX
10 Þ2 þ 2cRX

10 c
TX
10 cosωðτ2 þ τ20 Þ�Snϕ

10

× j þ 1 − e−iωðτ30þτ3Þ − e−iωðτ2þτ20þτ30þτ3Þ þ e−iωð2ðτ30þτ3Þþτ2þτ20 Þj2
þ ðcRX

20 þ cTX
20 Þ2Snϕ

20
j − 1þ e−iωðτ2þτ20 Þ þ e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ3þτ30 Þj2

þ ðcRX3 þ cTX3 Þ2Snϕ3 j þ 1 − e−iωðτ3þτ30 Þ − e−iωðτ20þτ2þτ30þτ3Þ þ e−iωð2ðτ30þτ3Þþτ2þτ20 Þj2 ðC7Þ

and for η one replaces c with d and SXnϕ for SXnη. The total DWS noise is

SXDWS ¼ SXnϕ þ SXnη ðC8Þ

and similarly for Y and Z after cyclic permutation of the indices. Finally, for the gravitational-wave background, we model it
roughly based on the Mock LISA Data Challenges (MLDC) dataset [31]:

Sh ¼ 4π210−44=ω2 ðC9Þ

APPENDIX D: RESIDUALS AFTER TTL SUBTRACTION

The TTL noise residual making no assumptions on the time-delays is (for ϕ)

SXres;ϕ ¼ ðSϕSC1
þ SϕM1

Þ½σ211 þ σ222 þ 2σ12 cosωðτ3 þ τ30 Þ�jH1j2

þ ðSϕSC1
þ SϕM

10
Þ½σ233 þ σ244 þ 2σ34 cosωðτ2 þ τ20 Þ�jH2j2

− 2SϕSC1
½σ13ℜfH1H�

2g þ σ14ℜfH1ðH2e−iωðτ2þτ20 ÞÞ�g
þ σ23ℜfH1ðH2eiωðτ3þτ30 ÞÞ�g þ σ24ℜfH1ðH2eiωðτ3þτ30−τ2−τ20 ÞÞ�g�
þ ðSϕSC2

þ SϕM
20
Þσ255jH1j2 þ ðSϕSC3

þ SϕM3
Þσ266jH2j2

þ SXnϕ ðD1Þ

where

H1 ¼ −1þ e−iωðτ2þτ20 Þ þ e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ2þτ20 Þþτ3þτ30 Þ ðD2Þ

H2 ¼ −1þ e−iωðτ3þτ30 Þ þ e−iωðτ3þτ30þτ2þτ20 Þ − e−iωð2ðτ3þτ30 Þþτ2þτ20 Þ: ðD3Þ

The residuals for η are calculated by replacing ϕ by η and by changing the covariance elements to σiþ6;jþ6 with
i; j ¼ 1; 2;…6. As previously, the residuals for Y and Z can be obtained from cyclic permutation of the indices.
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