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Crystalline materials are increasingly employed to construct precision optical instruments because of
their reduced mechanical dissipation and consequent reduction of thermal Brownian noise. However, the
anisotropy of the crystalline state implies a fundamental source of thermal noise; depolarization induced by
thermal fluctuations of its birefringence. We establish the theory of this effect, which is a generalization of
prior treatments of thermo-optic noises in amorphous materials. This theory—in conjunction with poorly
understood anisotropic thermal stress coefficients of crystalline coatings—predict that thermo-refringent
noise in crystalline mirror coatings may be lurking within an order of magnitude of Brownian noise (below
100 Hz). Thus, in order to appreciate the full promise of crystalline optical materials, a more precise
understanding of their anisotropic material constants is necessary. Barring that, we elucidate measurement
techniques that can affect partial coherent cancellation of thermorefringent noise. In passing, our general
formalism also predicts the existence of thermal beam-pointing noise.
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I. INTRODUCTION

Optical media are surprisingly active even at arbitrarily
low light intensity. Dissipation—thermal, mechanical, and
optical—leads to fluctuations in the optical fields that
interact with them [1]. For example, thermal dissipation in
optical media produces apparent temperature fluctuations
that cause fluctuations in their refractive index and length
[2–4]. The combination of such thermorefractive and
thermoelastic noises—so-called thermo-optic noise [5]—
limits the sensitivity of optical fiber strain sensors [6,7],
the frequency stability of fiber lasers [8,9], and the utility
of micro and nanophotonic components [10–15]. On the
other hand, mechanical dissipation in optical media
produces fluctuations in the material strain. Such
Brownian noise in cavity spacers, mirror substrates, and
reflective coatings [16] limits the stability of optical
atomic clocks [17–20] and the sensitivity of interfero-
metric gravitational-wave detectors [21–25]. (Noise due
to optical dissipation, via the photothermoelastic and
photothermorefractive mechanisms [26], have so far only
been circumstantially implicated [27].) The common
feature of these observations is the role of the amorphous
character of optical materials.
In this context, crystalline optical materials have gained a

reputation for their reduced Brownian noise [28,29]. The
nature of thermo-optic noise in crystalline materials must
be understood before the full extent of their promise can be
imagined. However, prior theories of thermo-optic noise
[4,5,16,26,30–34] focus on thermodynamic fluctuations in

isotropic materials which do not directly apply to crystal-
line materials (while prior measurements on a crystalline
micro-cavity [35] were apparently limited by thermore-
fractive noise). Indeed, the hallmark of the crystalline state
is the anisotropy of its physical properties. In particular,
both its thermal and optical responses can be anisotropic,
implying that thermodynamic fluctuations of its optical
properties can be qualitatively different from those of
amorphous materials.
We show that anisotropic optical materials—exemplified

by crystalline media—exhibit a more complicated fluc-
tuation of their apparent temperature than do isotropic
materials. In turn, this induces new types of noise in the
electromagnetic field, such as the appearance of noise in
polarization modes orthogonal to the polarization of the
incident mode. In general, the polarization state of light
acquires a noisy character, an effect we dub thermore-
fringent noise. Interference of such a noisy state of light
with any independent reference will be imperfect, so that
thermorefringent noise can appear as apparent amplitude
and phase noise, which makes it particularly treacherous
and qualitatively different from thermo-optic noise in
amorphous material (which appear as apparent phase noise
only). Indeed, the improved Brownian thermal noise
performance of crystalline coatings [28] may ultimately
be limited by thermorefringent noise. Recent measurements
have in fact discovered excess noise in optical cavities
made of crystalline coatings that is thought to be due to
polarization fluctuations [36].
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Our predictions apply equally to optical materials which
can develop small anisotropies due to induced strain. This
perspective is particularly germane to precision optical
polarimetry [37–41], such as for tests of QED [42,43], and
optical searches for physics beyond the Standard Model
[44–46].
In addition to thermorefringent noise, the first-principles

formalism we develop allows us to uncover the possibility
of thermodynamically-induced scattering into higher-order
spatial modes, an effect that must also exist in amorphous
media, but has not been considered so far.
We finally introduce balanced homodyne polarimetry, a

polarization sensitive variant of homodyne detection that
can affect coherent cancellation of thermorefringent noise.
This technique of reducing the impact of optical thermal
noise is agnostic to precise details of the coating layers or
materials (in contrast to coating layer or material engineer-
ing techniques [32–34,47–54]), and only relies on the
generic fact that thermorefringent noise is correlated
between the two orthogonal polarizations.
The rest of the paper is organized as follows. In Sec. I A

we briefly state the main results of the paper. Section II
expounds the general formalism that models the propaga-
tion of classical electromagnetic waves through a ther-
mally-active anisotropic medium. In Sec. III A we extract
stochastic equations of motion for the polarization compo-
nents of the field, which are then applied to the study of
propagation through an anisotropic material (Sec. III B),
reflection from a crystalline thin-film coating stack
(Sec. III C), and finally, reveal the existence of thermody-
namically-induced beam pointing noise (Sec. III D). In
Sec. IV we describe the manifestation of thermorefringent
noise in quantities that are typically measured in optical
experiments. Finally, in Sec. IV C we address the possibil-
ity of coherent cancellation of thermorefringent noise using
balanced homodyne polarimetry.

A. Summary of main results

We establish a general formalism that describes any optical
instruments affected by thermodynamic noise, in particular,
generalizing all previous treatments that neglected the polari-
zation degree of freedom [4,5,16,26,30–34]. Employing this
formalism, we produce concrete predictions for thermore-
fringent noise in two optical configurations directly relevant
to today’s most precise optical instruments—gravitational-
wave detectors, optical atomic clocks—and a host of
precision polarimetry experiments [44–46,55–58]. These
configurations are the transmission of a plane-polarized
electric field through an anisotropic medium (Sec. III B),
and the reflection of a plane-polarized electric field from a
periodic quarter-wavelength stack of alternating anisotropic
thin-films (Sec. III C).
The incident field is taken to propagate along the z

direction, and plane-polarized along the x direction, meet-
ing the medium at normal incidence. The medium is

characterized by the dielectric tensor εij, whose variation
with temperature T is denoted ε0ij ¼ ∂εij=∂T. The medium
is also assumed thermally anisotropic, with a thermal
diffusion tensor Dij. In equilibrium, the local temperature
fluctuates with a characteristic intensity ζ2 ¼ 2kBT2=cV,
where cV is the volumetric heat capacity at constant
volume.
Purely x-polarized light incident on a crystalline slab

emerges with a fluctuations in its incident polarization, and
additional fluctuations in the y direction. At “small” Fourier
frequency Ω, we show that the polarization fluctuations
along the two directions are given by (in terms of their
power spectral densities of the fluctuations of the polari-
zation component ei along the i direction),

SexexðΩÞ ¼ −
k2ζ2jε0xxj2l

16πn2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p lnðjΩτþjÞ

SeyeyðΩÞ ¼ −
k2ζ2jε0xyj2l

16πn2y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p ln½jDzzτþðkΔnÞ2j�;

where l is the slab thickness, k ¼ ω=c is the magnitude of
the incident wave vector, τþ ¼ ðr20=2ÞðD−1

xx þD−1
yy Þ is the

transverse thermal diffusion timescale, r0 is the incident
field’s transverse spatial mode radius, and Δn ¼ nx − ny is
the static birefringence, with nx;y the static refractive
indices in the transverse directions. Here, “small” means
that Ωτþ ≪ Dzzτþω2ðΔnÞ2=c2 ≪ 1; i.e., small compared
to thermal diffusion in the transverse direction (but not
small compared to diffusion in longitudinal direction). Note
that Seyey is frequency-independent. In the “intermediate”

frequency regime, i.e., Dzzτþω2ðΔnÞ2=c2 ≪ Ωτþ ≪ 1,
Sexex is identical to the above expression, while

SeyeyðΩÞ ¼ −
k2ζ2jε0xyj2l

16πn2y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p ln ðjΩτþjÞ

falls logarithmically. Finally, there is the “large” frequency
regime, characterized by Dzzτþω2ðΔnÞ2=c2 ≪ Ωτþ and
1 ≪ Ωτþ, in which

SexexðΩÞ ¼
k2ζ2jε0xxj2lτþ

8πn2xr20

1

jΩτþj2

SeyeyðΩÞ ¼
k2ζ2jε0xyj2lτþ

8πn2yr20

1

jΩτþj2
;

i.e., polarization noise falls as inverse square of the
frequency. Note that the polarization fluctuations in the
two directions are always correlated, a detail that is
discussed in Sec. III B.
We then consider the question of thermorefringent

noise from a high-reflector crystalline coating stack.
We model the coating as a periodic stack of a pair of
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quarter-wavelength crystalline thin-films of dielectric ten-
sors εð1;2Þij (and approximately similar thermal properties, on
a substrate that is also thermally similar). When purely
x-polarized light is incident on such a stack, the polariza-
tion fluctuations of the reflected field are given by

SrexexðΩÞ ¼
����rx π2 n2ε

0ð1Þ
xx þ n1ε

0ð2Þ
xx

n1n2ðn21 − n22Þ
����
2

Sũ ũðΩÞ

SreyeyðΩÞ ¼
����ry π2 n2ε

0ð1Þ
xy þ n1ε

0ð2Þ
xy

n1n2ðn21 − n22Þ
����
2

Sũ ũðΩÞ;

where rx;y is the reflection amplitude for either polarization,
ni ≈ nix ≈ niy (i ¼ 1, 2) the static refractive index of each
coating layer, and

Sũ ũðΩÞ ≈
ζ2

πr20
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DzzΩ

p
is the approximate power spectral density of a temperature
averaged over an optically active region (in the “high”-
frequency regime, Ω ≫ Dzz=r20). Exact expressions for the
temperature fluctuations (including in other regimes),
cross-correlation between the polarizations, and the fate
of the transmitted field, are all available in Sec. III C.
In the limit of isotropic thermal and optical response, the

above expressions for the polarization fluctuations along
the incident polarization can be related to known expres-
sions for thermo-optic noise in an isotropic material
[4,5,16,26].

II. THEORETICAL MODEL AND FORMALISM

A. Thermodynamic fluctuations in an anisotropic body

For a body in thermal equilibrium—described by the
canonical ensemble—its energy fluctuates with a variance
[59] Var½E� ¼ kBT2CV , whereT is the equilibrium tempera-
ture, and CV the heat capacity at constant volume. The
energy fluctuations may be referred to an apparent tempera-
ture fluctuation using the relation δT ¼ δE=CV to give

Var½T� ¼ kBT2

CV
: ð2:1Þ

We model the temperature fluctuation of the body as the
spatial average of a local temperature field uðr; tÞ,

δT ¼ 1

V

Z
V
uðr; tÞd3r; ð2:2Þ

which is itself determined by a stochastic partial differential
equation describing the transport of local heat fluctuations in
the body. Assuming that heat transport in the body is due to
conduction, the local heat current _qi (along the ith direction)
is due to temperature gradients, and local temperature u
decreases by heat dissipation. This is modeled by

_qi ¼ −κij∂ju − ζiðr; tÞ

_u ¼ −
∂i _qi
cP

; ð2:3Þ

where κij is the anisotropic conductivity, cP is thevolumetric
heat capacity at constant pressure, and ζi are stochastic heat
currents modeling microscopic heat sources. Since we are
interested in spatial regions larger than the typical extent of
the microscopic heat sources modeled by ζi, and in time
durations much slower than their typical fluctuation time
scale, we take that they are uncorrelated in space and time
[60]. However directional correlation needs to be deter-
mined separately. We consider this problem in Appendix A
and conclude that the correlation of noise should take the
form

hζiðr; tÞi ¼ 0

hζiðr; tÞζjðr; tÞi ¼ ζ2Dijδðr − r0Þδðt − t0Þ; ð2:4Þ

where Dij ¼ κij=cP is the thermal diffusivity. The intensity
ζ2, determined so as to be consistent with Eq. (2.1), is (see
Appendix A)

ζ2 ¼ 2kBT2

cV
; ð2:5Þ

where cV ¼ CV=V is the volumetric heat capacity at con-
stant volume. Eliminating the heat current from Eq. (2.3)
produces a stochastic partial differential equation for the
temperature,

ð∂t −Dij∂i∂jÞuðr; tÞ ¼ ηðr; tÞ; ð2:6Þ

where η ¼ ∂iζi. Its formal solution,

uðr;tÞ¼huðr;tÞiþ
Z

d3rdtUðr−r0;t− t0Þηðr0;t0Þ; ð2:7Þ

is the sum of a homogeneous part hui, satisfying
ð∂t −Dij∂i∂jÞhui ¼ 0, and a particular part, expressed in
terms of the Green functionU of the operator ð∂t −Dij∂i∂jÞ
for appropriate boundary conditions. This sum is physically
interpreted as the average temperature field hui perturbed by
the fluctuation

δuðr; tÞ≡
Z

d3r dtUðr − r0; t − t0Þηðr0; t0Þ: ð2:8Þ

Note that since we expect hui to be smooth, we can takeDij

to be symmetric.

B. Equations for electromagnetic field fluctuations

Electromagnetic wave propagation through an aniso-
tropic medium, whose internal temperature fluctuates as
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described above, is our primary concern. The predominant
effect of temperature fluctuations in such a medium is a
change in the relative dielectric tensor,

εij ¼ hεiji þ ε0ijδu: ð2:9Þ

Here, the coefficient ε0ij may describe a temperature-
dependent refractive index (along any direction), or the
effect of temperature-dependent elastic strains which, via
the photo-elastic effect, produces an apparent refractive
index change (see Appendix B). In amorphous optical
media the former (latter) leads to thermorefractive [4]
(thermoelastic [26]) noise. (Note that in principle, there
is also a photothermorefractive and photothermoelastic
effect—i.e., the local temperature fluctuation in the
medium is seeded by absorption of the local optical
intensity—but these effects are usually negligible in large
optics.) Restricting attention to electromagnetic field fluc-
tuations due to temperature fluctuations that are much
slower than typical optical frequencies, the field is adiabatic
with respect to the fluctuations in εij. The field then
satisfies the Maxwell equations,

∂i∂jEj − ∂j∂jEi ¼ −
εij
c2

∂
2
t Ej: ð2:10Þ

Separating the fluctuation-free part of the field, i.e.,
Ei ¼ hEii þ δEi, inserting Eq. (2.9), and linearizing gives
the equation for the fluctuating part of the field,

∂i∂jδEj − ∂j∂jδEi þ
hεiji
c2

∂
2
t δEj ¼ −

ε0ij∂
2
t hEji
c2

δu; ð2:11Þ

which describes electric field fluctuations driven by local
temperature fluctuations.
In the typical scenario of interest, the field, in the absence

of temperature fluctuations, propagates along (say) the z
direction, in a pure polarization state, and in a well-
characterized spatial mode f0ðx; yÞ. That is,

hEiðr; tÞi ¼
ffiffiffiffi
P

p
eiðkniz−ωtÞf0ðx; yÞheð0Þi i; ð2:12Þ

here heð0Þi i is a vector in the ðx; yÞ plane that denotes the
mean polarization state; the spatial mode is normalized
such that the integral of E�

i Ei in the transverse plane gives

the optical power P, i.e., heð0Þi i is a unit vector, and jf0j2
integrates to unity in the xy plane. We will only consider

mean incident polarization heð0Þi i that is collinear with the
principal crystal axes (i.e., the eigenvectors of hεiji). Fixing
a spatial mode bases ffαgα¼0;1;… that is orthonormal under
the inner product,

ðfαjfα0 Þ≡
Z

dx dyf�αðx; yÞfα0 ðx; yÞ;

the effect of fluctuations in the medium can be studied by
using the ansatz

δEiðr; tÞ ¼
ffiffiffiffi
P

p
eiðkniz−ωtÞ

X
α

fαðx; yÞδeðαÞi ðz; tÞ ð2:13Þ

that separates out the effect of the thermal fluctuation as a
slow-in-time fluctuation of the polarization of the same
spatial mode (α ¼ 0), and allows the possibility of scatter-
ing into other orthogonal modes (α ≠ 0). The latter effect
must also exist in amorphous media that exhibit thermo-
optic noise, and must manifest as an apparent beam
pointing noise; however the theoretical formalism
[61,62] used to study thermo-optic noise does not directly
illuminate this possibility since it focuses on a specific
observable a priori.
Note that the ansatz in Eq. (2.13), when restricted to the

same spatial mode f as that of the mean field, i.e.,

Ei ¼
ffiffiffiffi
P

p
eiðkniz−ωtÞf0ðx; yÞ½heð0Þi i þ δeð0Þi �, describes both

a variation in length and angle of the polarization vector.
When averaged over the ensemble of thermal fluctuations
that cause these polarization fluctuations, the ansatz rep-
resents a depolarized state of light.

III. DEPOLARIZATION FROM
THERMOREFRINGENT NOISE

We now turn to the study of the various manifestations of
thermorefringent noise and the resulting depolarization of
light. In Sec. III Awe derive the equations of motion for the
polarization fluctuations, which are solved in Sec. III B to
estimate thermorefringent noise for transmission through a
bulk crystalline optic, while in Sec. III C they are solved to
estimate thermorefringent noise for reflection from a
crystalline thin-film Bragg stack. Section III D briefly
addresses the question of scattering noise due to thermo-
dynamic fluctuations.

A. Equations of motion for the polarization fluctuations

We begin by restricting attention to the case where
thermal fluctuations lead to polarization fluctuations of the
same optical mode as the one that illuminates the medium
of interest. We therefore neglect the terms proportional to
the orthogonal modes fα≠0, then insert Eqs. (2.12) and
(2.13) into Eq. (2.11), and project out the components
corresponding to the spatial mode of interest f0. Details of
this calculation are given in Appendix C. The result are the
coupled equations of motion for the polarization vectors of
the mode of interest,�
∂

∂z
þ nx

c
∂

∂t

�
δeð0Þx ¼ ikε0xx

2nx
ðf20jδuÞheð0Þx i

�
∂

∂z
þ ny

c
∂

∂t

�
δeð0Þy ¼ ikε0xyeiðnx−nyÞkz

2ny
ðf20jδuÞheð0Þx i: ð3:1Þ
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where n2i ¼ εijδij is the square of the refractive index along
each direction, and k ¼ ω=c is the in-vacuum wave vector.
In order to obtain these equations we assume adiabatic
spatial variation of the transverse mode (with respect to the
spatial variation in the longitudinal direction)—which is the
paraxial approximation, valid for a Gaussian spatial mode—
and adiabatic temporal variation of the noise (with respect to
the timescale of the optical frequency). The right hand sides
of Eq. (3.1) indicate that it is precisely the spatial intensity
profile of the optical field (∝f20) that samples the local
temperature fluctuation field (δu); an aspect that is tacitly
assumed in the conventional treatment [61,62], but which
we derive here from first principles.

B. Polarization noise in transmission
through a “thick” medium

We now consider a problem potentially relevant to any
experiment where light has to traverse a crystalline
material. For example, the beam-splitters and input mirrors
of interferometers consisting of crystalline coatings. The
main feature implicated by our theory is depolarization of
the transmitted beam, which is also crucial for any
precision polarimetry experiment [45,46,55–58].
We consider a crystalline material of rectangular shape,

with faces separated by a distance l, with normals along the
z direction. The material is also assumed to be homo-
geneous in the sense that hεiji is constant at all spatial
points. Light is incident perpendicular to one of the faces,
with its incoming polarization aligned along one of the
principal axis of hϵiji, which we take to be linearly
polarized along x (without loss of generality). This can
be done precisely because we have assumed hϵiji is
homogeneous; in fact, this also allows us to assume that
hϵiji is diagonal. We assume that the transverse extent of
the material is infinitely large compared to the optical spot
size and the thermal diffusion length. Therefore, each point
of the crystal can be described by three coordinates ðx; y; zÞ
where x; y ∈ ð−∞;∞Þ, and, z ∈ ð0;lÞ.
The equations of motion for the polarization fluctuations

[Eq. (3.1)] can then be formally solved. Since they are first
order hyperbolic partial differential equations, they can be
solved along the characteristics defined by z� ct=n [[63]
Sec. 11.1]. The solutions are

δeð0Þx ðz; tÞ ¼ i
kε0xx
2nx

heð0Þx i
Z

z

0

dz0 Fxðz; z0; tÞ ð3:2Þ

δeð0Þy ðz;tÞ¼ i
kε0xy
2ny

heð0Þx i
Z

z

0

dz0eiðnx−nyÞkz0Fyðz;z0;tÞ; ð3:3Þ

where we define

Fiðz;z0;tÞ¼
�
f20ðx;yÞjδu

�
x;y;z0;tþni

c
ðz−z0Þ

��
; ð3:4Þ

which is the projection of the local temperature field on the
optical intensity profile.
In order to complete the solution we need the fluctuating

local temperature field δu. The relevant anisotropic heat
equation [Eq. (2.6)] is augmented by open boundary
conditions at the crystal faces. We account for these
boundary conditions via the method of images [[63],
Sec. 12.1]: the problem with the open boundary conditions
at z ¼ 0;l is equivalent to the problem in all of space, but
with sources placed periodically and symmetric under a
mirror transformation around each of two faces. This
equivalence allows us to simplify the problem by using
the well-known Green’s function of the heat operator in
unbounded space (a generalization of well-known results
[[64], Sec. 7.4]),

Uðr; tÞ ¼ ½ð8πjtjÞ3=2ðdet DÞ1=2�−1 exp
�−riD−1

ij rj
4jtj

�

and modifying the source η (rather than determining the
Green’s function for the confined slab geometry while
retaining the internal sources). That is, identical sources are
assumed at locations r0 ¼ �rþ 2ml, where r is a location
of original source, m ∈ Z, and l ¼ ð0; 0;lÞ is an l-length
vector along the z direction; this results in the modified
source correlator,

hηðr;tÞηðr0;t0Þi¼ ζ2Dij∂i∂j

X
sðr0Þ∈S

δðr−sðr0ÞÞδðt− t0Þ; ð3:5Þ

where S ¼ fsðr0Þ ¼ �r0 þ 2mlg. Using the Green’s func-
tion, we can then write down the correlator of the temper-
ature field,

hδuðr; tÞδuðr0; t0Þi ¼ ζ2

2

X
sðr0Þ∈S

Uðr − sðr0Þ; t − t0Þ; ð3:6Þ

which is essentially a sum of correlators of temperatures
from each source point; here D is the matrix form of the
diffusivity tensor. To complete the formal solution of
the polarization in Eqs. (3.2) and (3.3) we finally need
the correlators of the source terms Fi, the projection of the
temperature field on the optical intensity profile. Assuming
a Gaussian transverse field profile, i.e., f0ðx; yÞ ¼
exp½−ðx2 þ y2Þ=ð2r20Þ�=

ffiffiffiffiffiffiffi
πr20

p
, we compute,
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hF�
i ðz00; z; tÞFjðz000; z0; tþ τÞi ¼

ζ2
P

sðr0Þ∈S exp ½− ðz−s0zðr0ÞÞ2
4Dzzjτijj �

8π3=2½Dzzjτijjð2Dxxjτijj þ r20Þð2Dyyjτijj þ r20Þ�1=2
; ð3:7Þ

where τij ¼ τ þ njðz000 − z0Þ=c − niðz00 − zÞ=c.
Ultimately what is observed in an experiment are signals

from photodetectors impinged by fields emanating from the
medium. We consider the various modes of detection more
fully in Sec. IV, but the crux is that, when the optical field
incident on the medium has a large mean component hEii,
the observables derived from photodetection of the ema-
nating field are linear in the field fluctuations δEi. In
particular, since in our model the thermodynamic source
noise is Gaussian, and its transduction to optical field
fluctuations is linear, the statistical properties of the field
fluctuations are fully characterized by its spectral covari-
ance matrix consisting of the elements (i; j ¼ x, y),

S
Eð0Þ
i Eð0Þ

j
ðΩÞ≡

Z þ∞

−∞
dτhδEð0Þ�

i ðl; tÞδEð0Þ
j ðl; tþ τÞie−iΩτ;

ð3:8Þ

where δEðαÞ
i ¼ ðfαjδEiÞ, and assume that the detector is

placed immediately at the exit of the crystalline slab (which
is the position at which the transmitted beam is minimally
depolarized [65]). Expressing the electric field fluctuation
in terms of the polarization fluctuations [Eq. (2.11)], and
noting that the spatial mode functions ffαg are orthonor-
mal, we have that,

S
Eð0Þ
i Eð0Þ

j
ðΩÞ ¼ Peikðni−njÞlS

eð0Þi eð0Þj
ðωþ ΩÞ; ð3:9Þ

where S
eð0Þi eð0Þj

ðωþ ΩÞ are the elements of the spectral

covariance matrix of the polarization fluctuations, at a
frequency Ω offset from the optical carrier at ω. Thus, the
statistical properties of the optical field that are observable
through photodetection are fully characterized by the
covariance matrix of the polarization fluctuations at offset
frequencies around the carrier.
In principle, Eqs. (3.2)–(3.4) and (3.7) contain the

ingredients to compute the elements of this covariance
matrix exactly. Below we consider a few physically
interesting cases. We will exhibit the result for a crystal
which is thicker than the characteristic temperature dif-
fusion length, i.e., l ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dzz=Ω

p
, which is valid for large

optics at room temperature. Effectively, this approximation
allows us to neglect fluctuating heat sources outside the
interval z ∈ ½0;l�, assume that outside this range the
Gaussian function f is zero, and so extend the integration
limits to z ∈ ½−∞;∞� for the sources that are away from
the crystal surface. In this fashion, we arrive at (and
dropping the superscript spatial-mode index),

SexexðΩÞ ¼
ζ2k2jε0xxj2l

16πn2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p IðΩ; nxΩÞ; ð3:10Þ

SeyeyðΩÞ ¼
ζ2k2jε0xyj2l

16πn2y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p IðΩ;ωΔnþ nyΩÞ; ð3:11Þ

SexeyðΩÞ ¼
ζ2k2ε0xxε0xyl

16πnxny
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p IðΩ;Δnðω −ΩÞÞ

×
eiωlΔn=c − eiΩlΔn=c

ΔnðΩþ ωÞl=c ; ð3:12Þ

where Δn ¼ nx − ny, and IðΩ1;Ω2Þ is

IðΩ1;Ω2Þ ¼
Z∞
0

dτ
cosΩ1τ exp ½− Ω2

2

c2 Dzzτ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðτ þ τxÞðτ þ τyÞ
p : ð3:13Þ

Here, τx;y are the characteristic diffusion times in the
transverse direction of the optical field, τx;y ¼ r20=2Dxx;yy.
Figure 1 shows the power spectral densities Eqs. (3.10)–

(3.12) as applied to two different crystal systems, crystal-
line silicon and lithium niobate, both for a wavelength
λ ¼ 2πc=ω ¼ 1550 nm and a beam size r0 ¼ 100 μm. The
material parameters are given in Table I (Appendix B). At
low frequencies, below the thermal diffusion time-scale, the
fluctuations in the projection of the polarization along the
direction of the incident polarization (i.e., Sexex) assumes a
logarithmic form, turning over into a Ω−2 fall off. For
materials for which the static birefringence is very small
(Δn ≪ 1), such as crystalline silicon (Fig. 1(a)), fluctua-
tions in the other polarization, and the correlation between
the fluctuations in either direction, also assume identical
forms. For optical materials for which the static bire-
fringence can be large (Δn≲ 1), such as lithium niobate
(Fig. 1(b)), polarization fluctuations along the direction
orthogonal to that of the incident polarization are strongly
suppressed. Both types of behavior are predicted by
asymptotic forms of Eqs. (3.10)–(3.12) (see Appendix D).
It is known that if an optical standing wave is formed

between the faces of a bulk amorphous medium, the
resulting intensity pattern changes the thermo-optic noise
at frequencies Ω ∼ 8kDzz=r0 [76]. This effect is especially
relevant in the input mirrors of Fabry-Perot cavities, which
cannot be wedged to avoid a standing wave in the mirror
substrate. Our formalism for the traveling wave case can be
adapted to tackle the standing wave scenario. To wit, the
field
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hEii ¼
1

2
ðhEiðkÞi þ hEið−kÞiÞ ð3:14Þ

represents a standing wave E as a superposition of two
waves traveling in opposite directions. It then follows that
the noise in the standing wave case is

S
Eð0Þ

i Eð0Þ
j
ðΩÞ ¼ 1

2
S
Eð0Þ
i Eð0Þ

j
ðΩÞ þ 1

2
Re

h
S
Eð0Þ
i ð−kÞEð0Þ

j ðkÞ
i
: ð3:15Þ

Here we have used the fact that the noise in polarization
Eið−kÞ can be obtained from that in EiðkÞ by changing the
sign of k in Eqs. (3.2) and (3.3), and sign of z − z0
in Eq. (3.4).

C. Polarization noise in reflection from “thin” coatings

A standard component of contemporary precision optical
instruments are low-loss mirrors composed of a stack of
thin films of alternating refractive index contrast [77]. Their
primary mode of operation is in reflection, in which case
the optical field samples a thin film stack no more than a
few tens of wavelengths deep. The coating stack is made
from an alternating pair of crystalline thin films (see Fig. 2)
of dielectric tensors εðIÞ (I ¼ 1, 2, see Fig. 2). We assume
that the mirror is made in a way that the eigenvectors of

their mean dielectric tensors hεð1;2Þij i lie in the plane trans-
verse to the optical axis (the latter the z axis, as before).
This is true of all crystalline coatings currently being
fabricated. The stack is designed to produce constructive
interference in reflection.
Consequently the optical field samples the coating stack

no more than a few tens of wavelengths deep. Thus the
relevant temperature fluctuation is that averaged over the
characteristic volume occupied by the optical field, i.e.,

δũðtÞ≡
Z þ∞

−∞
dxdy

Z þ∞

0

dz
lp

f20ðx;yÞe−z=lpδuðr;tÞ; ð3:16Þ

here f20ðx; yÞ is the transverse optical intensity profile and
lp is the longitudinal penetration depth. The two materials

forming the coating are described by dielectric tensors εðIÞij

(I ¼ 1, 2 denotes the two materials), which are affected by
the temperature according to

εðIÞij ðtÞ¼hεðIÞij iþε0ðIÞij δũðtÞ

¼
"
h½nðIÞx �2i 0

0 h½nðIÞy �2i

#
þ
"
ε0ðIÞxx ε0ðIÞxy

ε0ðIÞyx ε0ðIÞyy

#
δũ; ð3:17Þ

This relation suggests that to first order in δũ the refractive
indices in the two transverse directions are

nðIÞi ≈ hnðIÞi i þ ε0ðIÞii

2hnðIÞi i
δũ: ð3:18Þ

FIG. 1. Thermorefringent noise for cryogenic silicon (left) and room-temperature lithium niobate (right), using Eqs. (3.10)–(3.12). In
both cases the wavelength is 1550 nm, the beam size is r0 ¼ 100 μm, and the material length is l ¼ 1 cm.

FIG. 2. Schematic picture of the mirror layers that shows the
elements that correspond to propagation matrices and direction of
relevant field modes.
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We assume for simplicity that the incident light is pure-
polarized along the x axis (and that the mirror satisfies
quarter-wave stack condition for this polarization). Its
polarization eigenvectors rotate by an angle

δθðIÞ ≈
ε0ðIÞxy δũ

h½nðIÞx �i2 − h½nðIÞy �i2
ð3:19Þ

while retaining their length. (Note that these expansions are
valid as long as jε0xyδũj ≪ jnx − nyj.)

1. Field propagation in a thin anistropic coating stack

In a “thin” material, optical field propagation can be
described in a scattering matrix formalism (and does not
require solving the Maxwell equation as in the “thick”
scenario of Sec. III B). Further simplifications arise in the
periodic geometry of a coating stack. Each unit cell of the
stack is composed of a pair of crystalline films of
contrasting index, separated by an interface at which the
index jumps (see Fig. 2). Each of the constituent films in
that cell can be described by four fields assembled

into a vector: ẼðIÞ ¼ EðIÞ
x ⊕ EðIÞ

y ¼ ½EðIÞ
xþ; E

ðIÞ
x−; E

ðIÞ
yþ; E

ðIÞ
y−�T,

where x and y denote transverse components of the field,
and þ and − denote propagation along positive and
negative z axis respectively. We will denote the material
to the left (right) in the unit cell by I ¼ 1 (I ¼ 2). Note that
the way we defined the field vector implies a definition of
scattering matrices different from the common definition in
optics [78]. In our case the matrix that describes a
system acts on the fields to the right of the system and
returns fields to the left. (The common definition acts
on the vector of incident fields and returns the vector of
outgoing fields.) The propagation matrix that describes
the passage of the field in the bulk of material I can be

written in the block-diagonal form TðIÞ ¼ TðIÞ
x ⊕ TðIÞ

y ,

where TðIÞ
i ¼ diag½e−inðIÞi kz; ein

ðIÞ
i kz�. At the interface

between two adjacent films, the fields are described by
the boundary conditions [79]

Eð1Þ
þ þ Eð1Þ

− ¼ Eð2Þ
þ þ Eð2Þ

− ; ð3:20Þ

Bð1Þ
þ þ Bð1Þ

− ¼ Bð2Þ
þ þ Bð2Þ

− ; ð3:21Þ

for the electric and magnetic fields. Note that the electric
and magnetic fields are related through; cBx ¼ −nyEy,
cBy ¼ nxEx. To write the correct matrix that describes
transfer at the interface, we need to account for the relative
rotation of the eigenvectors of the dielectric tensor between
adjacent layers. Since it is convenient to work in the basis of
eigenvectors of each material, we would like to write the
interface transfer matrix in a way that it transforms the field
vectors in material 2 (written in the natural basis of material
2) to field vectors in material 1 (written in its natural basis).

Employing the boundary conditions in Eqs. (3.20) and
(3.21) and accounting for the rotation of the field vectors at
the interface, we arrive at the transfer matrix

Rð12Þ ¼
"
rð12Þxx cos δθ −rð12Þxy sin δθ

rð12Þyx sin δθ rð12Þyy cos δθ

#
; ð3:22Þ

where rðIJÞij ≡ rðnðIÞi ; nðJÞj Þ with

rða; bÞ≡ 1

2

"
1þ b

a 1 − b
a

1 − b
a 1þ b

a

#
; ð3:23Þ

and the rotation angle δθ ¼ δθð2Þ − δθð1Þ is the difference of
the thermodynamically fluctuating polarization angle
described above in Eq. (3.19).
The transfer through a single unit cell—composed of

material 1 followed by material 2—is given by the matrix

Φ ¼ Rð12ÞTð2ÞRð21ÞTð1Þ: ð3:24Þ

It describes (reading right to left), propagation through
material 1, transfer at the 12 interface, propagation in
material 2, and transfer at the 21 interface. The matrixRð21Þ

is can be obtained from Rð12Þ by swapping all material
indices (i.e., 1 ↔ 2), and by inverting the rotation angles
(i.e., θ → −θ). Since the coating is a periodic array of such
a unit cell, the transfer matrix for the coating is

M ¼ RðinÞTð1ÞΦNRðoutÞ: ð3:25Þ

whereRðin;outÞ are the transfer matrices for the entrance and
substrate interfaces, and we have assumed (without loss of
generality) that material 1 is the entrance coating.
In order to fully specify the transfer matrixM we need a

model of the entrance coating layer [i.e., the factor
RðinÞTð1Þ] and the substrate [the factor RðoutÞ]. The former
is given by

RðinÞTð1Þ ≈

"
rð1Þx Tð1Þ

x rð1Þy Tð1Þ
y δθð1Þ

rð1Þx Tð1Þ
x δθð1Þ rð1Þy Tð1Þ

y

#
; ð3:26Þ

where, assuming the optical field enters from vacuum,

rð1Þi ¼ rð1; nð1Þi Þ, and δθð1Þ is given by Eq. (3.19). The effect
of the substrate is modeled by

Rout ≈

"
rðsÞx −rðsÞy δθð1Þ

−rðsÞx δθð1Þ rðsÞy

#
; ð3:27Þ

where, assuming the substrate has a refractive index

ns, r
ðsÞ
i ¼ rðns; nð2Þi Þ.
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The thermorefringent behavior of the coating stack is
encoded in the dependence of the matrix M on the
polarization angle fluctuation δθ. Of this, the dominant
contribution comes from the factor ΦN ; for small angle
fluctuations about zero, Φ ≈ hΦi þΦ0δθ, so that ΦN

scales as Nδθ. (This scaling discounts the possibility
of engineering the coating stack to harness correlated
thermorefringent fluctuations across the coating layers,
we limit attention to this case since it illustrates the
state-of-the-art in crystalline coatings.) The mean unit cell
transfer matrix hΦi turns out to be block-diagonal;

hΦi ¼ hΦxxi ⊕ hΦyyi, where hΦiii≡ rð12Þii Tð2Þ
i rð21Þii Tð1Þ

i .
It indicates that if the incident field polarization is aligned
along the eigenvectors of the mean dielectric tensor, the
mean outgoing field experiences no change in polarization.
The perturbation Φ0 is off-diagonal,

Φ0 ¼
�

0 Φxy

Φyx 0

�
; ð3:28Þ

Φxy ¼ rð12Þxx Tð2Þ
x rð21Þxy Tð1Þ

y − rð12Þxy Tð2Þ
y rð21Þyy Tð1Þ

y ; ð3:29Þ

Φyx ¼ rð12Þyx Tð2Þ
x rð21Þxx Tð1Þ

x − rð12Þyy Tð2Þ
y rð21Þyx Tð1Þ

x ; ð3:30Þ

describing the inscription of thermorefringent polarization
fluctuations on the mean field, and the consequent con-
version of a pure-polarized input field into a mixed state of
polarization as it propagates through even a single unit cell
of the coating.
In principle, once the mirror stack is specified, the

matrices hΦi and Φ0 can be assembled, and the statistical
properties of the resulting polarization state of the field
studied. If one wants to solve the analogous problem for an
arbitrary stack of dielectric layers, one will need to replace

ΦN in Eq. (3.25) with
Q

i Φi, where Φi is the matrix that
describes the ith pair of layers.

2. Specialization to the case of a high-reflector

Our interest here is to illustrate thermorefringent noise in a
simple relevant example. Typically, the crystalline thin film
stack is configured to act as a highly reflective mirror. To
assure the highest reflection coefficient possible, the films
must satisfy a quarter-wave condition [80]. This condition is
typically chosen to be satisfied for one particular value of
wave vector k, which then constrains the thickness of each
film to belðIÞ ¼ π=ð2knðIÞÞ. In the followingwe assume that
this condition ismet. For typical crystallinematerials used in
contemporary mirrors, the in-plane optical anisotropy is
small, i.e., jΔnj ¼ jnx − nyj ≪ 1. Thus we also assume that
the refractive index along the y axis is close to that along the

x axis; nðIÞy ¼ nðIÞx þ ΔnI , with ΔnI ≪ 1. In this case, the
matrices hΦi andΦ0 can be simplified by considering their
expansions to lowest order in ΔnðIÞ. Note that according to
Eq. (3.18) an expansion in Δn will reproduce one in δũ.
The mirror matrix up to lowest order in δū can thus be

written

M ¼ hMi þM0δũ: ð3:31Þ

Here, hMi captures the static birefringence of the mirror,
and is given by

hMi ¼ −in1Γ
2

�
1 1

−1 −1
�
⊕

�
1 1

−1 −1
�
; ð3:32Þ

where Γ≡ ð−n1=n2ÞN . The matrix M0 captures the effect
of thermorefringent noise, and is given by

M0 ¼ Γ

2
6664
−
�

iNn1
4

αxx þ iε0ð1Þxx
4n1

�
A − πβþxx

8n2
As

�
iNn1
4

αxy þ iε0ð1Þxy

4n1
− iNε0ð2Þxy

2n2
Δn2
Δn1

�
Aþ

�
β−xy
8n2

þ πε0ð1Þxy

4ðn2
1
−n2

2
Þ
Δn2
Δn1

�
As

−
�

iNn1
4

αxy þ iε0ð1Þxy

4n1

�
A − πβþxy

8n2
As −

�
iNn1
4

αyy þ iε0ð1Þyy

4n1

�
A − πβþyy

8n2
As

3
7775; ð3:33Þ

where we have defined

A ¼
�

1 1

−1 −1

�
; As ¼

�
1þ ns 1 − ns
1þ ns 1 − ns

�
;

and αij ¼ ðε0ð1Þij =n21Þ − ðε0ð2Þij =n22Þ, β�ij ¼ ½n2ϵ0ð1Þij � n1ε
0ð2Þ
ij �=

ðn21 − n22Þ.
Ultimately, we are interested in the optical fields trans-

mitted through and reflected from the mirror stack. When
the mirror matrix M is computed, the relation between the

light in front of the mirror and behind the mirror is given by
the equation2

66664
Einc
x

Er
x

0

Er
y

3
77775 ¼

2
66664
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

3
77775

2
66664
Et
x

0

Et
y

0

3
77775; ð3:34Þ

where Einc
x is an incident x-polarized field, Er

x;y are the two
polarizations of the reflected field, and Et

x;y are the
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transmitted fields. In order to arrive at the conventional
scattering description that relates the input fields (Einc

x ) to
the output fields (Er;t

x;y), the matrixM needs to be permuted
so as to solve the linear equations Eq. (3.34). Doing so
gives the transmission and reflection coefficients of the
high-reflector stack,

tx ¼
M33

M11M33 −M13M31

ty ¼ −
M31

M11M33 −M13M31

rx ¼
M21M33 −M23M31

M11M33 −M13M31

ry ¼
M41M33 −M43M31

M11M33 −M13M31

:

Notice that these coefficients are stochastic through their
dependence on δũ. Although this dependence is nonlinear,
when the fluctuations are small, in the sense that the
fractional change in the matrix element Mij due to δũ,
hM−1

ij ið∂Mij=∂ũÞδũ ≪ 1, we can approximate the effect of
the fluctuating temperature via a linear expansion in δũ,
even for the fields. In this fashion, we derive the fluctuating
parts of the transmitted and reflected fields,

δEt
x ¼ −hEt

xi
M0

11

hM11i
δũ

δEt
y ¼ −hEt

xi
M0

31

hM33i
δũ

δEr
x ¼ hEr

xi
�

M0
21

hM21i
−

M0
11

hM11i
�
δũ

δEr
y ¼ hEr

xi
�

M0
41

hM21i
−

hM43iM0
31

hM33ihM21i
�
δũ: ð3:35Þ

Notice that the polarization fluctuations in both transverse
directions is proportional to fluctuations in the average
temperature fluctuation δũ in the crystalline thin-film stack.

3. Spectrum of the polarization fluctuations

All that is required in order to extract the spectrum of
polarization fluctuations from Eq. (3.35) is the spectrum of
δũ. The latter can be calculated from its definition [Eq. (3.16)]

δũ ¼ 1

πr20lp

Z þ∞

−∞
dx dy

Z þ∞

0

dz δuðr; tÞe−ðx2þy2Þ=r2
0e−z=lp ;

by employing the fluctuation-dissipation theorem for the heat
source [Eq. (2.4)], and propagating it through to δu using the
Green’s function for the heat equation [Eq. (2.7)] in
the infinite plane with open boundary conditions (we assume
the beam spot size to be much smaller than the size of the
optic). The resulting spectral density of the volume-averaged
temperature is

Sũ ũðΩÞ ¼
Z þ∞

−∞

d3K
ð2πÞ3

4ζ2ðDijKiKjÞ exp ½− ðK2
xþK2

yÞr20
2

�
ð1þ K2

zl2
pÞ2ðΩ2 þ ðDijKiKjÞ2Þ

:

ð3:36Þ

In the thermally isotropic case, i.e., if K2
zl2

p ≪ 1, this
expression reduces to that of Braginsky et al. [4]. In the
thermally anisotropic case, two relevant asymptotic forms of
Eq. (3.36) are

Sũ ũðΩÞ ¼
ζ2

πr0

8>><
>>:

ð2TrD2⊥Þ−
1
4ffiffiffiffiffiffiffi

πDzz

p Kðsin ϕ
2
Þ; Ω ≪ D

r2
0

1

r0
ffiffiffiffiffiffiffiffiffiffi
2DzzΩ

p ; Ω ≫ D
r2
0

;
ð3:37Þ

where

D⊥ ¼
�
Dxx Dxy

Dxy Dyy

�
; ð3:38Þ

andD is the typical diagonal element of this matrix (assumed
roughly comparable),K is the complete elliptic integral of the
first kind, and cosϕ ¼ ðTrD⊥Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TrD2⊥

p
. Note that all these

results rely on the beam spot size being larger than the
penetration depth (i.e., r0 ≫ lp). Additionally, we note that
in the above expressions, the appropriate material parameters
to use are those of the substrate; this amounts to the statement
that the temperature fluctuations near the surface of the
coating are dominated by the effect of heat flow in the
substrate.
Substituting Eq. (3.36) into Eq. (3.35) gives us the

spectral density of the polarization fluctuations,

StexexðΩÞ ¼
����tx N2

�
ε0ð1Þxx

n21
−
ε0ð2Þxx

n22

�����
2

Sũ ũðΩÞ; ð3:39Þ

SrexexðΩÞ ¼
����rx π2 n2ε

0ð1Þ
xx þ n1ε

0ð2Þ
xx

n1n2ðn21 − n22Þ
����
2

Sũ ũðΩÞ; ð3:40Þ

SteyeyðΩÞ ¼
����ty N2

�
ε0ð1Þxy

n21
−
ε0ð2Þxy

n22

�����
2

Sũ ũðΩÞ; ð3:41Þ

SreyeyðΩÞ ¼
����ry π2 n2ε

0ð1Þ
xy þ n1ε

0ð2Þ
xy

n1n2ðn21 − n22Þ
����
2

Sũ ũðΩÞ: ð3:42Þ

Note that cross-correlations can be computed the same way
and will have the same dependence on Sũ ũðΩÞ. These
equations are valid for any crystalline mirror Bragg stack
operated near the quarter wavelength stack condition, for any
crystallinematerial whose in-plane optical anisotropy is small
(i.e., jΔnj≪1). They thus describe crystalline mirrors cur-
rently being considered for all precision optical instruments.
The plot for the relative power spectral density for one

particular coating system (AlGaAs/GaAs) is shown in
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Fig. 3. The material parameters are given in Table I
(Appendix B). Note that the estimate here depicts an
alternating stack of identical AlGaAs/GaAs layers, which
may not be optimal from the perspective of reducing
thermorefringent noise. As in the case of amorphous
coatings, where the thin-film stack structure can be opti-
mized [32,54] to reduce thermo-optic noises, it may also be
possible to optimize the stack structure of crystalline
coatings to optimize thermorefringent noise. The thermo-
refractive and thermorefringent noises of the coating are
also compared to the Brownian noise, which has a phase
noise power spectral density ScBrðΩÞ ≃ ð2π=λÞ2ð4kBT=
πr20ΩEÞð1 − σ − 2σ2Þϕd [34,51]. Here the coating thick-
ness is d ¼ 6 μm and the coating loss angle is
ϕ ¼ 1 × 10−5. The approximation symbol indicates that
the effect of the light penetration into the coating has been
ignored, as has the disparity in the mechanical parameters
of the coating and substrate (we chose typical values of
E ¼ 100 GPa for the Young modulus and σ ¼ 0.2 for the
Poisson ratio).

D. Thermodynamic beam-pointing noise

The manifestations of thermodynamic noise considered
so far describe the effect of thermal fluctuations in an
anistropic medium on the same spatial mode of the field as
the one used to probe the medium. A qualitatively different
effect is that where thermodynamic dielectric fluctuations
scatter light from the spatial mode of the incident field to an
orthogonal mode. If the incident field is an transverse mode
that is cylindrically symmetric, and the scattering is
predominantly into modes that break that cylindrical
symmetry, the effect of scattering is an apparent change
in the angle of the optical beam—that is, beam pointing
noise of thermodynamic origin.

In this section we describe thermodynamic beam-
pointing noise. A proper accounting of this effect calls
for a modal resolution of the optical field [Eq. (2.13), see
also Appendix C],

δEiðr; tÞ ¼
ffiffiffiffi
P

p
eiðkniz−ωtÞ

�
f0ðx; yÞδeð0Þi ðz; tÞ

þ
X
α≥1

fαðx; yÞδeðαÞi ðz; tÞ
	
; ð3:43Þ

where the spatial mode f0 is taken to be the one populated
in the incident field, and the higher-order modes fα≥1 are
populated by thermodynamically-induced scattering. We
focus attention on a single higher-order mode to which
scattering is predominant. For example, this captures the
common scenario where light in a fundamental Gaussian
mode of a laser (f0 ¼ exp½−ðx2 þ y2Þ=ð2r20Þ�=

ffiffiffiffiffiffiffi
πr20

p
)

is scattered into a (1,0) Hermite-Gauss mode (f1 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2=πr20

p
x exp½−ðx2 þ y2Þ=ð2r20Þ�). Since both the modes

vary much slower in the transverse direction that along the
propagation direction, arguments similar to the ones in
Appendix C can be employed to separate out from the
Maxwell equations for the field fluctuations [Eq. (2.11)],
the equations for the polarization components of the
relevant higher order mode. This gives,�
∂

∂z
þ nx

c
∂

∂t

�
δeð1Þx ¼ ikε0xx

2nx
ðf1jf0δuÞheð0Þx i

�
∂

∂z
þ ny

c
∂

∂t

�
δeð1Þy ¼ ikε0xyeiðnx−nyÞkz

2nx
ðf1jf0δuÞheð0Þx i:

ð3:44Þ
These are very similar to Eq. (3.1), except that the
stochastic source term on the right-hand side involves
the spatial overlap ðf1jf0δuÞ that describes the scattering
efficiency from the fundamental mode to the higher-
order mode mediated by the temperature field δu.
Employing arguments and techniques similar to the ones
in Sec. III B, we calculate the correlation function of the
source,

hðf1jf0δuðr; tÞÞðf1jf0δuðr0; tþ τÞÞi

¼
ζ2r20

P
s∈S exp ½− ðz−s0zÞ2

4Dzzjτj �
16

ffiffiffiffiffi
π3

p ffiffiffiffiffiffiffiffiffiffiffiffi
Dzzjτj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Dxxjτj þ r20Þ3ð2Dyyjτj þ r20Þ

q :

ð3:45Þ
This fixes the statistical properties of the source that drives
Eq. (3.44). Since the latter is structurally similar to the
equations of motion that describe the transmission problem
in Sec. III B, they can be solved similarly. We thus arrive at
the spectral density of the polarization fluctuations in the
higher-order mode,

FIG. 3. Thermorefringent noise [Eqs. (3.40) and (3.42)] for an
AlGaAs/GaAs high reflector of 50 quarter-wave layers, with
1500 nm light with radius r0 ¼ 4 cm. The comparison with the
Brownian noise of the coating is also shown.
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S
eð1Þx eð1Þx

¼ ζ2k2jε0xxj2lr20
64πn2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyD3

xx

q Ið1ÞðΩ; nxΩÞ ð3:46Þ

S
eð1Þy eð1Þy

¼ ζ2k2jε0xyj2lr20
64πn2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyD3

xx

q Ið1ÞðΩ; nxωþ nyΩÞ; ð3:47Þ

where

Ið1ÞðΩ1;Ω2Þ ¼
Z∞
0

dτ
cosΩ1τ exp ½− Ω2

2

c2 Dzzτ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ þ τxÞ3ðτ þ τyÞ

q ð3:48Þ

is analogous to the integral in Eq. (3.13). For Fourier
frequencies that are small compared to the thermal dif-
fusion timescale (i.e., Dzτþ=l2 ≪ Ωτþ ≪ 1), the required
limiting expressions for Ið1Þ are given by

Ið1Þð0; 0Þ ¼ 2ffiffiffiffi
τx

p ð ffiffiffiffi
τx

p þ ffiffiffiffi
τy

p Þ

Ið1Þð0; nxkcÞ ¼
1

k2n2xDzz

ffiffiffiffiffiffiffiffi
τ3xτy

q :

Using these, we have the power spectral density of the
polarization fluctuations of the higher-order mode,

S
eð1Þx eð1Þx

¼ ζ2k2jε0xxj2l
32πn2x

ffiffiffiffiffiffiffiffi
Dxx

p ð ffiffiffiffiffiffiffiffi
Dxx

p þ ffiffiffiffiffiffiffiffi
Dyy

p Þ ;

S
eð1Þy eð1Þy

¼ ζ2k2jε0xyj2l
32πn2xn2yDzzr20

; ð3:49Þ

which are both white noise at these low frequencies.

1. Thermodynamic pointing noise in amorphous media

The above equations predict that even for an amorphous
medium, beam-pointing noise due to thermodynamically-
mediated scattering into higher order modes can exist.
Indeed, in general [81], scattering of light from the (0,0)
Gaussian mode into the (1,0) or (0,1) Hermite-Gauss
mode is equivalent to beam pointing noise by an angle
δψ ¼ ðkr0Þ−1ðf1jδExÞ=

ffiffiffiffi
P

p
. Thus, the spectral density of

the beam pointing angle fluctuations is given by
Sψψ ¼ ðkr0Þ−2Seð1Þx eð1Þx

. For an amorphous medium, charac-

terized by an isotropic thermal conductivityDij ¼ δijD and
an isotropic dielectric constant

εij ¼ δij

�
nþ ∂n

∂T

�
W

2

≈ δij

�
n2 þ 2n

∂n
∂T

�
;

where n is the (average) refractive index, Eq. (3.49)
reduces to

S
eð1Þx eð1Þx

ðΩÞ ¼ ðζkÞ2l
16πD

�
∂n
∂T

�
2

: ð3:50Þ

Referring these to beam pointing angle, we find

SψψðΩÞ ¼
ζ2l

16πr20D

�
∂n
∂T

�
2

: ð3:51Þ

For the geometry considered previously (r0 ¼ 100 μm,
l ¼ 1 cm), the pointing fluctuation in cryogenic silicon
(Table I in Appendix B) is of order 10−13 rad=

ffiffiffiffiffiffi
Hz

p
; for

room-temperature fused silica [82] it is of order
10−12 rad=

ffiffiffiffiffiffi
Hz

p
.

IV. MANIFESTATION OF POLARIZATION NOISE
IN OPTICAL DETECTION

The previous sections establish the formalism, and then
use it to determine polarization fluctuations in optical fields
due to their interaction with crystalline optical materials in
thermal equilibrium. The precise manner in which
these polarization fluctuations manifest in signals that
are typically measured in an experiment is the concern
of this section.

A. Direct photodetection

We will consider, as before, that the electric field in the
plane transverse to the propagation direction is of the form
[Eqs. (2.12) and (2.13), with mode indices dropped under
the assumption that we limit attention to a single spatial
mode; i.e., neglecting beam pointing noise]

Eiðr; tÞ ¼ hEiðr; tÞi þ δEiðr; tÞ; ði ¼ x; yÞ ð4:1Þ

where

hEii ¼
ffiffiffiffi
P

p
eiðkniz−ωtÞfðx; yÞheii

δEi ¼
ffiffiffiffi
P

p
eiðkniz−ωtÞfðx; yÞδeiðz; tÞ: ð4:2Þ

This field is incident on a photoemissive surface, held
perpendicular to the propagation direction, at z ¼ l. The
photocurrent emitted by the detector is then [83]

IðtÞ ¼ α

Z
D

d2rE�
i ðr; tÞEiðr; tÞ;

where α is the responsivity, D is the domain of the
photoemissive surface, r ¼ ðx; y;lÞ, and d2r ¼ dxdy.
We will assume that the area of D is much larger than
the transverse extent of the electric fields involved so that
the optical beam is not clipped; we will thus extend the
above integrals to the entire xy plane. Using Eq. (4.1) in
the above equation, and neglecting terms second order in
the electric field fluctuations, the photocurrent splits into a
mean (“DC”) part and a fluctuating (“AC”) component:
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IðtÞ ≈ hIi þ δIðtÞ

hIi ¼ α

Z
d2rjhEiij2

δI ¼ α

Z
d2rðhE�

i iδEi þ c:c:Þ: ð4:3Þ

Since δI is linear in δEi, and the latter is a Gaussian stochastic
process, so is the former. Thus the statistical properties of the
photocurrent are fully characterized by the two-time corre-
lation function, CIIðt; τÞ ¼ hδIðtÞδIðtþ τÞi. Using the
explicit form of δI, its correlation function can be written as

CIIðt; τÞ ¼ α2
Z

d2rd2r0f½hE�
i ðr; tÞihδEiðr; tÞδE�

jðr0; tþ τÞihEjðr0; tÞi þ c:c:�

þ ½hE�
i ðr; tÞihδEiðr; tÞδEjðr0; tþ τÞihE�

jðr0; tÞi þ c:c:�g: ð4:4Þ

All four terms here are independent of the optical frequency
ω, so that the statistical properties of the photocurrent are
independent of the optical carrier. The first two terms are
further only sensitive to stationary fluctuations of the field,
whereas the second pair are sensitive to non-stationary
fluctuations as well. We neglect the second pair of terms
since field fluctuations due to thermorefringent noise are
stationary. Then the correlation function only depends on
the time delay τ; so we use the notation, CIIðτÞ ¼ CIIðt; τÞ.
Introducing the two-point correlation function of the
electric field,

CEiEj
ðr0; τÞ≡ hδEiðr; tÞδE�

jðrþ r0; tþ τÞi ð4:5Þ

we have

CIIðτÞ ¼ α2
Z

d2rd2r0½hE�
i ðr; tÞiCEiEj

ðr − r0; τÞ

× hEjðr0; tþ τÞi þ c:c:�: ð4:6Þ

Using the explicit form of the field fluctuations in
Eq. (4.2), we have that,

CEiEj
ðr0; τÞ ¼ PfðrÞf�ðrþ r0ÞCeiejðτÞ;

where CeiejðτÞ≡ hδeiðl; tÞδe�jðl; tþ τÞi, is the correlation
function of the vectorial polarization fluctuations. Inserting
the expression for the mean field from Eq. (4.2) in Eq. (4.6),
the spatial integral in Eq. (4.6) factorizes out, which gives a
numerical constant that can be absorbed by redefining the
responsivity α (and in fact describes the geometric con-
tribution to the detection efficiency); we thus arrive at

CIIðτÞ ¼ ðαPÞ2½he�i iCeiejðτÞheji þ c:c:�: ð4:7Þ

Finally, stationary photocurrent fluctuations can be
equivalently described by the Fourier transform of its
two-time correlation function, the power spectral density,
SIIðΩÞ ¼

R
CIIðτÞeiΩτdτ, which assumes the form,

SIIðΩÞ ¼ ðαPÞ2½he�i iSeiejðΩÞheji þ c:c:�: ð4:8Þ

These photocurrent fluctuations can be referred to
relative intensity noise of the optical field, SII=ðαPÞ2 ¼
he�i iSeiejðΩÞheji þ c:c:. Thus, when a depolarized field is
subjected to direct photodetection, thermorefringent noise
manifests as apparent intensity noise. That is one opera-
tional interpretation of the polarization noise plotted in
Figs. 1 and 3.
Note that the photocurrent fluctuations emitted by the

direct photodetection of a depolarized beam does not allow
inference of the full polarization covariance matrix Cee
(and therefore its Fourier transform See). In particular, for a
choice of the input carrier polarization hei, the photocurrent
spectrum [Eq. (4.8)] is a linear combination of the elements
of See, from which the full matrix cannot be reconstructed.
Indeed, attempts to assemble a set of measurements, by
varying the mean input polarization, that is linearly
independent in the elements of See is not guaranteed to
succeed in general, since changing the input polarization
can change the transduction of the noise properties of the
sample being interrogated (see Fig. 1, for example).

B. Balanced homodyne polarimetry

The most general type of optical detection that a
polarized state of the optical field can be subjected to is
balanced homodyne polarimetry. Here, the signal—the
depolarized output of a system, represented by the electric
field Ei in Eq. (4.1)—is mixed with a local oscillator (LO)
in a pure and controllable polarization state that has a well-
defined and controllable phase difference with the signal at
a balanced polarizing beam-splitter; the resulting outputs
are photodetected and their photocurrrent subtracted. We
will show that by controlling the local oscillator polariza-
tion and phase, the subtracted photocurrent can be used to
deduce the spectral covariance matrix See of the signal
without changing the optical field used to probe the system.
We assume that the LO is prepared in the same transverse

spatial mode f, and longitudinal mode with wave-vector k,
as the signal of interest, so we take its electric field to be
given by
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E0
i ¼ hE0

ii ¼
ffiffiffiffiffi
P0p
eiðkiz−ωtÞfðx; yÞhe0ii; ð4:9Þ

where P0 ≫ P is the local oscillator power and e0i its mean
polarization. The assumption that the LO power is much
larger than that of the signal effectively means that
polarization fluctuations in the LO can be neglected, which
is tacit in the above ansatz and in all that follows. This field
is superposed with the signal at a balanced beam-splitter;
the fields at its output are given by

E�
i ¼ 1ffiffiffi

2
p ðE0

i � EiÞ ≈
1ffiffiffi
2

p ðhE0
ii � δEiÞ; ð4:10Þ

where the second equality uses the fact that the LO is
overwhelmingly more powerful than the signal (i.e.,
P0 ≫ P) and so neglects a term of order

ffiffiffiffiffiffiffiffiffiffi
P=P0p

.
Each of the outputs is passed through a polarization
analyzer (“polarizer”) which projects the polarization
vector onto a chosen direction; this can be modelled by
the transformation,

E�
i ↦ J�ijE

�
j ; ð4:11Þ

where the projective nature of the polarizer implies that
the Jones matrices J� satisfy J� ¼ ðJ�Þ† ¼ ðJ�Þ2.
These fields are individually detected, producing the
photocurrents,

I� ¼ α

Z
D

d2rðJ�ijE�
j Þ�ðJ�ikE�

k Þ; ð4:12Þ

where the integrands are evaluated at the detector plane
z ¼ l. Combining the above equations it can be shown that
the fluctuations in these photocurrents are given by

δI� ¼ � α

2

Z
D
d2r½hE0

ii�J�ijδEj þ c:c:�:

The individual photocurrents are subtracted to produce the
homodyne photocurrent I ¼ Iþ − I−, whose fluctuations
assume the form,

δIhom ¼ α

2

Z
D

d2r½hE0
ii�ðJþij þ J−ijÞδEj þ c:c:�: ð4:13Þ

In order to maximize the sensitivity of the subtracted
photocurrent to fluctuations in the signal field, it is best
to choose polarizers that are orthogonal, in which case
JþJ− ¼ 0 and Jþ þ J− ¼ 1. Physically, this choice corre-
sponds to the intuition that each photodetector be sensitive
to polarization fluctuations in orthogonal directions, so that
their equal-weight superposition contains full information
of both polarization components [84]. With this choice

δIhom ¼ α

2

Z
D

d2r½hE0
ii�δEi þ c:c:�; ð4:14Þ

similar to the case of direct photodetection, except that the
signal field fluctuations that are transduced are the ones that
lie along the polarization of the mean LO field.
Inserting the explicit forms of the LO and signal fields

[Eqs. (4.2) and (4.9)], the homodyne photocurrent fluctua-
tions in Eq. (4.14) becomes,

δIhom ¼ α

2

ffiffiffiffiffiffiffiffi
PP0p

½he0ii�Jijδej þ c:c:�; ð4:15Þ

where ϕ is the common difference between the longitudinal
modes of the LO and signal, and

J ¼
�
eikðnx−1Þl 0

0 eikðny−1Þl

�

is the Jones matrix describing the phase retardation
between the LO and signal carrier polarizations as they
propagate through to the photodetectors. Indeed by setting
he00j i ¼ J�jihe0ii, the photocurrent fluctuations can be seen to
be proportional to he00j i�δej þ c:c., where he00j i can be
identified with the polarization state of the LO after passing
through a phase retarder described by the Jones matrix J†.
In this sense, if the LO polarization state is completely
controllable, the effect of J can in principle be absorbed
into the definition of e0; we do so in the following.
Computing the two-time correlation of the photocurrent
fluctuations in Eq. (4.15), omitting terms that are non-
stationary, and computing the Fourier transform, gives the
photocurrent spectral density,

ShomII ðΩÞ¼
�
α

2
ðPP0Þ1=2

�
2

½he0ii�SeiejðΩÞhe0jiþc:c:�: ð4:16Þ

In contrast with the case of direct photodetection
[Eq. (4.8)], by changing the LO polarization e0, all elements
of the spectral covariance matrix of the signal polarization
can be measured without perturbing the field incident on
the sample.
Note that in general polarization fluctuations contami-

nate the homodyne photocurrent in all quadratures. To see
this, re-introduce the phase retardation between the LO and
signal, he0ii → he0iieiϕi , and notice that whatever value of
the relative phase ϕi is chosen, the photocurrent spectral
density SII is generically nonzero. In this sense, thermor-
efringent noise can limit the sensitivity of an interfero-
metric measurement in all quadratures. This is nothing but
the manifestation of the fact that the noisy polarization state
of the signal cannot perfectly interfere with the pure-
polarized LO—a fact that is independent of signal
quadrature.
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C. Coherent cancellation of thermorefringent noise in
signal detection

In the context of sensitive polarimetry experiments, the
fact that thermorefringent noise is always lesser in the
polarization state orthogonal to the probe field, i.e.,
Seyey < Sexex , suggests arranging the experiment so that
the signal of interest is produced in that polarization, i.e.,
δesigy . The resulting signal from a balanced homodyne
polarimeter with LO state e0 ¼ ðcos θ; eiϕ sin θÞ is

ShomII ∝ Ssigeyey þ ½Seyey þ cot2ðθÞSexex
þ 2 cotðθÞRefeiϕS�exeyg�

≡ Ssigeyey þ Sappeyey ; ð4:17Þ

which is Eq. (4.16) referred to the polarization signal of
interest. The terms in the brackets in the first line represent
the apparent signal arising from thermorefringent noise,
denoted Sappeyey . The primary objective of any polarimetry
experiment is the maximization of the signal-to-noise ratio
Ssigeyey=S

app
eyey ; equivalently, the minimization of the noise

Sappeyey once the signal is fixed.
If there existed no correlations between thermorefringent

noise of orthogonal polarizations (i.e., Sexey ¼ 0), then,
Sappeyey ¼ Seyey þ cot2ðθÞSexex . This can be minimized by
choosing LO tuned to the signal polarization, i.e.,
θ ¼ π=2, in which case the sensitivity to signal polarization
is limited by thermorefringent noise in the same polariza-
tion (i.e., Seyey). Indeed this signal extraction strategy is
conventionally practised for a different reason; to avoid
extraneous background from the probe field.
However, since thermorefringent noise is correlated

across the probe and signal polarizations (i.e., Sexey ≠ 0,
as seen in Fig. 1), better signal extraction strategies
that harness these correlations can be imagined.
Mathematically, the LO polarization angles ðθ;ϕÞ can be
chosen so that the negative values of the correlation terms
in Sappeyey cancel with the positive terms. Expressing Sappeyey by
completing squares on cot θ, we find

Sappeyey ¼ Seyey −
RefeiϕS�exeyg2

Seeex
þ ½cot θ · Sexex þ RefeiϕS�exeyg�2: ð4:18Þ

It is clear that this is minimized at a Fourier frequency of
interest Ω when the second term is maximized by proper
choice of ϕ, and the third term is nulled by choice of θ.
Noting that RefeiϕS�exeyg2 ¼ jS2exey jcos2ðϕ − arg SexeyÞ,
these optimal choices are

ϕoptðΩÞ ¼ arg Sexey ½Ω�

θoptðΩÞ ¼ cot−1
−RefeiϕS�exey ½Ω�g

Sexex ½Ω�
: ð4:19Þ

With this choice, the noise at that frequency is

SappeyeyðΩÞjθopt;ϕopt
¼SeyeyðΩÞ

�
1−

jS2exeyðΩÞj
SexexðΩÞSeyeyðΩÞ

�
: ð4:20Þ

Since the correlation is bounded by the Cauchy-Schwarz
inequality jS2exey j ≤ SexexSeyey, in principle, perfect cancel-
lation at a desired Fourier frequency is possible if the
correlations are perfect (i.e., saturate the inequality). Even
with imperfect correlations, narrow-band evasion of ther-
morefringent noise is possible via balanced homodyne
polarimetry via coherent cancellation. This strategy always
outperforms—in a narrow-band of choice—the conven-
tional signal extraction strategy of tuning the LO to a
polarization orthogonal to the probe.

V. CONCLUSIONS

Having emerged from the thicket, we can now contex-
tualize thermorefringent noise in the wider landscape of
thermo-optic noises. Fluctuations of the apparent tempera-
ture of amorphous materials cause their optical properties
to fluctuate, which can manifest as extraneous noise in
precision optical measurements [1]. The most insidious
source of such thermo-optic noise is that due to fluctuations
in the thickness of coatings on mirrors, the intensity of
which is related to the mechanical loss of these materials.
Driven by the idea that it is the glassy energy landscape of
amorphous materials that gives rise to mechanical dissi-
pation [85–88], a concerted effort to discover more pristine
materials has ensued in communities engaged in precision
optical measurements. Recent measurements [28,29] have
unearthed evidence that crystalline materials may offer
some refuge from thermo-optic noises because of the
absence of glassy behavior. In the current study, we have
demonstrated that precisely because of the anisotropy of the
crystalline state, qualitatively novel sources of thermo-
dynamically driven optical noises can arise.
In particular, fluctuations in temperature can be aniso-

tropic, which drive fluctuations in the dielectric tensor of
the medium, resulting in the polarization of an incident
optical field to transmute into an impure state. We term this
thermorefringent noise. An impure polarization state man-
ifests in optical measurements via its inability to interfere
perfectly with a reference pure-polarized field. The result is
that thermorefringent noise can manifest as apparent noise
in any quadrature of the optical field, quite unlike thermo-
optic noise from amorphous media. There are also other
manifestations of thermorefringent noise, such as the
thermal scattering of light into orthogonal polarizations,
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which can be detrimental to precision polarimetry experi-
ments. In addition, we also discover that thermodynamic
scattering into higher-order spatial modes is possible, even
in amorphous optical media.
The phenomenology of thermorefringent noise critically

depends on the temperature-dependent parts of the dielec-
tric tensor, which can in turn depend on residual stresses on
optical materials such as coatings. These poorly understood
aspects of such materials need to be carefully characterized
to ascertain the realistic limits that thermorefringent noise
will place on precision optical measurements.
We have also proposed a novel signal extraction strategy

employing balanced homodyne polarimetry which can
coherently cancel thermorefringent noise. This technique
crucially relies on the complete theoretical understanding of
thermo-optic noises that our formalism has captured, includ-
ing thermodynamically induced correlations in the optical
polarization. The coherent cancellation strategy can evade
correlated polarization noise in a narrow frequency of choice
by simple tuning of the local oscillator polarization state, and
is only limited by the strength of the correlations.
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APPENDIX A: DIRECTIONAL CORRELATION
OF THERMAL NOISE

In this appendix we consider the general problem of
reconciling the microscopic anisotropic description of the
temperature field u, given in Eqs. (2.3) and (2.4), with the
macroscopic thermodynamic expectation for the tempera-
ture, given in Eq. (2.1).
If we assume that the noise ζiðr; tÞ is uncorrelated across

space and time, the only remaining source of correlation are
directional. Since there are only three second rank tensors
dictated by the system, namely δij; Dij; ðD−1Þij, any direc-
tional correlation must be captured in the general expression

hζiðr; tÞζjðr0; t0Þi ¼ ðζ20δij þ ζ21Dij þ ζ2−1D
−1
ij Þ

× δðr − r0Þδðt − t0Þ; ðA1Þ

where ζ−1;0;1 are scalars to be determined.
According to Eq. (2.6) the local temperature u is driven

by the noise η ¼ ∂iζi. The above choice for ζi implies that
the Fourier transform, ηðK;ΩÞ ¼ R

dr dt ηðr; tÞe−iðK·r−ΩtÞ,
is characterized by

hηðK;ΩÞη�ðK0;Ω0Þi
¼ ðζ20KiKj þ ζ21DijKiKj þ ζ2−1D

−1
ij KiKjÞ

× ð2πÞ4δðK −K0ÞδðΩ −Ω0Þ: ðA2Þ

Since the relation between the local temperature u and η is
linear [Eq. (2.6)], it can be solved via a Fourier transform to
produce

huðK;ΩÞu�ðK0;Ω0Þi¼ hηðK;ΩÞη�ðK0;Ω0Þi
ð−iΩþDijKiKjÞðiΩ0 þDijK0

iK
0
jÞ
:

ðA3Þ
The scalars ζ−1;0;1 that determine the nature of the

directional correlation of the noise ζi [Eq. (A1)] need to
be such that the thermodynamic relation for the macro-
scopic temperature [Eq. (2.1)], Var½T� ¼ kBT2=CV is con-
sistent with the volume-average of the microscopic
temperature u. That is, we demand,

kBT2

CV
¼ Var½T�

¼ 1

V

Z
V
dV

1

V 0

Z
V 0
dV0huðr; tÞu�ðr0; tÞi; ðA4Þ

where

huðr;tÞuðr0;tÞi¼
Z

dKdΩdK0dΩ0

ð2πÞ8
×huðK;ΩÞu�ðK0;Ω0ÞieiðΩ−Ω0ÞteiðK·r−K0·r0Þ;

ðA5Þ
The integral in equation Eq. (A5) can be reduced to,

huðr;tÞuðr0;tÞi¼
Z

dK
ð2πÞ3

eiK·ðr−r0Þ

2

×
ðζ20KiKiþζ21DijKiKjþζ2−1D

−1
ij KjKiÞ

DijKiKj
:

ðA6Þ
The fraction in the second line of the integrand has an
essential discontinuity at K ¼ 0, unless ζ0 ¼ ζ−1 ¼ 0 or
Dij is proportional to identity matrix.
The discontinuity dictates the value of the integral, and

we will show that the integral is multivalued, unless there is
no discontinuity. In case of isotropic medium, the integral
in Eq. (A6) returns a value proportional to δðr − r0Þ (see
Appendix B in [26]). In that case, asymptotics of the
integrand at K ¼ 0 defines the proportionality coefficient
ζ21. In the case of anisotropic medium, the scalars ζ0;1 can in
principle contribute. To study their contributions, we will
perform the integral. First, we separate the integral into
three terms,
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huðr; tÞuðr0; tÞiα ¼
Z

dK
ð2πÞ3

FαðKÞ
2

eiKr−iK0r0 ; ðA7Þ

where, F0ðKÞ ¼ ζ20KiKi=DijKiKj, the second integrand
F1ðKÞ¼ ζ21DijKiKi=DijKiKj¼ ζ21, and the third,F−1ðKÞ¼
ζ2−1D

−1
ij KiKi=DijKiKj. Then the correlation in the physical

temperature fluctuations can be expressed as the sum,

huðr; tÞuðr0; tÞi ¼
X

α∈f0;�1g
huðr; tÞuðr0; tÞiα: ðA8Þ

We now compute each of the terms in the sum.
The integral for F1ðKÞ is reduced to a δ-function, since

F1ðKÞ doesn’t have an essential discontinuity at K ¼ 0:

huðr; tÞuðr0; tÞi1 ¼
ζ21
2
δðr − r0Þ: ðA9Þ

The integrals containing F0;1ðKÞ are more complicated,
but both of them are computable in the same fashion,
namely by changing variables to generalized spherical
coordinates. For easier pedagogy we perform the variable
substitution in steps. As a first step, we consider the basis
in which Dij is diagonalized (it can be, since it is
symmetric) with eigenvalues Di. We perform a substitution
K̃i ¼

ffiffiffiffiffiffi
Di

p
Ki, vi ¼ ðri − r0iÞ=

ffiffiffiffiffiffi
Di

p
to get rid of Dij in the

denominator. Then we rotate the resulting coordinate
system so as to make v lie along the z-direction of the
rotated system. Finally, the K̃ integration is performed in
spherical coordinates. The integral containing F0 then takes
the form

huðr; tÞuðr0; tÞi0 ¼
ζ20
2

Z
K̃2 sin θdK̃dθ

ð2πÞ2 ffiffiffiffiffiffiffiffiffiffiffi
detD

p eiK̃v cos θ ×

�
1

2

�
1

Dx
þ 1

Dy

�
sin2θ þ 1

Dz
cos2θ

�
:

Performing the polar integral gives

huðr; tÞuðr0; tÞi0 ¼
ζ20
2

(
ð4D−1

z − TrðD−1ÞÞδðr − r0Þ − 3D−1
z − TrðD−1Þ
4π

ffiffiffiffiffiffiffiffiffiffiffi
detD

p ×
1

ðD−1
ij ðri − r0iÞðrj − r0jÞÞ3=2

)
: ðA10Þ

The integral containing F−1ðKÞ can be computed applying the same method,

huðr; tÞuðr0; tÞi−1 ¼
ζ2−1
2

8<
:ð4D−2

z − TrðD−2ÞÞδðr − r0Þ − 3D−2
z − TrðD−2Þ
4π

ffiffiffiffiffiffiffiffiffiffiffi
detD

p ×
1

ðD−1
ij ðri − r0iÞðrj − r0jÞÞ3=2

)
: ðA11Þ

Note however that the expressions in Eqs. (A10) and
(A11) are unphysical in a subtle manner. In fact the
essential discontinuity in the integrands in Eq. (A6) that
are proportional to renders their integral multivalued. This
can be seen from the result in Eqs. (A10) and (A11) where
the z direction take a privileged position despite no such
asymmetry in the integrand. This origin of this asymmetry
is the order in which the integral is performed in the
generalized spherical coordinates. The multivalued integral
in this case is unphysical and, as expected, puts constraints
on the form of the correlation of the noise term ζ.
One case, when the integral is single-valued corresponds

to ζ0 ¼ ζ−1 ¼ 0. In this case the singularity at coordinate
origin is absent, and the noise is completely described by
one term,

hζiðr; tÞζjðr; tÞi ¼ ζ21Dijδðr − r0Þδðt − t0Þ: ðA12Þ

The second case is less trivial and involves exploring the
structure of Eqs. (A10) and (A11). The integrals in these
equations could be computed the same way, but with

different axis choice for the spherical coordinates. If the
axis is chosen along Dx or Dy (instead of Dz as above), the
Di-dependent pre-factors on the right hand sides of
Eqs. (A10) and (A11) would take a different form. The
necessary condition for the integral to be single-valued is
the equality among these prefactors (independent of the
choice of integration variables). For example, if one
considers the coefficient for the second term in the
Eq. (A10), one obtains the system of equations:

2D−1
z −D−1

x −D−1
y ¼ 2D−1

x −D−1
y −D−1

z ;

2D−1
z −D−1

x −D−1
y ¼ 2D−1

y −D−1
x −D−1

z ;

whose only solution is Dx ¼ Dy ¼ Dz. When this con-
dition is satisfied the essential discontinuity in the original
integral also vanishes, rendering the integral single valued.
Physically this case corresponds to that of a material with
isotropic thermal diffusion. Mathematically, this is already
included in the case corresponding to ζ0 ¼ ζ−1 ¼ 0. Thus,
the latter is the only case to be considered.
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Finally, ζ1 can be computed using Eq. (A4),

kBT2

CV
¼ ζ21

2V
ðA13Þ

Our result reproduces the typical results for the isotropic
medium, for example [26].

APPENDIX B: ORIGIN OF ε0xy AND MATERIAL
PARAMETERS

In this appendix we concern ourselves with how a
nonzero ε0xy can arise. One possibility is through photo-
elasticity, in which applied stress produces changes in the
permittivity tensor. An applied stress σij is linearly related
to changes in the inverse dielectric tensor Bij ¼ ðε−1Þij by
δBij ¼ πijklσkl. To first order, perturbations in Bij are
related to perturbations in εij by δεil ¼ −εijδBjkεkl. In
particular, even in a system in which the unperturbed εij is
diagonal, an off-diagonal perturbation can appear as
δεxy ¼ −εxxδBxyεyy. The way in which stresses can pro-
duce a nonzero δBxy depends on the particular crystal
structure; even in cubic crystals (and isotropic materials), a
shear strain σxy will produce a nonzero δBxy via a nonzero
πxyxy (in Voigt notation, π66, which for cubic and isotropic
materials is identical to π44) [78]. A temperature-dependent
term ε0xy can then arise either via a temperature dependence
of πxyxy or of σxy [89].

APPENDIX C: FIELD EVOLUTION WITH
SMALL PERTURBATIONS

In this appendix we provide some details of the passage
from the equations for the electromagnetic field [Eq. (2.13)]
to equations for the polarization fluctuations [Eq. (3.1)].

To derive the necessary equations we will apply several
assumptions about the configuration of electromagnetic
field [notation from Eqs. (2.12) and (2.13)],

(i) We assume that the transverse spatial mode f0
of the incident field is gaussian and that its width
is much greater than the wavelength and temperature
fluctuations scale (this is typically true for macro-
scopic mirrors, as estimated in Ref. [4]). This
provides us several estimates for derivatives of the

main mode: j∇f0j ≪ jkf0j, j∇δeð0Þi j ≪ jkδeð0Þi j,
jδeð0Þi ∇f0j ≪ jf0∇δeð0Þi j.

(ii) We assume that noise source frequency scale is
much lower than the optical frequency. This gives us
estimates of time derivatives of the fluctuations in
the electromagnetic field, j∂tδeðαÞi j ≪ jωδeðαÞi j.

We plug the expansion Eq. (2.13) into Eq. (2.11) and
project it onto the basis function fα. The projection of
various terms in the equation are as follows:

ðfαj∂2t hExiÞ ¼
ffiffiffiffi
P

p
eiðknxz−ωtÞð−ω2δ0αÞheð0Þx i ðC1Þ

ðfαj∂2t δExÞ ¼
ffiffiffiffi
P

p
eiðknxz−ωtÞ

× ð−ω2δeðαÞx − 2iω∂tδe
ðαÞ
x þ ∂

2
t δe

ðαÞ
x Þ: ðC2Þ

In the formula below we use notation Δxy ¼ ∂
2
x þ ∂

2
y:

ðfαjΔxyδExÞ ¼
ffiffiffiffi
P

p
eiðknxz−ωtÞ

�X
β

ðfαjΔxyfβÞδeðβÞx

− k2n2xδe
ðαÞ
x þ 2iknx

�
∂

∂z
δeðαÞx

�
þ ∂

2

∂z2
δeðαÞx

�
ðC3Þ

TABLE I. Parameters for crystalline materials. Values for silicon were taken from Refs. [66–69]; values for lithium niobate were taken
from Refs. [70–72]; values for GaAs/AlGaAs were taken from Refs. [73–75]. The heat capacity values here suffice for both constant-
volume and constant-pressure situations, since these solids are only weakly compressible. The aluminum alloying fraction for AlGaAs
was assumed to be 92%. An asterisk indicates that the value was chosen ad hoc. A dagger indicates that the tensor values have been
assumed from scalar measurements.

Quantity Symbol Si LiNbO3 GaAs AlGaAs Unit

Temperature T 123 293 293 293 K
Density ρ 2330 4630 5320 3860 kg m−3

Heat capacity per unit mass C 330 640 320 440 J kg−1 K−1

Thermal conductivity

( κxx 600† 4.5 44† 71† W m−1 K−1

κyy 600† 4.4 44† 71† W m−1 K−1

κzz 600† 4.5 44† 71† W m−1 K−1

Laser wavelength in vacuum λ 1550 1550 1550 1550 nm

Refractive indices

�
nx 3.46 2.14 3.37 2.90 � � �
ny 3.46 2.21 3.37 2.90 � � �

Thermorefractive coefficients

( ε0xx 700 130 1370 1020 ppmK−1

ε0yy 700 −1 1370 1020 ppmK−1

ε0xy 10� 1� 10� 10� ppmK−1
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ðfαj∂x∇ · δEÞ ¼
ffiffiffiffi
P

p X
β

�
eiðknxz−ωtÞðfαj∂2xfβÞδeðβÞx

þ eiðknyz−ωtÞðfαj∂x∂yfβÞδeðβÞy

þ eiðknzz−ωtÞðfαj∂xfβÞ
∂

∂z
δeðβÞz

�
ðC4Þ

The most important case is α ¼ 0, since this is the
projection with the highest overlap with noise source.
Several terms in the above sums can be neglected as
follows:

(i) The condition j∂tδeð0Þi j ≪ jωδeð0Þi j allows us to

neglect ∂2t δe
ð0Þ
x term in Eq. (C2).

(ii) The relation ðfαj∂xfβÞ ¼ −ðfβj∂xfαÞ show that all
terms of the form ðfαj∂xfβÞ are of the order of
magnitude 1=r0 (r0 is a laser beam radius), when
α ∼ 1. Using the estimate, j∇f0j ≪ jkf0j, terms like,

ðfαjΔxyjfβÞ and ∂2zδeðαÞx in Eqs. (C3) and (C4) can be
neglected for α ¼ 0.

Thus simplified, Eqs. (C1)–(C4) can be substituted into
Eq. (2.11), and the α ¼ 0 term isolated. This gives the
system of equations in Eq. (3.1).

APPENDIX D: LIMITING FORMS OF
POLARIZATION SPECTRAL DENSITIES IN

TRANSMISSION

The expression for the polarization spectral densities for
transmission through a crystalline material—given in
Eqs. (3.10)–(3.12)—can be reduced in various limiting
cases to much simpler forms. We exhibit some of these
limiting cases in this appendix. Finally, in Appendix D 4,
we provide an alternate calculation of Sexex in the fully
adiabatic regime, as an independent check of the full theory
in Sec. III B of the main text.

1. Asymptotic expansion of thermal integral

The thermal integral [Eq. (3.13)],

IðΩ1;Ω2Þ ¼
Z

∞

0

dτ
cosΩ1τ exp ð−Ω2

2Dzzτ=c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðτ þ τxÞðτ þ τyÞ
p ;

dictates the frequency dependence of the polarization
fluctuations for transmission through a crystalline medium.
In order to deduce limiting forms of the polarization
fluctuations in the various frequency regimes of interest,
it is germane to study the asymptotic properties of this
integral. That integral can be written as

IðΩ1;Ω2Þ ¼
Xþ∞

n¼0

Cn

�
τ−
τþ

�
2n
Re

�
e−iΩ1τþ exp

�
Ω2

2

c2
Dzzτþ

�

× Ei2nþ1

�
−iΩ1τþ þ Ω2

2

c2
Dzzτþ

��
; ðD1Þ

where τ� ¼ jτx � τyj=2,Cn are the coefficients in the Taylor
series expansion of function 1=

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
around x ¼ 0, and

Ein stand for the nth order exponential integral defined by,
EimðzÞ ¼

R∞
1 dt t−me−zt, for Refzg ≥ 0 and m > 0. (Note

that the above expansion for the integral I reduces to the
result obtained previously for the special case of an isotropic
medium [90]—i.e., all terms vanish except for n ¼ 0.) The
physically interesting cases correspond to the argument of
Ein approaching zero or infinity. The required asymptotic
expansions are known for Ei1 [[91], Sec. 2.3],

Ei1ðzÞ ≈
(
− ln z − γ −

P∞
k¼1

ð−1Þk
k!

zk
k ; z → 0

e−z
z

P
N
k¼0

ð−1Þkk!
zk þOðjzj−NÞ; z → ∞

ðD2Þ

where γ ≈ 0.57721 is Euler’s constant, and these are valid
respectively for arg z ≠ π, and arg z < π=2. Expansions for
Ein>1 can be computed from these via the recursion relation
[91], Einþ1ðzÞ ¼

R
∞
z dz0Einðz0Þ. This relation implies that

EinðzÞ ¼ oðEi1ðzÞÞ for n > 1 when z → 0, and EinðzÞ ∼
Ei1ðzÞ when z → þ∞ [92]. Therefore, only the first term in
the series expansion for I in Eq. (D1) contributes for small
arguments, and all the terms contribute the same amount for
large arguments. Therefore both of the cases are solely
described by the corresponding asymptotic expression for Ei1.
The above asymptotic expansions, handled carefully

respecting the domain of the complex argument of Ein
in Eq. (D1), produces the following limiting cases.

2. Limiting forms of Sexex
There are two physically interesting regimes for Sexex.

The first regime is the small-frequency limit, n2xDzzτþΩ2=
c2 ≪ Ωτþ ≪ 1. In this regime the power spectral density
shows logarithmic behavior,

SexexðΩÞ ¼ −
k2ζ2jε0xxj2l

16πn2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p ln ðjΩτþjÞ ðD3Þ

The second physically interesting regime typically corre-
sponds to the situation when Ω is big enough that
1 ≪ Ωτþ, but still small enough for the noise to be
quasistatic, i.e., n2xDzzτþΩ2=c2 ≪ Ωτþ. This results in
the following behavior. In this regime the power spectral
density shows inverse square behavior,

SexexðΩÞ ¼
k2ζ2jε0xxj2lτþ

8πn2xr20

1

jΩτþj2
: ðD4Þ

3. Limiting forms of Seyey and Sexey
In addition to other parameters, power spectral densities

Sexey and Seyey acquire additional frequencylike parameter
ωΔn, where Δn ¼ nx − ny. This results in three physically
interesting regimes. The first one corresponds to the small
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Ω limit when Ωτþ ≪ Dzzτþω2ðΔnÞ2=c2 ≪ 1. In this
regime the power spectral density is frequency indepen-
dent,

SeyeyðΩÞ¼−
k2ζ2jε0xyj2l

16πn2y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p ln

�����DzzτþðΔnÞ2
ω2

c2

����
�
; ðD5Þ

SexeyðΩÞ ¼
k2ζ2ε0xyε0xxl

16πnxny
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p ln

�����DzzτþðΔnÞ2
ω2

c2

����
�

×
1 − exp ½−iωlΔn=c�

ωlΔn=c
: ðD6Þ

The next regime corresponds to the transient Ω when
Dzzτþω2ðΔnÞ2=c2 ≪ Ωτþ ≪ 1. In this regime the power
spectral density shows logarithmic behavior,

SeyeyðΩÞ ¼ −
k2ζ2jε0xyj2l

16πn2y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p ln ðjΩτþjÞ; ðD7Þ

SexeyðΩÞ ¼
k2ζ2ε0xyε0xxl

16πnxny
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyyDxx

p ln ðjΩτþjÞ:

×
1 − exp ½−iωlΔn=c�

ωlΔn=c
: ðD8Þ

Finally, there is the large Ω limit when
Dzzτþω2ðΔnÞ2=c2 ≪ Ωτþ and 1 ≪ Ωτþ. In this regime
the power spectral density shows inverse square behavior

SeyeyðΩÞ ¼
k2ζ2jε0xyj2lτþ

8πn2yr20

1

jΩτþj2
; ðD9Þ

SexeyðΩÞ ¼ −
k2ζ2ε0xyε0xxlτþ
8πnxnyr20

1

jΩτþj2

×
1 − exp ½−iωlΔn=c�

ωlΔn=c
: ðD10Þ

4. Adiabatic limit: Modal method

In many situations of interest, the characteristic size of
the crystal is such that the temperature field is effectively
static compared to the travel time of the light through the
crystal (Ωl ≪ c), and the fluctuations are slow compared
to the cycle of the carrier (Ω ≪ ω). This “adiabatic” regime
is the one considered by Braginsky and Vyatchanin [90] for
the case of an amorphous material.

Here we generalize their method to the anisotropic case,
with the aim of reproducing the predictions of our detailed
model through an alternate route. The general strategy is to
first compute the fluctuation in average temperature of the
crystal volume probed by the laser beam, and then to
propagate this to fluctuation in the polarization state of
the light.
To find the average temperature, we start with the heat

equation [Eq. (2.6)],

ð∂t −Dij∂i∂jÞuðr; tÞ ¼ ηðr; tÞ; ðD11Þ

where η is a random heat injection with the correlation
[Eq. (3.6)]

hηðr; tÞηðr0; t0Þi ¼ ζ2Dij∂i∂jδðr − r0Þδðt − t0Þ ðD12Þ

with ζ2 ¼ 2kBT2=cV .
Given the boundary condition ∂zu ¼ 0 at z ¼ 0 and

z ¼ l, we can write down a series solution

uðr;tÞ¼
Z∞
−∞

dkxdkydΩ
ð2πÞ3

X
n

unðkx;ky;ΩÞeiΩt−ikxx−ikyy cosðbnzÞ

ðD13Þ

with bn ¼ πn=l. Each coefficient,

unðkx;ky;ΩÞ¼
Z∞
−∞

dxdydte−iΩtþikxxþikyy

×
Zl
0

dz
2−δ0n

l
cosðbnzÞuðx;y;z;tÞ; ðD14Þ

defines a mode of the local temperature field. Inserting the
above expansion [Eq. (D13)] in the heat equation
[Eq. (D11)], it is found that each mode is independent,
and given by

unðkx; ky;ΩÞ ¼
ηnðkx; ky;ΩÞ
iΩ −Dijkikj

; ðD15Þ

where

hηmðkx; ky;ΩÞη�nðk0x; k0y;Ω0Þi ¼ ð2πÞ3ζ2Dijkikj
2 − δ0n

l
δmnδðkx − k0xÞδðky − k0yÞδðΩ −Ω0Þ: ðD16Þ

We now construct an ad hoc observable [61,62], the volume-averaged temperature over the cylindrical region of the beam
(radius r0) in the crystal (length l),
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ūðtÞ ¼ 1

πr20l

Z
V

d3r e−ðx2þy2Þ=r2
0uðr; tÞ ¼

Zþ∞

−∞

dkxdkydΩ
ð2πÞ3 e−r

2
0
ðk2xþk2yÞ=4eiΩtu0ðkx; ky;ΩÞ; ðD17Þ

where we have dropped all terms in the Fourier series except for the n ¼ 0 term, since this is the only term which has a
nonzero integral in the z direction. We can compute the correlation function of this volume-averaged temperature, giving

hūðtÞūðtþ τÞi ¼ ζ2 ×
1

l

Zþ∞

−∞

dkxdkydΩ
ð2πÞ3 e−r

2
0
ðk2xþk2yÞ=2 Dðkx; kyÞeiΩτ

Ω2 þDðkx; kyÞ2
; ðD18Þ

where Dðkx; kyÞ ¼ Dxxk2x þ 2Dxykxky þDyyk2y. Then
since the correlation function is related to the two-
sided spectral density SðΩÞ by hūðtÞūðtþ τÞi ¼
1
2π

Rþ∞
−∞ dΩSðΩÞeiΩτ, we can immediately read off the

one-sided spectral density SðjΩjÞ ¼ 2SðΩÞ for the volume-
averaged temperature,

Sū ūðΩÞ ¼
4kBT2

cVl

Zþ∞

−∞

dkxdky
ð2πÞ2

Dðkx; kyÞe−r20ðk2xþk2yÞ=2

Ω2 þDðkx; kyÞ2
; ðD19Þ

which reduces to Eq. (E6) of Braginsky and Vyatchanin
[90] in the thermally isotropic limit. Note that we did not
use any assumption about the length scale of the crystal
relative to the thermal diffusion wavelength in this deri-
vation.
To complete the calculation, we need to connect fluc-

tuations in ūðtÞ to fluctuations in the optical field. The
variable ūðtÞ has been constructed so that in an optically
isotropic material, the phase fluctuation of a passing beam
is computed by

δϕðtÞ ¼ ðω=cÞlβūðtÞ ðD20Þ

with β ¼ ∂n=∂T. This equation is equivalent to Eq. (3.2)
in the limit lΩ ≪ c, in which case the retardation term
niðz − z0Þ=c in Eq. (3.2) can be omitted (i.e., we neglect
the light travel time through the crystal). This approxima-
tion holds even for meter-scale optics so long as
Ω=2π ≲ 50 MHz. Thus we arrive at the limiting form,

SexexðΩÞ ¼
���� klε0xx2nx

heð0Þx i
����2Sū ūðΩÞ; ðD21Þ

valid in the adiabatic regime. Note that we cannot arrive
at a similar limiting expression for Seyey or Sexey using the
modal expansion method because the assumption that only
the n ¼ 0 mode contributes to ū no longer holds.

5. Adiabatic limit: Direct method

We now perform a second independent check of our
formalism by modeling the transmission problem using

Levin’s approach via the fluctuation-dissipation theo-
rem [61,62].
Levin directly computes the spectral density of an ad hoc

observable, Z
dV qðrÞδuðr; tÞ; ðD22Þ

whose form is intuited to reflect the transduction of
local temperature fluctuations to the relevant optical prop-
erty. We take δex to be the observable of interest, in which
case,

qðrÞ ¼ kε0xxheð0Þx i
2πnxr20

exp

�
−
x2 þ y2

r20

�
: ðD23Þ

This is read off from Eq. (3.2).
Next, Levin studies how a sinusoidal injection of

entropy,

δs
δV

¼ F0qðrÞ cosΩt; ðD24Þ

is distributed in the medium via thermal dissipation.
This can be done in the anisotropic case by solving the
sinusoidally-driven heat equation,

ð∂t −Dij∂i∂jÞδT ¼ T
cV

∂

∂t

�
δs
δV

�
; ðD25Þ

with insulating boundary conditions at z ¼ 0;l. The
required solution is

δT ¼ kε0xxheð0Þx iF0Ω
4inxcV

Zþ∞

−∞

dkxdky
ð2πÞ2

×

�
eiðΩt−kxx−kyyÞe−ðk2xþk2yÞr20=4

iΩþDðkx; kyÞ
− c:c:

�
: ðD26Þ

It is in this step that our approach diverges from that of
Levin’s. We solve for the stochastic local temperature field
by augmenting the thermal transport equation with a source
that is consistent with the known equilibrium temperature
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fluctuation (essentially a fluctuation-dissipation theorem
for the temperature). We then propagate that local tempera-
ture field through its impact on the electromagnetic field.
Levin directly applies the fluctuation-dissipation theorem
to the ad hoc observable.
To do so, it is necessary to compute the dissipated

energy. In the anisotropic case, it is

Wdiss ¼
Z

dV
κij
T
h∂iðδTÞ∂jðδTÞi: ðD27Þ

Knowing the dissipated energy, the fluctuation-dissipation
theorem can be applied to derive the spectral density of the
observable,

Sexex ¼
8kBT
Ω2

Wdiss

F2
0

¼
���� klε0xx2nx

heð0Þx i
����2Sū ūðΩÞ; ðD28Þ

where Sū ū is given by Eq. (D19). As expected, Levin’s
method and the first principles calculations agree in the
adiabatic limit.
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