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We show how to resum the Furry-picture α expansion in order to take quantum radiation reaction and
spin transition into account in the nonlinear trident process in (pulsed) plane-wave background fields. The
results are therefore nontrivial functions of both the background field strength, eE, and the coupling to the
quantized photon field, α ¼ e2=4π. The effective expansion parameter, T, is α times eE=mω ≫ 1, which
makes higher orders in α important. We show that they can change the sign of the spin-dependent part
already at T < 1, which will be experimentally accessible. We also present a new resummation method that
essentially does to a convergent series what Borel-Padé resummation does to an asymptotic series.
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I. INTRODUCTION

The nonlinear trident process [1–14] in a strong
electromagnetic background field (e.g., from a laser),
e− → e−e−eþ, is an experimentally important process in
strong-field QED; see Refs. [15–17] for reviews. It was
measured in an experiment [1] that was the first and, for a
long time, basically the only experiment in this research
field. Back then, the lasers were actually relatively weak,
i.e., a0 ¼ E=ω < 1.1 Laser intensities have since increased
steadily, and it is now possible to have a0 ≫ 1. There are
plans to measure trident again but now in a genuinely
strong-field regime, e.g., by LUXE [18] or FACET-II [19].
For a0 > 1, one cannot treat the background field in

perturbation theory. The quantized photon field, though, is
still treated in perturbation theory, which gives Ptrident ¼
α2FðEÞ to leading order in α ¼ e2=4π, where F is some
nontrivial function. This Oðα2Þ has been studied in several
recent papers [4–14], and we now have a much better
understanding of how to calculate it.
However, for a0 ≫ 1, the effective expansion parameter

is T ¼ a0α, which is not small, i.e., Oðα2Þ may not be
enough. In this paper, we present methods for how to resum
all orders in α and show that this is important even
for T ≲ 1.

Various resummations of the α expansion appear in
several recent papers on radiation reaction (RR) [20–24]
and other processes [25–31]. Comparing with the resum-
mations in Refs. [25,26] or [27,28], we see that we all
consider “strong-field” regimes where the dominant con-
tribution comes from some sort of reducible diagrams.
However, these are nevertheless very different regimes and
resummations. References [27,28] resummed loop dia-
grams for αχ2=3 ≳ 1, i.e., χ ≫ 1, in order to study the
Ritus-Narozhny conjecture [32,33], while we consider
χ ≲ 1. References [25,26] considered a very different
regime where the dominant contribution comes from tad-
pole loop diagrams, which were believed to vanish until
Ref. [34]. The fields we consider are much weaker and can
be approximated as plane waves, and tadpoles have been
shown to vanish for plane waves [35,36]. Another differ-
ence is that, for the quantities and regimes we consider, we
need to resum both sums over loops as well as sums over
the number of final-state particles.

II. DERIVATION

Figure 1 illustrates which processes are included and
which ones are neglected. The particular diagram in Fig. 1
represents one typical process. We are interested in the
infinite sum of the probabilities to produce one pair
together with 0; 1; 2; 3… photons. The amplitude to pro-
duce one pair and n photons is itself given by an infinite
coherent sum of 0; 1; 2; 3… loops. These one-particle
reducible loops give the dominant contribution for large
a0 or a long pulse [30,31,37,38]. We showed in
Refs. [38,39] how to write the dominant contribution of
OðαnÞ processes with products of OðαÞ “strong-field-QED
Mueller matrices” (M), which describe how the fermion
spin/photon polarization Stokes vectors (N) change. This is
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similar to how ordinary Mueller matrices work in optics,
where the Stokes vector of a light beam changes to
N → M ·N, after passing through an optical element
characterized by M. In our case, the M’s are not constant
but depend on (light-front) time and the momentum. An
important point is that both real particle production and
loops can be treated using sums of incoherent products of
Mueller matrices, so we have, e.g., one Mueller matrix,
MC, for photon emission and one for the fermion-mass
loop,ML. We showed in Refs. [21,22] how to evaluate and
resum the resulting α expansion for the case with no pair
production. Here, we take the next step and consider the
production of one pair. We therefore neglect terms and
processes that are more exponentially suppressed than the
leading exponential scaling, which is expð−16=½3χ�Þ for a
constant field, where χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

p
is the quantum

nonlinearity parameter for a particle with momentum pμ,
which gives the field strength as seen in the rest frame.
Consider first the photon emissions and loops on

the electron line after vertex A in Fig. 1 and on the
fermion line connected to vertex B. When we resum
these diagrams, we find sums of (schematically)R ðMC þMLÞ · ðMC þMLÞ ·… · ðMC þMLÞ. We will
come back to the details below, when we consider a similar
resummation for the line before vertex A. At this point, it is
enough to note that if we sum over the spins of the final-
state particles, then we should multiply this with the Stokes
vector that describes unpolarized particles, i.e.,N ¼ f1; 0g,
but we have ðMC þMLÞ · f1; 0g ¼ f0; 0g, so the resum-
mation of these terms collapses, and we find that we do not
actually need to consider the photon emissions and loops
on these final-state lines.
The sum over all fermion loops2 between vertex A and B

can be expressed in compact form as Eq. (147) in Ref. [38].
We find that one part of this sum can be neglected as long as
production of more than one pair is negligible. The other
part describes how the photon Nγ rotates between A and B.
This vacuum birefringence part does not contribute here

since we consider initial- and final-state fermions that are
either unpolarized or polarized parallel (or antiparallel) to
the magnetic field of the linearly polarized background, and
in this case, the components of Nγ that would rotate drop
out. The sum of the fermion loops on externally emitted
photons, e.g., the photon line starting at C, can again be
neglected as long as multiple pair production is negligible.
We thus find that what we need to consider is the sum over
all photon emissions and loops attached to the electron line
up to vertex C.
Note that, as this is a first-principles approach, there is no

need to “add” a quantum Landau-Lifshitz equation, the
T-BMTequation for spin precession or the Sokolov-Ternov
effect; those effects are already automatically included in
the resummation of MC and ML [21,22].
We consider plane-wave backgrounds, which is moti-

vated by the fact that a high-energy electron sees a rather
general field as if it were a plane wave. Plane waves only
depend on light-front time, σ ¼ kx ¼ ωðtþ zÞ (kμ is the
wave vector of the field), so the other coordinates give
trivial integrals. And only the longitudinal3 momentum
component, kp=2ω ¼ p0

− ¼ ðp0
0 − p0

3Þ=2 > 0, plays a
nontrivial role, as the perpendicular integrals factorize
and can therefore be performed for each Mueller matrix
separately, which has already been done.
To obtainOðαnÞ, we start with the latest vertex, i.e., B in

Fig. 1, and work backward in time. Since we sum over
the final-state spins, in this step, we only need a Mueller
vector rather than matrix, which takes into account the
dependence on the polarization of the intermediate photon.
Here, we use4 s2 ¼ kp2=kl and s3 ¼ kp3=kl ¼ 1 − s2 for
the ratios of the longitudinal momenta of the electron
(momentum pμ

2) and positron (pμ
3), respectively, and the

photon (lμ). At each step, we let b0 ¼ kp0, where p0
μ is the

momentum of whatever particle that goes into that step, so
in this step, b0 ¼ kl. The Mueller vector we need is given
by [38]

FIG. 1. Typical diagram for trident at higher orders.

2See also Refs. [37,40,41] for different formulations of all-
order birefringence [40,41] or quantities that correspond to sums
over loops.

3Since p0
3 never appears separately in this paper, we drop “light

front” and simply call p0
− the longitudinal momentum.

4Lorentz contractions are denoted simply kp ¼ k0p0 − kjpj.
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MBWðχ; s3Þ ¼
�
Ai1ðξÞ − κ Ai0ðξÞ

ξ
Ai0ðξÞ

ξ

�
; ð1Þ

where Ai1ðξÞ ¼
R
∞
ξ dxAiðxÞ, and5 ξ ¼ ðr=χÞ2=3,

r ¼ ð1=s2Þ þ ð1=s3Þ, κ ¼ ðs2=s3Þ þ ðs3=s2Þ, and χ ¼
χ0jf0ðσÞj ¼ a0b0jf0ðσÞj is the locally constant value of χ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνlνÞ2

p
for a field with potential aμðσÞ ¼ δμ1a0fðσÞ.

We construct a σ-dependent Stokes vector,

Nð1Þðχ0; σÞ ≔
Z

∞

σ

dσ0

χ0

Z
1

0

ds3MBWðχ; s3Þ: ð2Þ

The lower integration limit, σ, allows us to prepend the
earlier Mueller matrices with time ordering. An initial-state
photon with Stokes vector N would, to leading order in α,
decay into a pair with probability P ¼ Nγ ·Nð1Þðχ0;−∞Þ.
In general, Stokes vectors have four elements, but for
the cases we consider here, only two of them are relevant.
Nγ ¼ f1;�1g and Nγ ¼ f1; 0g correspond to photon
polarization parallel to the electric and magnetic fields
and to an unpolarized photon.
The next step is vertex A, which has the structure

N0 ·MC
0γ ·Nγ whereN0 is the Stokes vector for the electron

before emitting the photon. N0 too is reduced from a vector
with four to two elements, where N0 ¼ f1;�1g and
N0 ¼ f1; 0g correspond to spin (anti)parallel to the mag-
netic field and to an unpolarized state. The momentum of
the electron before and after emitting the photon is pμ and
p1μ, respectively, so for this step, we let b0 ¼ kp. We also
use q ¼ kl=kp and s1 ¼ kp1=kp ¼ 1 − q. The effectively
2 × 2 Mueller matrix is given by

MC
0γðχ; qÞ ¼

0
B@−Ai1ðξÞ − κ Ai0ðξÞ

ξ − Ai0ðξÞ
ξ

q AiðξÞffiffi
ξ

p q
s1

AiðξÞffiffi
ξ

p

1
CA; ð3Þ

where now ξ¼ðr=χÞ2=3, r¼ð1=s1Þ−1 and κ¼ð1=s1Þþs1.
We again define a σ-dependent Stokes vector,

Nð2Þðχ0;σÞ¼
Z

∞

σ

dσ0

χ0

Z
1

0

dqMC
0γðχ;qÞ ·Nð1Þðqχ0;σ0Þ: ð4Þ

Note that we now have qχ0 instead of χ0 in the argument of
Nð1Þ since at each step we use b0 for the momentum of
whatever particle that is present just before that step.
Starting from Nð3Þ, we have the same recursive formula

as in Refs. [21,22]. For an electron experiencing RR, we
need two Mueller matrices, one for Compton scatting

MCðχ;qÞ ¼

0
B@−Ai1ðξÞ− κAi0ðξÞ

ξ
q
s1

AiðξÞffiffi
ξ

p

qAiðξÞffiffi
ξ

p −Ai1ðξÞ− 2
Ai0ðξÞ

ξ

1
CA ð5Þ

and one for the fermion-mass loop (see Fig. 1)

MLðχ; qÞ ¼

0
B@Ai1ðξÞ þ κ Ai0ðξÞ

ξ −q AiðξÞffiffi
ξ

p

−q AiðξÞffiffi
ξ

p Ai1ðξÞ þ κ Ai0ðξÞ
ξ

1
CA; ð6Þ

with the same ξ and κ as for MC
0γ. (Here, we can explicitly

see that ðMC þMLÞ · f1; 0g ¼ f0; 0g.) For n ≥ 3, we have
(cf. Refs. [21,22], see also Ref. [42], in which a recursive
formula for a different object was obtained)

NðnÞðχ0; σÞ ¼
Z

∞

σ

dσ0

χ0

Z
1

0

dqfMLðχ; qÞ ·Nn−1ðχ0; σ0Þ

þMCðχ; qÞ ·Nðn−1Þð½1 − q�χ0; σ0Þg: ð7Þ

1 − q accounts for the recoil due to photon emission. The
trident probability is obtained by resumming the α expan-
sion, P ¼ N0 · Nðχ0;−∞Þ, where N0 describes the spin of
the initial electron and

Nðχ0; σÞ ¼
X∞
n¼2

TnNðnÞðχ0; σÞ; ð8Þ

where T ¼ a0α. Nðχ0; σÞ can be obtained either 1) by
calculating the first, e.g., 10, terms, Nð2Þ to Nð11Þ, and then
resumming them with some appropriate method (see
below) or 2) by resumming before computing, i.e., solving
the following integrodifferential6 equation:

∂N
∂σ

¼ T2
∂Nð2Þ

∂σ

− T
Z

1

0

dq
χ0

fML ·Nðχ0Þ þMC ·Nð½1 − q�χ0Þg: ð9Þ

We integrate this backward in time starting with
Nðχ0;þ∞Þ ¼ f0; 0g. Note that, while (7) has the same
form as Eq. (1) in Ref. [21], Eq. (9) has an extra,
inhomogeneous term compared to Eq. (2) in Ref. [21].

III. CONSTANT FIELD

For a constant field, the σ integrals simply giveR
dσ1…dσn ¼ Δσn=n!, with n! due to time ordering. It

is natural to absorb Δσ into T ¼ Δσa0α. Hence, Eq. (7)
reduces to

5In the literature, ξ is another common symbol for what we call
a0. We never use ξ for a0.

6Integrodifferential equations, for different objects, also appear
in macroscopic, kinetic approaches; see, e.g., Refs. [43–46].

RESUMMATION OF THE α EXPANSION FOR … PHYS. REV. D 107, 016019 (2023)

016019-3



NðnÞ ¼
Z

1

0

dq
nχ

fMC ·Nðn−1Þðχ½1 − q�Þ þML ·Nðn−1ÞðχÞg:

ð10Þ

We can now use T rather than σ as variable for an
integrodifferential equation. We find (with arguments of
MC;L suppressed)

∂

∂T
NðT;χÞ¼2TNð2ÞðχÞ

þ
Z

1

0

dq
χ
fMC ·NðT;χ½1−q�ÞþML ·NðT;χÞg;

ð11Þ

with “initial” condition Nð0; χÞ ¼ f0; 0g. The final results
are shown in Figs. 2–4, which show perfect agreement
between the results obtained from (11) and from (23).

A. Leading contribution in χ ≪ 1

For χ ≪ 1 and a constant field, we find (see Appendix A)

NðnÞ ≈ fan; χbng exp
�
−
16

3χ

�
; ð12Þ

where

a2 ¼
1

2

1

32
b2 ¼

1

2

1

32 × 27
ð13Þ

and

an ¼
2ð−dÞn−2

n!
a2

bn ¼
2ð−dÞn−2

n!

�
b2 þ

f
d
ðn − 2Þa2

�
; ð14Þ

where d ≈ 0.711201 and f ≈ 0.419148. Thus, for an initial
electron with spin up or down, we find

hPi ¼ P↑ þ P↓

2
¼ f1; 0g ·

X∞
n¼2

TnNðnÞ ≈ e−
16
3χ

X∞
n¼2

anTn

¼ T2FðdTÞ
2 × 32

exp

�
−
16

3χ

�
; ð15Þ

P↑−P↓

2
¼f0;1g ·

X∞
n¼2

TnNðnÞ≈χe−
16
3χ

X∞
n¼2

bnTn

¼
�
1

27
FðdTÞ−f

d
GðdTÞ

�
T2

64
χ exp

�
−
16

3χ

�
; ð16Þ

where

FðxÞ ¼ 2

x2
½e−x − 1þ x� ð17Þ

and

FIG. 2. Trident pair production resummed to all orders in α. The
initial electron has spin up or down along the magnetic field, P↓

and P↑, and T ¼ Δσa0α. The “resum.” line is obtained by
resumming the χ expansion with Padé-Borel and the α expansion
with the resummation method in (23), with n ¼ 1 in (26). The
“integrodifferential” line is a numerical solution to (11). The
Oðα2Þ line gives the trident probability with no RR. The χ ≪ 1
line gives the low-energy limit in (15). The “large T lin.” line
shows the pure large-T limit (C1). The “large T” line is the
improvement in (C7).

FIG. 3. Similar to Fig. 2 but for ðP↓ − P↑Þ=2, with Padé
approximant as in (26) with n ¼ 2. The χ ≪ 1 line gives the
low-energy limit in (16).
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GðxÞ ¼ 2

x2
½x − 2þ ð2þ xÞe−x�: ð18Þ

For T ≪ 1, the resummation reduces to trident at Oðα2Þ,
but for T ≫ 1, the probability grows linearly, P ∼ T. We
can understand this as follows. The intermediate photon
can decay anywhere in the field, which gives a volume
factor T. Without RR, the electron can emit that photon
anywhere in the pulse, which gives another factor of T.
However, with RR, the electron’s longitudinal momentum

decreases over time, so the electron can only emit (with
significant probability) a sufficiently high-energy photon
during a limited time interval; i.e., there is no additional
factor of T.
We find that P↑ − P↓ changes sign as T increases and

that this happens already at T ∼ 0.3. Thus, from the Oðα2Þ
results, we have that P↑ > P↓ for T ≪ 1, but as T
increases, we instead find P↓ > P↑, and a0 actually does
not have to be extremely large for this to happen.

IV. RESUMMING CONVERGENT SERIES

In Refs. [21,22], we found α expansions which seem to
have finite radius of convergence, which we therefore
resummed with Padé approximants. In contrast, in (15)
and (16), we see an infinite radius. In principle, one can
sum such series directly without any resummation. But that
would mean having to calculate more and more terms to
reach convergence as we increase T (see Fig. 5). This is
neither efficient nor practical because, in contrast to (14),
we will in general only be able to obtain a finite number of
terms, up to OðαnmaxÞ for some nmax, and only to finite
precision. A direct sum,

Pnmax
n¼0 T

nNðnÞ, scales as Tnmax as
T → ∞, which is not physical since nmax is just the order
where we happened to stop. Thus, we still need to resum
this type of series. But Padé or Borel-Padé resummations
are only suitable for series with finite or zero radius of
convergence. To find a suitable method, it still helps to
recall that in the Borel-Padé method, one divides the
coefficients by n! to turn the original series into one with
finite radius of convergence, which can then be resummed
with Padé approximants (see Appendix B). In our case, we
have series on the form

ψðxÞ ¼
X∞
n¼0

cnxn; ð19Þ

where jcnj ∼ 1=n! at large n. We turn such a series into one
with finite radius of convergence by instead multiplying the
coefficients cn by n!. This, of course, gives the expansion of
a different function. The key to transforming back to the
original function is the “Hankel’s loop integral” (see
Eq. (5.9.2) in Ref. [47])

1 ¼ n!
Z
γ

dt
2πi

ett−ð1þnÞ; ð20Þ

where γ starts at t ¼ −∞ − iϵ, wraps around the negative
real axis, and ends at t ¼ −∞þ iϵ. We can then write7

FIG. 4. As Figs. 2 and 3 but with χ ¼ 5. n in “resum.[n]” refers
to the Padé order in (26). The thin solid lines in the last plot show
the result of a direct summation (i.e., with no resummation) of the
α expansion; summing more than the first four or five terms gives
lines that agree, on the scale of that plot, with the results from
resummation or from the integrodifferential equation.

7We refrain from calling this the “Hankel transform” since that
name is already used for something else.
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ψðxÞ¼
Z
γ

dt
2πi

et

t
Hψðx=tÞ HψðzÞ¼

X∞
n¼0

n!cnzn: ð21Þ

Since jcnj ∼ 1=n! at large n, HψðzÞ has a finite radius
of convergence. We can therefore resum the truncated
transform

Hψnmax
ðzÞ ¼

Xnmax

n¼0

n!cnzn ð22Þ

by matching it onto a Padé approximant [e.g., Eq. (26)].
The final resummation is thus given by

ψðxÞ ¼
Z
γ

dt
2πi

et

t
PHψðx=tÞ; ð23Þ

where the integral can be performed with the residue
theorem.
To check that this method works, we consider first the

low-energy limit of hPi, for which we have ψ ¼P∞
n¼2 anT

n with an given by (14). For this example, we
find a simple geometric series for Hψ,

Hψ ¼ 2a2T2
X∞
n¼2

ð−dTÞn−2
tn

¼ 2a2T2

tðtþ dTÞ : ð24Þ

The radius of convergence of this series is jdT=tj < 1, so it
makes sense to choose the integration contour γ such that
jtj > dT. We can now perform the t integral with the
residue theorem. We have poles at t ¼ 0 and t ¼ −dT, and
they both contribute. We find

ψðxÞ ¼
Z
γ

dt
2πi

et

t
Hψ ¼ a2T2FðdTÞ; ð25Þ

which agrees with (15). We also recover (16) in the same
way. In these examples, we have access to all terms, and we
find geometric series that can be resummed as in (24),
which is already exactly the ratio of two polynomials. The
point is that in general, beyond the leading χ ≪ 1 limit, we
will not find a geometric series, but we can still resum the
Hψ series with Padé approximants.
For a constant field, we have a T2 scaling at T ≪ 1 and

expect linear scaling for large T, so we choose ½nþ 1=n�
Padé approximants as

PHψðzÞ ¼
Pnþ1

i¼2 Aizi

1þP
n
j¼1 Bjzj

: ð26Þ

Results are shown in Figs. 2 and 3. The convergence is very
fast. For χ ¼ 0.3, we only need n ¼ 1 and n ¼ 2 for the
unpolarized and polarized parts; i.e., we only need terms up
to Oðα3Þ and Oðα5Þ. Note that for n ¼ 1, we have exactly
the same functional dependence of T as in (15), and only
the overall coefficient and the constant d are different.
There is, however, no reason to expect that n ¼ 1 and n ¼ 2
would be enough if we consider larger χ. But it turns out
that we actually have to increase χ significantly to see this.
In Fig. 4, we show plots similar to Figs. 2 and 3 but for

χ ¼ 5. One cannot actually neglect multiple pair production
and other terms (multiple polarization/fermion loops) with
similar exponential scalings for such a large χ, which is
obvious since the result for the probability is close to 1. We
present these results just to show the power of the
resummation methods. In Fig. 4, we can start to see a
significant error at larger T for n ¼ 1, 2 in (26). However,
here we have increased χ so much that the results are no
longer physical, and even then, the errors are not huge, so
when we consider smaller χ (where we can neglect the
fermion loops), the errors will be quite small. Thus, if we
stick to a regime where our current approach gives physical
results, then we find that we need very few terms from the α
expansion to reach convergence.
The final result obtained by performing the integral

in (23) with the residue theorem is a sum of products of
polynomials and exponentials (e−constT) similar to the low-
energy limit in (15) and (16). If one can guess some
appropriate order of these polynomials and the number of

FIG. 5. Similar to Fig. 2 but for a Sauter pulse and with
T ¼ a0α. The thin lines for ðP↓ þ P↑Þ=2 show the results of just
adding the n terms Oðα2Þ to Oðαnþ1Þ without any resummation.
The ½m=mþ 1� lines are obtained with the method using the
transform in (21), and the dots are solutions to (9).
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different exponentials, then one can of course obtain the
coefficients by directly matching with the T expansion, i.e.,
without introducing the Hankel integral. However, for the
examples we have tried, it seems to be much easier
to obtain a good resummation by first making this
transformation.
Recall that Padé approximants can have spurious poles,

and note that, in general, we can only obtain the α
expansion to a finite precision. We have in some cases
found that this method can give terms with eþconstT , where
ReðconstÞ > 0, but with a numerically very small pre-
exponential factor which makes this unphysical T scaling
nevertheless negligible for reasonably large T. For larger T,
one can try to fix such cases by simply removing the terms
with eþconstT . If the corresponding preexponential coeffi-
cients are several orders of magnitude smaller than the
coefficients in front of terms with e−constT , then one can
expect that the T ≪ 1 expansion of ψ fix is still correct to a
good precision. Without this fix, the expansion of ψ resum

will agree with NðnÞ, n ≤ nmax, to within the working
precision (e.g., 10−15). But if we only know NðnÞ with a
precision of, e.g., 10−5, then it is not a problem if ψ fix only
agrees withNðnÞ to a precision of 10−5. While this fix seems
to work well, it still leaves some inspiration for trying to
find more optimal use of the nmax terms calculated. In any
case, this has not been a problem for the cases shown in
the plots.

V. RESULTS FOR A SAUTER PULSE

As an example of a pulsed field, we consider a Sauter
pulse8 aμðσÞ ¼ δμ1a0 tanhðσÞ. The results are shown in
Fig. 5. We have used (7) to obtain the first ≳10 terms and
resummed them using the method described above. In
Fig. 6, we plot the ratios of neighboring coefficients in the α
expansion for the Sauter pulse case and with χ ¼ 0.3. From
this, we can see that multiplying the coefficients by n!
indeed seems to give a series with finite radius of
convergence. Here, too, we find that ðP↑ − P↓Þ=2 changes
sign as T increases and that this happens already for T < 1.
In contrast to the constant-field case, here P decreases as
T → ∞. It is therefore better to choose ½n=nþ 1� approx-
imants rather than (26), to remove the pole at t ¼ 0,
which would otherwise give terms without exponential
suppression. The results agree with the solution to (9).
We can understand the different asymptotic scaling
roughly as follows.9 We model the exponential suppres-
sion of pair production by e−const=χðσÞ, where χðσÞ ¼

kPðσÞa0f0ðσÞ is the product of a local field strength
a0f0ðσÞ and a local momentum kPðσÞ, which we estimate
using the solution to the Landau-Lifshitz equation [52,53],
kPðσÞ→b0=ð1þ½2=3�Ta0

R
σ
−∞dσf0ðxÞÞ. kPðσÞ decreases

and hence favors production early in the pulse, while
a0f0ðσÞ favors production close to the field maximum. For
a constant field, f0 ¼ 1, only kPðσÞ is relevant, and the
dominant contribution comes from the time just after the
electron has entered the field and before it has lost too much
momentum, which gives a T-independent exponent,
e−const=χð−∞Þ. For a Sauter pulse, f0ðσÞ ¼ sech2ðσÞ, the
dominant contribution comes instead from χ0ðσdÞ ¼ 0,
giving σd ¼ −ð1=4Þ ln½1þ ð4=3Þa0b0T�, and e−const=χðσdÞ ∼
e−const

0T as T → ∞. This difference does not make the
constant field irrelevant for large T. We show, e.g., in
Appendix D that a circularly polarized monochromatic
field also leads to (15), but with different coefficients.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have derived recursive and integro-
differential matrix equations for calculating the probability
of nonlinear trident to all orders in α. We have shown that
corrections to Oðα2Þ become important already for values
of T ¼ a0α that can be generated with today’s lasers. We
have also found a new transform for resumming convergent
series, of which the α expansion of trident is one example.
We have focused on a0 ≫ 1, but these methods can be used
even if a0 ∼ 1, provided one uses the appropriate Mueller
matrices in Refs. [38,39] and the pulse is long. For general
spin/polarization, one would have to take into account
vacuum birefringence on the intermediate photon, i.e., by
resumming the loops between A and B in Fig. 1 as in
Ref. [38]. It would also be interesting to consider the spin of
the produced positron. This has been studied using PIC
codes in Refs. [49,50,54]. For that, we would need to take
RR into account on the positron line (connected to B in
Fig. 1), e.g., by finding a recursive formula similar to (7).

FIG. 6. Ratios of neighboring coefficients of HNðnÞ
0 ≔

n!f1; 0g ·NðnÞ for a Sauter pulse and χ ¼ 0.3.

8Oscillations in the field tend to average out spin effects. This
can be avoided by making the oscillations asymmetric [48,49]
or by using dense electron beams to generate nonoscillating
fields [50].

9Using similar estimates and particle-in-cell (PIC) simulations,
Ref. [51] also found pair production maximized at a finite pulse
length (but for an oscillating field and a different pulse envelope).
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When planning such generalizations, it is encouraging to
note that we have been able to resum the α expansions both
in this paper and in Refs. [21,22] with relatively few terms.
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APPENDIX A: χ -EXPANSION APPROACH

In this section, we will explain how to obtain the
constant-field results by making a second expansion, i.e.,
by expanding each order in α in an asymptotic expansion in
χ. We work backward, starting with the pair-produc-
tion step.
To obtain the χ expansions, we need the following

expansions of the Airy functions. Let γ ¼ r=χ. For large
γ, we can obtain an expansion of Ai1ðγ2=3Þ by first writing it
in terms of the following integral representation,

Ai1ðγ2=3Þ ¼
i
2π

Z
∞

−∞
dτ
τ
exp

�
iγ

�
τ þ τ3

3

��
; ðA1Þ

where the integration contour passes above the pole. We
can now obtain an expansion using the saddle-point
method; i.e., we change variable from τ ¼ iþ ð1= ffiffiffi

γ
p Þδτ

to δτ, expand the integrand in a series in 1=γ, and perform
the resulting Gaussian integrals. We find

Ai1ðγ2=3Þ ¼
exp ð− 2γ

3
Þ

2
ffiffiffiffiffi
πγ

p
�
1 −

41

48γ
þ 9241

4608γ2
þ…

�
; ðA2Þ

where we can quickly obtain the next > 100 terms. The
corresponding expansion for Ai0ðγ2=3Þ=γ2=3 can be obtained
directly from the known expansion of the Airy function,
and one finds

Ai0ðγ2=3Þ
γ2=3

¼ −
exp ð− 2γ

3
Þ

2
ffiffiffiffiffi
πγ

p
�
1þ 7

48γ
−

455

4608γ2
þ…

�
: ðA3Þ

To obtain an expansion for the pair-production probability
integrated over the longitudinal momentum, we first change
variables from s3 to r ¼ ð1=½1 − s3�Þ þ ð1=s3Þ. Due to
expð−2r=½3χ�Þ, the integrand can be expanded around the
minimum of r, which is r ¼ 4. We therefore change
variable from r ¼ 4þ χR2 to R. Expanding the integrand
in a series in χ gives integrals on the form

Z
∞

0

dRRn exp

�
−
2

3
R2

�
¼ Γ½3

2
þ n

2
�

ð2=3Þð1þnÞ=2ð1þ nÞ : ðA4Þ

We thus obtain

TNð1Þ ¼ T
3

16

ffiffiffi
3

2

r
exp

�
−

8

3χ

�

×

�
1 −

11χ

64
þ 7985χ2

73728
þ…;

−
1

3
þ 65χ

576
−
21361χ2

221184
…

�
: ðA5Þ

The probability for nonlinear Breit-Wheeler pair produc-
tion is given by P ¼ Nγ · TNð1Þ, where T ¼ αa0Δϕ. To
leading order, we recognize the fact that a perpendicularly
polarized photon gives twice as large probability compared
to a parallel photon, i.e., f1;−1g · Nð1Þ ≈ 2f1; 1g ·Nð1Þ; see
Refs. [55–57] for the constant-crossed field and Ref. [58]
for a general pulsed plane wave.
Now that we have obtained Nð1Þ, the next step is to

prepend MC
0γ as in (4) and calculate a corresponding

expansion. χ ¼ a0kl in (A5) where lμ is the intermediate
photon momentum. When we prepend MC

0γ , we change
notation by replacing χ ¼ a0kl ¼ a0ðkl=kpÞkp → qχ,
where now χ ¼ a0kp and pμ is the momentum of the
electron before emitting the intermediate photon. The
intermediate photon needs to have sufficiently high energy
in order to produce a pair, so the probability to emit such a
photon also has an exponential expansion similar to (A5).
We obtain this using (A5) and an expansion of (3). For the
exponential part of the q integral, we have

exp

�
−
2

3
ðγ2 þ γ1Þ

�
; ðA6Þ

where γ1 ¼ 4=ðqχÞ comes from (A5), and from (3), we
have γ2 ¼ r=χ with r ¼ ð1=s1Þ − 1 and s1 ¼ 1 − q. There
is a saddle point at q ¼ 2=3, which corresponds to the point
where all three final-state fermions have the same momen-
tum, i.e., s1 ¼ s2 ¼ s3 ¼ 1=3 and q ¼ 1 − s1 ¼ s2 þ s3. In
principle, we could change variable from q ¼ ð2=3Þ þffiffiffi
χ

p
δq to δq and expand the integrand in a series in χ.

However, to obtain a large number of terms in the χ
expansion, it seems faster to instead change variables from

q ¼ 24þ 3χW2 þ ffiffiffiffiffi
3χ

p
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 3χW2

p
6ð6þ χW2Þ ðA7Þ

to W, where Wðq ¼ 0Þ ¼ −∞ and Wðq ¼ 1Þ ¼ þ∞,
which is useful because then the exponent becomes exactly
Gaussian,

exp

�
−
2

3
ðγ2 þ γ1Þ

�
¼ exp

�
−
16

3χ
−W2

�
; ðA8Þ

which means we do not have to expand the exponential part
of the integrand in a series in χ. We thus obtain
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T2Nð2Þ ¼ T2

2

exp ð− 16
3χÞ

32

×

�
1þ 31χ

216
−
3871χ2

31104
þ � � � ;

χ

27
−
37χ2

972
þ � � �

�
: ðA9Þ

The probability of trident pair production to leading order
in α is given by P ¼ N0 · T2Nð2Þ, where N0 is the Stokes
vector of the initial electron. The expansion of the unpo-
larized part, i.e., f1; 0g ·Nð2Þ, agrees with what we found in
Ref. [14]. In order to go beyond the leading order in α, we
also need the part that describes the dependence on the spin
of the initial electron, i.e., f0; 1g · Nð2Þ. The leading term in
this part, i.e., the one proportional to χ=27, agrees with
Eq. (24) in Ref. [3] and Eq. (92) in Ref. [39].10 Here, we
have calculated the first ∼100 terms in the χ expansion.
We obtain the χ expansions of Oðα3Þ and higher orders

in α using (10) with the χ expansion of Nð2Þ as input. To
obtain the χ ≪ 1 expansion of these orders, we need the
following integrals. We change variables in (10) from
q ¼ χγ=ð1þ χγÞ to γ ¼ r=χ, where r ¼ ð1=s1Þ − 1 and
s1 ¼ 1 − q. From terms with ML, we have the same
integrals as in Ref. [21], i.e.,

IAiðnÞ ¼
Z

∞

0

dγ γn
Aiðγ2=3Þ
γ1=3

¼ 3
1
2
þn

4π
Γ
�
1

3
þ n

2

�
Γ
�
2

3
þ n

2

�
; ðA10Þ

IAi0 ðnÞ ¼
Z

∞

0

dγγn
Ai0ðγ2=3Þ
γ2=3

¼ −
3
1
2
þn

4π
Γ
�
1

6
þ n

2

�
Γ
�
5

6
þ n

2

�
; ðA11Þ

IAi1ðnÞ ¼
Z

∞

0

dγγnAi1ðγ2=3Þ

¼ 3
1
2
þn

2πð1þ nÞΓ
�
5

6
þ n

2

�
Γ
�
7

6
þ n

2

�
: ðA12Þ

From terms with MC, we have expð−16=½3ð1 − qÞχ�Þ ¼
expð−16=½3χ� − 16γ=3Þ, which leads to the following
integrals,

fJ Ai1 ;J Ai;J Ai0 g

¼
Z

∞

0

dγγne−cγ
�
Ai1ðγ2=3Þ;

Aiðγ2=3Þ
γ1=3

;
Ai0ðγ2=3Þ
γ2=3

�
; ðA13Þ

where c ¼ 16=3. With

�
Ai1ðγ2=3Þ;

Aiðγ2=3Þ
γ1=3

;
Ai0ðγ2=3Þ
γ2=3

�

¼
Z

dτ
2π

�
i
τ
; 1; iτ

�
exp

�
iγ

�
τ þ τ3

3

��
; ðA14Þ

we find

fJ Ai1 ;J Ai;J Ai0 g

¼ n!
Z

dτ
2π

�
i
τ
; 1; iτ

��
c − i

�
τ þ τ3

3

��
−ð1þnÞ

: ðA15Þ

These integrals can now be performed with the residue
theorem. We close the contour in the upper-half complex
plane, where there is one pole at

τp ¼ i

�
ð8þ 3

ffiffiffi
7

p
Þ1=3 þ 1

ð8þ 3
ffiffiffi
7

p Þ1=3
�
: ðA16Þ

To simplify the calculation of the residue for large n, we
first perform partial integration

fJ Ai1 ;J Ai;J Ai0 g

¼
Z

dτ
2π

�
c − i

�
τ þ τ3

3

��
−1
�
∂

∂τ

i
ð1þ τ2Þ

�
n
�
i
τ
; 1; iτ

�

¼ J Aiðn ¼ 0Þ
�
∂

∂τ

i
ð1þ τ2Þ

�
n
�
i
τ
; 1; iτ

�				
τ¼τp

; ðA17Þ

where ½…�n means ½…�½…�…½…� with the derivatives
acting on everything on the right. For n ¼ 0; 1; 2;…, we
have

J Ai1 ¼ f0.0458131; 0.00685688; 0.00211075;…g
J Ai ¼ f0.133495; 0.0138645; 0.00368465;…g

−J Ai0 ¼ f0.388994; 0.0225791; 0.00518418;…g: ðA18Þ

These numbers can actually be expressed as the roots of
third-order polynomials with integer coefficients, e.g.,

−1þ 3J Aið0Þ þ 252J 3
Aið0Þ ¼ 0; ðA19Þ

but it is faster to express them in decimal form. Since
precision is often lost in the resummations we are doing, we
start with many more digits than those presented in (A18).
fJ Ai1 ;J Ai;J Ai0g grow factorially fast as n → ∞. To

obtain this limit, we write
10Our B̂ corresponds to −e2 [39] as explained in Eq. (52) in

Ref. [38].
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fJ Ai1 ;J Ai;J Ai0 g ¼ n!
Z

dτ
2π

�
i
τ
; 1; iτ

�

× exp

�
−ð1þ nÞ ln

�
c− i

�
τþ τ3

3

���

ðA20Þ

and then perform the integral with the saddle-point method;
i.e., we change variable from τ ¼ iþ ð1= ffiffiffi

n
p Þδτ to δτ and

expand the integrand in a series in 1=n. We obtain

fJ Ai1 ;J Ai;−J Ai0g

¼ Γðnþ 1
2
Þ

2
ffiffiffiffiffiffi
6π

p
6n

�
1 −

41

8n
þ 8913

128n2
−
4635593

3072n3
þ � � � ;

1 −
5

8n
þ 345

128n2
−

67085

3072n3
þ � � � ;

1þ 7

8n
−

399

128n2
þ 73927

3072n3
þ � � �

�
: ðA21Þ

Thus, starting with (A9) and repeatedly using (10), we
find, for n ¼ 3 up to some nmax where we decide to stop,

NðnÞ ¼ exp

�
−
16

3χ

��Xmmax

m¼0

aðnÞm χm;
Xmmax

m¼1

bðnÞm χm
�
; ðA22Þ

where the coefficients grow factorially with alternating

sign, aðnÞm ; bðnÞm ∝ ð−1Þmm! for m → ∞. Note that the χ
expansion of NðnÞ is obtained by inserting the unresummed
χ expansion of Nðn−1Þ into (10). We have calculated
nmax ¼ Oð10Þ and mmax ¼ Oð100Þ terms. We first resum
the χ expansion of each order in α, with Borel-Padé as
explained in Appendix B, before we resum the α expansion
with the method in Sec. IV. The results are shown in
Figs. 2–4.
To leading order in χ ≪ 1, we can obtain a compact,

explicit form for the coefficients to all orders in α, i.e.,
without stopping at some finite nmax. We obtain this by
starting with the ansatz

NðnÞ ¼ fan þ χcn; χbng exp
�
−
16

3χ

�
; ðA23Þ

where an and bn are constants. At n ¼ 2, we have

a2 ¼
1

2

1

32
b2 ¼

1

2

1

32 × 27
: ðA24Þ

It turns out that we do not need cn in order to obtain an and
bn. We find

an ¼ −
d
n
an−1 bn ¼ −

1

n
½fan−1 þ dbn−1�; ðA25Þ

where

d ¼ J Ai1ð0Þ þ 2J Ai0 ð0Þ − IAi1ð0Þ − 2IAi0 ð0Þ
≈ 0.711201 ðA26Þ

and

f ¼ IAið1Þ − J Aið1Þ ≈ 0.419148: ðA27Þ

This gives us (14).

APPENDIX B: BOREL RESUMMATION

The χ expansions discussed above are asymptotic and
can be resummed with the Borel-Padé method [59–68].
There are other methods that can be more efficient [69–71],
i.e., which require fewer terms to reach convergence.
However, here we can without problem obtain a large
number of terms in the χ expansions, so the standard Borel-
Padé method is enough. We will give a short summary of
this method here. Another reason for doing so is to compare
and contrast with the resummation method of convergent
series in Sec. IV.
An asymptotic series is given by

ψðxÞ ¼
X∞
n¼0

cnxn; ðB1Þ

where jcnj ∼ n! at large n. To resum this, one can insert

1 ¼ 1

n!

Z
∞

0

dt tne−t ðB2Þ

into the summand (B1),

ψðxÞ ¼
Z

∞

0

dt e−tBψðxtÞ; ðB3Þ

where

BψðxtÞ ¼
X∞
n¼0

cn
n!

ðxtÞn ðB4Þ

is the Borel transform. In the problems we are interested in,
we usually only have access to a finite number of terms, but
Bψ as a finite radius of convergence so the truncated
transform

BψNðtÞ ¼
XN
n¼0

cn
n!

tn ðB5Þ

can be resummed by matching it onto a Padé approximant,

PBψðtÞ ¼
P

I
i¼0 Aiti

1þP
J
j¼1 Bjtj

; ðB6Þ
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where the coefficients Ai and Bj are determined by
demanding that

PBψðtÞ ¼ BψNðtÞ þOðtNþ1Þ: ðB7Þ

One can choose different I and J depending on the
problem, but I ¼ J or I ≈ J are often good choices. The
final resummed result is then given by

ψðxÞ ¼
Z

∞

0

dt e−tPBψðxtÞ: ðB8Þ

APPENDIX C: LARGE T LIMIT

For a constant field, we can obtain the large T results
approximately by substituting the ansatz

NðT; χÞ ≈ TNLðχÞ þ NNLðχÞ ðC1Þ

into (11). The leading order is then determined by

Z
1

0

dq
χ
fMC ·NLðχ½1 − q�Þ þML ·NLðχÞg

¼ −2Nð2ÞðχÞ; ðC2Þ

and the next-to-leading order is determined by

Z
1

0

dq
χ
fMC · NNLðχ½1 − q�Þ þML ·NNLðχÞg

¼ NLðχÞ: ðC3Þ

We solve these equations by expanding in χ,

NL;NL ¼
�Xmmax

m¼0

AL;NL
m χm;

Xmmax

m¼1

BL;NL
m χm

�
e−

16
3χ; ðC4Þ

where Am and Bm are constants to be determined.
Performing the q integral in (C2), as explained in
Appendix A, gives a χ expansion that we then match with
(A9). We find

fAL
0 ; A

L
1 ; A

L
2 ;…g

¼ f0.0439398; 0.0839502;−0.157605;…g ðC5Þ

and

fBL
0 ; B

L
1 ; B

L
2 ;…g

¼ f−0.0242686; 0.0919387;−0.633781;…g: ðC6Þ

We have calculated terms up to mmax ¼ 25. Next, we solve
(C3) in the same way and obtain ANL

m and BNL
m . These

coefficients grow factorially with alternating sign. We
can therefore once again use Borel-Padé to resum the χ

expansions and obtain NLðχÞ and NNLðχÞ. The resulting
approximation (C1) agrees well with the large T limit of the
exact result.
Equation (C1) obviously breaks down for small T, since

N ≈ T2Nð2Þ for T ≪ 1. However, we can, without doing
any extra calculations, significantly improve this approxi-
mation by simply making the replacement aT þ b →
FðT;þ1Þ; FðT;−1Þ or ðFðT;þ1Þ þ FðT;−1ÞÞ=2, where

FðT;ϵÞ¼ aTþb

þ


ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ2bc

p
T−b

�
exp

�
aþ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ2bc

p

b
T

�
:

ðC7Þ

In cases where the square root is complex, ðFðT;þ1Þ þ
FðT;−1ÞÞ=2 is real. The exponential term does not affect
the results at large T since it is exponentially suppressed
compared to aT þ b. But for T ≪ 1, we have, thanks to the
added exponential,

FðTÞ ≈ cT2; ðC8Þ

so by choosing c such that NðapproxÞ ≈ T2Nð2Þ, we have an
approximation that is correct at both T ≫ 1 and T ≪ 1.
Since N has a rather simple behavior, one can expect that
NðapproxÞ will not be far from N even at intermediate values
of T. The results are shown in Figs. 2–4. We can see that in
all cases, using (C7) indeed gives an improvement. From
Fig. 3, we see that for χ ¼ 0.3, the improvement (C7) gives
a good precision even at intermediate values of T where
ðP↓ − P↑Þ=2 changes sign. However, from Fig. 4, we see
that for χ ¼ 5, the improvement (C7) only gives a quali-
tative agreement at intermediate values of T. But this is not
surprising since we should not expect to always be able to
obtain a precise approximation using only the leading order
in T ≪ 1 and the leading and next-to-leading orders in
T ≫ 1. Since one anyway needs to include other diagrams
(fermion loops) and processes to obtain physical results at
such large values of χ, and since we anyway can obtain
good precision up to large T by resumming only the T ≪ 1
expansion coefficients, we leave it to future studies to find
ways to obtain higher orders in T ≫ 1 or to combine the
leading and next-to-leading order in T ≫ 1 with more
terms from the T ≪ 1 expansion.

APPENDIX D: CIRCULARLY POLARIZED
MONOCHROMATIC FIELD

To illustrate our methods, we have used as examples a
constant field and a Sauter pulse, both linearly polarized.
We have seen that they both predict a similar change of sign
for P↑ − P↓ at T < 1 but lead to very different behavior at
T ≫ 1. Note that we have treated both fields with a locally-
constant-field (LCF) approach, so that is not the reason for
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the difference. The reason is rather the shape of the field: a
Sauter pulse versus a flat top. As the constant field might
seem less relevant from an experimental point of view, one
may therefore wonder how relevant that example is for
large T, beyond illustrating the mathematics. Here, we will
show that one can expect similar behavior for a circularly
polarized monochromatic field, which we expect to be a
good first approximation for a circularly polarized field
with a long, essentially flat envelope. As long as the field is
sufficiently long (contains enough oscillations), we do not
have to assume that a0 is large, because the incoherent
products of first-order Mueller matrices give the dominant
contribution for either large a0 or a long pulse. However,
the Mueller matrices that we have focused on so far in
this paper have been the ones for the LCF regime, which
work for large a0. Now, we will instead use the mono-
chromatic-field approximations11 of the Mueller matrices
[38]. In the LCF case, the Mueller matrices are expressed in
terms of Airy functions. Here, the most nontrivial parts can
instead be expressed in terms of three integrals, J 0, J 1,
and J 2, which are given in Appendix A in Ref. [38].
Although they can be expressed as sums of products of
Bessel functions, for our present purposes, it is more
convenient to use their integral representations. For J 0,
we have

J 0 ¼
i
2π

Z
dθ
θ
exp

�
ir
2b0

Θ
�
; ðD1Þ

where the integration contour is one that is equivalent to
replacing θ → θ þ iϵ (ϵ > 0) and then integrating along the
real axis, r and b0 denote the same quantities as in the
LCF case (e.g., for the pair-production step, we have
r ¼ ð1=s2Þ þ ð1=s3Þ and b0 ¼ kl), and the “effective mass”
(M2) part is given in this approximation by

Θ ¼ θM2 ¼ θ

�
1þ a20

�
1 − sinc2

θ

2

��
: ðD2Þ

The integrands forJ 1 andJ 2 have the same exponential but
different preexponentials; see Eqs. (A2) and (A3) in
Ref. [38]. These representations are convenient because in
the low-energy limit, b0 ≪ 1, we can perform the integrals
using the saddle-point approximation. The saddle-point
equation

dΘ
dθ

¼ 0 ðD3Þ

cannot be solved analytically but is trivial so solve numeri-
cally. In the LCF case, a0 ≫ 1, we would rescale θ → θ̂=a0

and expand the integrand in 1=a0 ≪ 1 with χ ¼ a0b0 kept
constant. For the exponent, this gives

a0Θ → θ̂

�
1þ θ̂2

12

�
; ðD4Þ

which has a saddle point at θ̂ ¼ 2i (and another one at −2i,
which does not contribute). So, for large a0, the solution to
(D3) should approach 2i=a0. As shown in Fig. 7, the
convergence is quite fast.
Just as in the LCF case, here, too, the Stokes vectors

only have two relevant components. However, the special
spin/polarization states are different. In the LCF case,Nγ ¼
f1;�1g correspond to photon polarization parallel to the
electric and magnetic field components, and for fermions,
N ¼ f1;�1g correspond to spin parallel or antiparallel to
the magnetic field. Here, Nγ ¼ f1;�1g instead corre-
sponds to circular polarization, and N ¼ f1;�1g corre-
sponds to spin along the laser propagation direction.
We start again with the latest vertex. By summing over

the spin of the final-state particles, we find in general that
we do not need to consider photon emissions and the
fermion-mass loops on the fermion lines after vertex A and
B in Fig. 1. So, the last vertex is again B. We again need a
Mueller vector rather than a Mueller matrix, which takes
into account the polarization of the intermediate photon.
The relevant expressions can be found in Eqs. (31), (32),
and (35) in Ref. [38]. We have two integrals to perform,
over θ and the longitudinal momentum of the positron, s3.
We perform both with the saddle-point method. We have a
saddle point at s3 ¼ 1=2, where the positron and electron
share the momentum equally.
Consider the fermion loops between vertex A and B in

Fig. 1. They can be resummed as in Eq. (161) in Ref. [38].
To leading exponential order (i.e., neglecting production of
more than one pair), only the terms that lead to a rotation of
the photon Stokes vector (i.e., vacuum birefringence)
remain, but a Stokes vector for a purely circularly polarized

FIG. 7. The saddle point for the θ integral in (D1).

11We could use them to treat the field as locally monochro-
matic, but here we will for simplicity consider a constant, flat
envelope.
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photon is not affected. So, these loops do not contribute
here, and hence the next step after B is A. For this, we need
the parts of the Mueller matrix for Compton scattering
which take into account the polarization of the emitted
photon and the spin of the electron before emission. The
relevant expressions are given by Eqs. (22), (23), (26), and
(28) in Ref. [38]. We again have two integrals. The θ
integral is the same as for the B vertex. The integral
over the longitudinal momentum of the emitted photon
has a saddle point at q ¼ 2=3, which means all three final-
state fermions have the same longitudinal momentum
(1 ¼ s1 þ s2 þ s3 ¼ 3s1, so q ¼ 1 − s1 ¼ 2=3).
For the photon emission and loops up to vertex C, we

find a similar recursive formula as in (10),

NðnÞ ¼
Z

1

0

dq
nb0

fMC ·Nðn−1Þð½1−q�b0ÞþML ·Nðn−1Þðb0Þg:

ðD5Þ

In this case, we use T ¼ Δσα without a factor of a0. In the
limit of large a0, it would again be natural to use T ¼
Δσa0α instead, but that is not a natural expansion param-
eter for a0 < 1, and here we can consider both large and
small12 a0. Here, we consider for simplicity only hPi and
the leading order in b0 ≪ 1, so we only need the parts of
MC and ML that describe unpolarized particles.13 For MC,
this is given by Eq. (23) in Ref. [38], and for ML, we have
the same but with opposite sign. Similar to (12), we have

f1; 0g · NðnÞ ¼ an exp

�
−
Aða0Þ
b0

�
; ðD6Þ

but with different an of course. In these steps, the θ and q
integrals cannot be performed with the saddle-point
method. We can, though, still calculate the q integral
analytically, e.g., by changing variable from q to
γ ¼ r=b0, where r ¼ ð1=s1Þ − 1 (same as before) and then
expanding to leading order in b0 ≪ 1. Then, we see that the
dominant contribution in theses steps comes from soft
photons, q ¼ Oðb0Þ, in contrast to vertex A where the
photon takes 2=3 of the electron momentum. The recursive
formula simplifies to

an ¼ −
dc
n
an−1; ðD7Þ

which is the same equation as for the LCF case (A25),
except that the starting point a2 and the coefficient dc are
now nontrivial functions of a0. We find

dcða0Þ¼−
i
2π

Z
dθ
θ

�
1þ2a20 sin

2
θ

2

�

×
Z

∞

0

dγð1−e−AγÞexp
�
iΘγ
2

�

¼ 1

π

Z
dθ
θ

�
1þ2a20 sin

2
θ

2

��
1

Θ
−

1

Θþ2iA

�
: ðD8Þ

The remaining θ integral has a complicated dependence on
a0 and cannot be approximated unless we consider a0 ≫ 1

FIG. 8. d as in (D8) and the LCF result (A26).

FIG. 9. The exponent and prefactor in (D9).

12The incoherent-product approximation breaks down in the
limit where a0 becomes small and Δσ is fixed, but if we
compensate by making Δσ larger, then we can consider small a0.

13Note, though, that we still have to take the polarization of the
intermediate photon into account, even if we only consider an
unpolarized initial electron.
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or a0 ≪ 1, but it can be performed numerically, e.g., with a
contour parallel and just above the real axis. Thus, in the
low-energy limit, we find

hPi ¼ pcða0ÞT2F½dcða0ÞT� exp
�
−
Aða0Þ
b0

�
; ðD9Þ

where F is the same function as in (17) for the LCF case. dc
andA are plotted in Figs. 8 and 9, which show that for large
a0 we recover the LCF results.
The a0 ≫ 1 limit of pcða0Þ in (D9) also agrees with what

one can expect from an LCF approach. However, this is not
simply the factor of 1=2 × 32 in (15). To get the correct
LCF approximation, we need to take into account the fact
that the field rotates and therefore does not in general point
in the same direction in vertex A and B in Fig. 1. To obtain
the LCF version of pc, it is enough to consider Oðα2Þ,
which is given by Eq. (65) in Ref. [38]. What is important
to emphasize here is that there are two σ integrals, σ1 and σ2
for vertex A and B, and the integrand has two terms: one is
the product of the average “rates,” and the second is related
to the polarization of the intermediate photon. The second
term oscillates as cos½2ðσ2 − σ1Þ� for a circularly polarized
field and therefore averages out for a long pulse, while for a
constant field with linear polarization, it is on the same
order of magnitude as the first term. In the low-energy limit

that we consider here we can perform the θ and longitudinal
momentum integrals with the saddle-point method. For the
constant field, we find

f1; 0g · Nð2Þ ¼ 1

384
ð7 − 1Þ ¼ 1

2 × 32
; ðD10Þ

while for a circularly polarized field, we have just the first
term

f1; 0g ·Nð2Þ ¼ 7

384
: ðD11Þ

In Fig. 9, we see that, by taking this into account, we find
agreement also for pc in the LCF limit.
We plan to consider the spin dependence in detail

elsewhere, e.g., P↑ − P↓. Here, we just note that, for a
circular field, it is natural to consider ΔPðkkÞ¼P↑k−P↓k

for an initial electron that has spin up or down the laser
propagation direction (k). There is no limit where one
should expect this to be equal to (16), which corresponds
to spin up or down the magnetic field direction,
ΔPðkBÞ ¼ P↑B − P↓B; i.e., ΔPðkkÞ and ΔPðkBÞ are
simply two different quantities. ΔPðkBÞ in a monochro-
matic field just averages to zero, while ΔPðkkÞ is negli-
gible compared to hPi for large a0.
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