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We develop a novel Monte Carlo parton branching algorithm based on the Gribov-Levin-Ryskin (GLR)
equation. The formulations of both forward evolution and backward evolution for the GLR equation are
presented. The results from the Monte Carlo implementation of the GLR equation are in full agreement
with its numerical solutions. Our work thus paves the way for developing an event generator that embodies
the saturation effect.
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I. INTRODUCTION

The Monte Carlo event generator is an indispensable
tool for describing the exclusive hadronic final states of
high energy scattering processes involving multiparticle
production. One of the essential elements of modern
general-purpose event generators is the simulation of a
succession of emissions from the incoming and outgoing
partons or the colored dipoles [1–12]. The majority of
implementations of the parton branching process are built
on the soft and collinear approximation, which allows us to
effectively resum the Dokshitzer-Gribov-Levin-Altarelli-
Parisi (DGLAP)-like logarithm to all orders by an iteration
procedure.
Several alternative approaches, like SMALLX [13,14],

CASCADE [2,3,15], and High Energy Jets exclusive par-
tonic Monte Carlo (HEJ) [16–18], have been developed to
include the contribution of semihard emissions which give
rise to the Balitsky-Fadin-Kuraev-Lipatov (BFKL)-type
[19,20] large logarithm in the small x region. These modern
algorithms are quite sophisticated implementations of all-
order perturbative QCD. In the formulation of CASCADE,
the semi-hard gluon emissions are generated according to
the Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution
equation [21–24], while the resummation in HEJ is achieved
by directly computing the hard matrix elements in the limit
of large invariant mass between all particles to all orders.
In the small x region of a large nucleus target where the

gluon density is extremely high, the nonlinear process of

gluon-gluon recombination that limits the density growth
becomes as important as the gluon branching process.
A new semihard scale, the so-called saturation scale Qs,
dynamically emerges at small x. At this scale, the density
of gluons is expected to saturate as gluon splitting and
recombination reach a balance. To account for this non-
linear effect, one has to go beyond the BFKL type evolution
and simulate both the gluon splitting and gluon recombi-
nation process simultaneously. The objective of this study
is to develop a Monte Carlo branching algorithm incorpo-
rating the saturation effect, which can describe the fully
exclusive hadronic final states in eA collisions at the
Electron Ion Collider (EIC) [25,26].
There are several nonlinear extensions of the BFKL

equation, among which the most general one is the
Jalilian-Marian-Iancu-McLerran-Weigert–Leonidov–Kovner
(JIMWLK) [27–30] evolution equation. Owing to the
JIMWLK’s complexity, it is a formidable task to implement
it in a parton shower generator. On the other hand, what has
been most widely used in phenomenology studies is the
JIMWLK’s mean field approximation version known as
the Balitsky-Kovchegov (BK) [31,32] equation. However,
the BK equation does not form a good basis for a parton
shower generator either, since the Fourier transform of the
dipole amplitude entering the BK equation in the momentum
space lacks a clear probability interpretation.Wewill elucidate
this point in more details in the next section. It turns out that
the GLR equation [33], which contains a nonlinear damping
term resulting from the double BFKL ladder mergers, is well
suited to computer implementation. As compared to the
BK equation, all higher-order (3 → 1, 4 → 1, etc.) multi-
ple-ladder recombination is neglected in the GLR equation.
However, the GLR equation remains a good approximation at
intermediate energywhere the 2 → 1 gluon fusion dominates,
and thus should be sufficient for simulating the events in eA
collisions at the EIC energy.
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The rest of the paper is organized as follows. In Sec. II,
we first derive the folded version of the GLR equation
from its standard form. The folded GLR equation is the
starting point for realizing Monte Carlo implementation.
In Sec. III, we present the formulation of the forward
evolution for the GLR equation starting with the discus-
sion about the dilute limit case, i.e., the BFKL equation. It
is shown that the k⊥ distribution obtained in the forward
evolution approach is in full agreement with the numerical
solutions of the BFKL equation and the GLR equation
respectively. In Sec. IV, we discuss the algorithm for
backward evolution that is necessary for any practical
phenomenology applications. We confirm that the parton
cascade generated in the backward evolution approach is
identical to that obtained from the forward evolution. The
paper is summarized in Sec. V.

II. THE FOLDED AND THE UNFOLDED
GLR EQUATION

Before discussing the Monte Carlo implementation of
the GLR equation, let us first explain why it is difficult
to build a BK-based parton shower generator. The BK
equation describes the rapidity evolution of the two-point
correlation function which is also referred to as the dipole
scattering amplitude. The BK equation in momentum space
is most conveniently expressed in terms of a Fourier
transform of the dipole amplitude multiplying with the
factor 1=r2⊥,

N ðη; k⊥Þ ¼
Z

d2r⊥
2π

e−ik⊥·r⊥

r2⊥

�
1 −

1

Nc
hU†ð0ÞUðr⊥Þi

�
;

ð1Þ

where Uðr⊥Þ ¼ P exp ½ig R dz−Aþðz−; r⊥Þ� is a lightlike
Wilson line in the fundamental representation. The rapidity
η is defined as η ¼ ln ðx0=xÞwith x0 ¼ 0.01. In terms ofN ,
the BK equation reads [34,35],

∂N ðη; k⊥Þ
∂η

¼ ᾱs
π

�Z
d2l⊥
l2⊥

N ðη; l⊥ þ k⊥Þ

−
Z

k⊥

0

d2l⊥
l2⊥

N ðη; k⊥Þ
�
− ᾱsN 2ðη; k⊥Þ; ð2Þ

with ᾱs ¼ αsNc=π. The first two linear terms in Eq. (2),
which coincide with those in the BFKL kernel, correspond
to contributions from the real and virtual gluon emissions,
respectively. Here, we present the virtual correction in a
form [36,37] that is different from the conventional
expression. The equivalence between the two forms is
shown in Appendix A. The last term is the nonlinear term
arising from the resummation of fan diagrams. One can
solve the BK equation and obtain the distribution N at

arbitrary rapidity η using the algorithm described below.
However, there exists no clear probability interpretation for
the distribution N . The gluon branching constructed with
N from Monte Carlo simulation thus does not correspond
to a real parton cascade. Furthermore, from the point of view
of a sensible description of exclusive quantities, it is not only
the evolved gluon distribution that matters. In deriving the
BK equation, all the radiated gluons have been integrated
out. In this way, all multiple-point correlation functions,
which show up in the intermediate steps of the derivation,
eventually collapse into the two-point function. On the other
hand, one has to explicitly keep the four momenta of all
radiated gluons in a parton shower generator. If the emitted
gluons were left unintegrated, the multiple-point correlation
functions [38–43] beside the dipole one will enter the
evolution equation. One should use the JIMWLK equation
to simulate the parton branching process instead. Therefore,
we conclude that the BK equation does not form a good basis
for a parton shower generator.
Now let us turn to discuss the GLR equation. The GLR

evolution equation introduced in Ref. [33] was one of the
first few attempts [33,44] to tackle the BFKL unitarity
problem by including a quadratic damping term resulting
from the 2 → 1 gluon fusion process. It is directly expressed
in terms of the unintegrated gluon distribution [33,45],

∂Gðη; k⊥Þ
∂η

¼ ᾱs
π

�Z
d2l⊥
l2⊥

Gðη; k⊥ þ l⊥Þ

−
Z

k⊥

0

d2l⊥
l2⊥

Gðη; k⊥Þ
�

− gTPV
α2s

S⊥ð8πÞ2
G2ðη; k⊥Þ; ð3Þ

where S⊥ denotes the transverse area of the target. gTPV is
an effective coupling constant resulting from the local
approximation of the triple pomeron vertex [45,46]. By
requiring the GLR equation and the BK equation to
coincide with each other in the dilute limit, we fix this
effective coupling constant to be gTPV ¼ 8ð2πÞ4. Different
values of gTPV could be derived depending on how one
treats the triple pomeron vertex. Gðη; k⊥Þ is the transverse
momentum dependent (TMD) gluon distribution describ-
ing the gluon number density for a given k⊥ and η. There
are two different types of gluon TMDs widely used in
phenomenological studies [40,47]; the dipole gluon dis-
tribution and the Weizsacker-Williams (WW) gluon
distribution. Their small-x evolutions are governed by
the BK equation and the Dominguez-Mueller-Munier-
Xiao (DMMX) equation [48], respectively. In the mod-
erate small x region where the triple-pomeron-vertice
contribution dominates over other higher-order effects,
the evolution of both gluon TMDs is expected to be
described by the GLR equation approximately.
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To facilitate the following algebraic manipulations, we
cast Eq. (3) into the following form with the replacement

Nðη; k⊥Þ ¼ 2αsπ
3

NcS⊥ Gðη; k⊥Þ,

∂Nðη; k⊥Þ
∂η

¼ ᾱs
π

�Z
d2l⊥
l2⊥

Nðη; k⊥ þ l⊥Þ

−
Z

k⊥

0

d2l⊥
l2⊥

Nðη; k⊥Þ
�
− ᾱsN2ðη; k⊥Þ: ð4Þ

By making the identification N ðη; k⊥Þ ¼ Nðη; k⊥Þ [34],
the above equation is the same as the BK equation
in Eq. (2). However, we emphasize that this is nothing
but merely a coincidence. Though the identification
N ðη; k⊥Þ ¼ Nðη; k⊥Þ can be shown to be valid in the
dilute region, there is no exact relation between them in
the region where multiple rescattering and quantum evo-
lution are important.
Following the common procedure of implementing the

DGLAP-based Monte Carlo algorithm, we have to con-
struct a function describing the probability of evolving
from ηi to ηiþ1 without resolvable branching and gluon
fusion. To do so, we first separate the real correction into
two terms as follows:

Z
d2l⊥
l2⊥

Nðη; k⊥ þ l⊥Þ

¼
Z
μ

d2l⊥
l2⊥

Nðη; k⊥ þ l⊥Þ þ
Z

μ

0

d2l⊥
l2⊥

Nðη; k⊥ þ l⊥Þ

≈
Z
μ

d2l⊥
l2⊥

Nðη; k⊥ þ l⊥Þ þ
Z

μ

0

d2l⊥
l2⊥

Nðη; k⊥Þ; ð5Þ

where the infrared cutoff μ is a matter of choice of what we
classify as a resolvable emission. Branchings in the regime
of l⊥ < μ are classified as unresolvable since they involve
the emission of an undetectable soft gluon. The emissions
beyond this region are classified as resolvable branchings.
The next step is to combine the contribution from the
unresolvable real emission with that from the virtual
diagrams. We obtain

∂Nðη; k⊥Þ
∂η

¼ ᾱs
π

Z
μ

d2l⊥
l2⊥

Nðη; l⊥ þ k⊥Þ

− ᾱs ln
k2⊥
μ2

Nðη; k⊥Þ − ᾱsN2ðη; k⊥Þ: ð6Þ

By introducing an auxiliary function Φðη; k⊥Þ, Nðx; k⊥Þ
can be expressed as

Nðη; k⊥Þ ¼ Φðη; k⊥ÞΔðη; k⊥Þ; ð7Þ

where

Δðη; k⊥Þ ¼ exp

�
−ᾱs

Z
η

η0

dη0
�
ln
k2⊥
μ2

þ Nðη0; k⊥Þ
��

: ð8Þ

According to Eq. (6), the function Φðη; k⊥Þ satisfies the
following equation

Δðη; k⊥Þ
∂Φðη; k⊥Þ

∂η
¼ ᾱs

π

Z
μ

d2l⊥
l2⊥

Nðη; k⊥ þ l⊥Þ: ð9Þ

The above equation can be re-expressed in terms of
Nðη; k⊥Þ as

∂

∂η

Nðη; k⊥Þ
Δðη; k⊥Þ

¼ ᾱs
π

Z
μ

d2l⊥
l2⊥

Nðη; l⊥ þ k⊥Þ
Δðη; k⊥Þ

; ð10Þ

which is referred to as the folded GLR equation, while
Eqs. (6) or (3) is the unfolded version. In the folded GLR
equation, the unresolvable real emissions and the virtual
correction have been manifestly resummed to all orders.
Δðη; k⊥Þ represents the probability of evolving from η0 to η
without a resolvable branching or gluon fusion. It reduces
to the non-Sudakov form factor [36,37] in the small x limit
with the saturation term being neglected. Equation (10) can
be integrated over to give an integral equation for Nðη; k⊥Þ.
It reads

Nðη; k⊥Þ ¼ Nðη0; k⊥ÞΔðη; k⊥Þ

þ ᾱs
π

Z
η

η0

dη0
Δðη; k⊥Þ
Δðη0; k⊥Þ

Z
μ

d2l⊥
l2⊥

Nðη0; l⊥ þ k⊥Þ;

ð11Þ

where Nðη0; k⊥Þ is the gluon distribution at the initial
rapidity.
Small x evolution equations resum the leading logarith-

mic contributions in terms of lnð1=xÞ. However, from
both theoretical and phenomenological points of view,
the necessity of resuming the next-to-leading logarithmic
contributions has long been recognized. There are several
sources that give rise to the subleading logarithmic con-
tributions, such as the running coupling effect [49–54],
kinematic constraint [36,55–58], the collinear improvement
of the BK equation [59–64], and the Sudakov suppressed
BK kernel [65]. Though these corrections are formally
subleading power contributions, they often have a signifi-
cant impact on the observables of interest at small x. We
only discuss the Monte Carlo implementation of the
running coupling effect in this work and leave the imple-
mentation of other effects for future works. It is quite
straightforward to include the running coupling effect for
the case of parent dipole prescription, which we will adopt
in this study. It is not trivial to introduce kinematic
constraint in the GLR equation. Following the arguments
made in Refs. [36,57], the transverse momentum square of
the radiated gluon l2⊥ must be smaller than 1−z

z k2⊥ where k⊥
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and z are transverse momentum and longitudinal momen-
tum fraction carried by the daughter gluon respectively. The
inclusion of such kinematic constraint leads to a modified
GLR equation, which is given by

∂Nðη; k⊥Þ
∂η

¼ ᾱs
π

Z
d2l⊥
l2⊥

N

�
ηþ ln

k2⊥
k2⊥ þ l2⊥

; l⊥ þ k⊥
�

−
ᾱs
π

Z
k⊥

0

d2l⊥
l2⊥

Nðη; k⊥Þ − ᾱsN2ðη; k⊥Þ:

ð12Þ
Converting the above equation to the folded form of the
GLR equation, we obtain

∂

∂η

Nðx; k⊥Þ
Δðη; k⊥Þ

¼ ᾱs
π

Z
μ

d2l⊥
l2⊥

Nðηþ ln k2⊥
k2⊥þl2⊥

; l⊥ þ k⊥Þ
Δðη; k⊥Þ

:

ð13Þ
The implementation of the kinematic constraint in the
parton branching algorithm turns out to be quite nontrivial.
We will address this in a separate publication. In this
work, we focus on developing the Monte Carlo algorithms
based on the folded evolution equations presented in
Eqs. (10) and (11).

III. FORWARD EVOLUTION

To demonstrate the formulation of forward evolution for
the GLR equation, we start with the simplest case, i.e., the
Monte Carlo implementation of the fixed coupling BFKL
evolution. All essential elements of the algorithm will
be discussed in this simplest example. The first step is to
sample the k⊥ distribution at the initial rapidity η0 ¼ 0
using the Mclerran-Venugopalan (MV) model [66,67]
result as the input. Since we aim at building an event
generator for eA collisions, it is natural to use the WW type
gluon distribution as the initial condition, which is given by

Nðη¼0;k⊥Þ

¼
Z

d2r⊥
2π

e−ik⊥·r⊥
1

r2⊥

�
1−exp

�
−
1

4
Q2

s0r
2⊥ ln

�
eþ 1

Λr⊥

���
;

ð14Þ

with Q2
s0 ¼ 1 GeV2 and Λ ¼ 0.24 GeV. To efficiently

generate an event with this initial condition, we use a veto
algorithm (see Appendix B for more details). Since the
evolution variable is the rapidity, the basic problem one has
to solve is that given (ηi, k⊥;i) after some steps of the
evolution, or given the initial condition, generating the
values (ηiþ1, k⊥;iþ1) in the next step. The Monte Carlo
implementation is laid out in the following:

(i) The first quantity to be generated by the algorithm is
the value of ηiþ1. One can read the probability of

evolving from ηi to ηiþ1 without a resolvable
branching from the folded BFKL equation. It is
given by Δðηi; η0; k⊥;iÞ=Δðηiþ1; η0; k⊥;iÞ. Thus ηiþ1

can be generated with the correct probability dis-
tribution by solving the following equation,

R1 ¼ exp

�
−ᾱs

Z
ηiþ1

ηi

dη0 ln
k2⊥;i

μ2

�
; ð15Þ

with the saturation effect being neglected in the
BFKL case. Throughout this paper, we use Ri to
represent a random number distributed uniformly in
the interval [0, 1].

(ii) The second step is to generate the value of radiated
gluon’s transverse momentum with a probability

distribution proportional to ᾱs
R d2l⊥

l2⊥
, which is the

real part of the BFKL kernel. It can be achieved by
solving the following equation for jl⊥j,

R2

Z
P⊥

μ

d2l0⊥
l02⊥

¼
Z jl⊥j

μ

d2l0⊥
l02⊥

; ð16Þ

where P⊥ is the UV cutoff for the emitted gluon’s
transverse momentum.

(iii) The azimuthal angle of l⊥ is sampled according to

2πR3 ¼ ϕl: ð17Þ

(iv) The minus component of the radiated gluon’s
momentum is obtained using the on shell condition.
The four-momentum of the next exchanged gluon is
reconstructed according to kiþ1 ¼ ki − l.

(v) The generated cascade needs to be reweighted. The
reweighting factor associated with this branching is
given by

Wðk⊥;iÞ ¼
lnðP2⊥=μ2Þ
lnðk2⊥;i=μ

2Þ ; ð18Þ

such that the number of exchanged gluons increases
after each splitting. This is because of the mismatch
between the phase spaces of the integrations for
real and virtual corrections. For a given rapidity
interval Δη, the number of gluons which vanish
due to the virtual correction is proportional to

Δηᾱs
R k⊥;i
μ

dl2⊥
l2⊥
exp ½−ᾱsðηi − ηiþ1Þ ln k2⊥;i

μ2
�, while the

number of gluons produced via the real correction

is proportional to Δηᾱs
R
P⊥
μ

d2l⊥
l2⊥

exp½−ᾱsðηi−ηiþ1Þ×
ln

k2⊥;i

μ2
� in the same rapidity interval. The reweighting

function is given by the ratio of these two
contributions.
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We repeat the procedure outlined above until ηiþ1

reaches the maximum cutoff value ηmax. Once the whole
cascade is generated, we are ready to reconstruct the gluon
k⊥ distribution at arbitrary rapidity, and compare it with
the numerical solutions of BFKL equation. For a given η,
we select the event with two adjacent splittings occurring
at ηi and ηiþ1 that satisfies the condition ηi < η < ηiþ1.
The event associated with the weight given above is
recorded. The gluon distribution Nðη; k⊥Þ is simply the
sum of all the reweighted events. Notice that the final
reweighting factor of this particular event is the product of
all those reweighting factors associated with previous
branchings that happen before ηi. The reweighting factor
associated with the branching at ηi is not included. The
gluon distributions constructed from the parton cascade
are presented in the left panel of Fig. 1, and compared with
the numerical solutions of the standard BFKL equation.
As one can see, a full agreement between two approaches
has been reached.
The extension to the running coupling case is straight-

forward in the so-called parent dipole prescription, where
the scale is chosen to be

αsðk2⊥;iÞ ¼
1

β0 ln ½ðk2⊥;i þ μ20Þ=Λ2
QCD�

; ð19Þ

with β0¼ð33−2NfÞ=ð12πÞ, Nf¼3, Λ2
QCD¼0.0578GeV2

and μ20 ¼ 0.942 GeV2. Here, μ0 is introduced to avoid
the Landau pole. Therefore, the coupling constant is
frozen to αs ≈ 0.5 in the infrared region. One first needs
to replace the fixed coupling constant αs in Eq. (15) with
αsðk2⊥;iÞ. Then, the reweighting factor is correspondingly
modified as

Wrcðk⊥;i; k⊥;iþ1Þ ¼
αsðk2⊥;iþ1Þ lnðP2⊥=μ2Þ
αsðk2⊥;iÞ lnðk2⊥;i=μ

2Þ : ð20Þ

With these recipes, parton cascade can be generated
following the procedure described above. As shown in
the right panel of Fig. 1, the gluon k⊥ distribution obtained
from the Monte Carlo approach matches the numerical
results perfectly in the running coupling case as well.
Now we generalize this algorithm to the saturation case,

i.e., the formulation of forward evolution for the GLR
equation. First, for a given ηi from the previous evolution
step or the initial condition, the next ηiþ1 can be generated
by solving the following equation with the non-Sudakov
factor incorporating the saturation term,

R ¼ exp

�
−ᾱs

Z
ηiþ1

ηi

dη0
�
ln
k2⊥;i

μ2
þ Nðη0; k⊥;iÞ

��
; ð21Þ

where the numerical solutions of the BK equation are used
as the input for the gluon distribution Nðη0; k⊥;iÞ. In the
practical simulation, we again employ a veto algorithm to
speed up the generation of ηiþ1 as described in Appendix B.
The reweighting function also needs to be modified
accordingly for the saturation case. It is then given by

Wðηi; ηiþ1; k⊥;iÞ ¼
R
ηiþ1
ηi

dη lnðP2⊥=μ2ÞR
ηiþ1
ηi

dη½lnðk2⊥;i=μ
2Þ þ Nðη; k⊥;iÞ�

:

ð22Þ

The rest recipes for the Monte Carlo implementation of
both the fixed coupling and the running coupling GLR
equation are the same as those for the BFKL equation.
The gluon k⊥ distributions at different rapidities recon-

structed from the parton shower are presented in Fig. 2,
and are compared to the numerical solutions of the GLR
equation. A full agreement between two approaches has
been reached for both the fixed coupling (left panel) and
running coupling (right panel) cases.

FIG. 1. Comparison of the gluon k⊥ distributions constructed from the forward evolution approach with the numerical solutions of the
BFKL equation at different rapidities. The left and right plots show the results for the standard BFKL evolution in the fixed coupling
case and the running coupling cases respectively. We have explicitly checked that those results are independent of the infrared cutoff μ as
long as it is sufficiently small.
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IV. BACKWARD EVOLUTION

The forward evolution procedure developed in the pre-
vious section is a direct way of solving the small x evolution
equation. However, the forward evolution is rather time
consuming since the kinematics constructed from the initial
state cascade do not have the right values that allow the
generation of a hard scattering process most of the time.
Many configurations produced by the forward evolution
have to be rejected, leading to low efficiency. A more
efficient procedure for generating the initial state parton
shower is the backward evolution scheme [68–70], which
has been utilized in standard Monte Carlo programs. In a
backward evolution approach, the hard scattering process is
first created with the initial parton momentum distributed
according to the parton distribution functions. Then, the
initial state cascade is generated by going backward from the
hard scattering process towards the beam particles.
The first step in the formulation of backward evolution is

to sample k⊥;iþ1 at the rapidity ηiþ1 that is fixed according
to the kinematics of the generated hard scattering process.

The value of k⊥;iþ1 is randomly chosen according to the
probability distribution Nðηiþ1; k⊥;iþ1Þ which has to be
determined beforehand by numerically solving the GLR
equation. The next step is to generate ηi using a modified
non-Sudakov form factor.
We now derive the non-Sudakov form factor associated

with backward evolution for the GLR equation by closely
following the DGLAP case (see, for example [71]). Let us
start by defining dF as the fraction of gluons at ðηiþ1;
k⊥;iþ1Þ that come from branching between ðηiþ1; ηiÞ.
Then, the fraction of those that do not branch between
ηiþ1 and ηi is

Πðηiþ1; ηi; k⊥;iþ1Þ ¼ 1 −
Z

ηiþ1

ηi

dF: ð23Þ

According to integral form of the folded GLR equation
in Eq. (11), the number of gluons produced from the
branching between ðηiþ1; ηiÞ is given by

Nðηiþ1; k⊥;iþ1ÞdF ¼ dηi
Δðηiþ1; k⊥;iþ1Þ
Δðηi; k⊥;iþ1Þ

ᾱs
π

Z
μ

d2l⊥
l2⊥

Nðηi; k⊥;iþ1 þ l⊥Þ

¼ dηi
∂

∂ηi

�
Δðηiþ1; k⊥;iþ1ÞNðηi; k⊥;iþ1Þ

Δðηi; k⊥;iþ1Þ
�
; ð24Þ

where we have employed the differential form of the folded
GLR equation in Eq. (10) to get the result in the second
line. Performing the integration in the above equation, one
obtains,

Πðηiþ1; ηi; k⊥;iþ1Þ ¼
Δðηiþ1; k⊥;iþ1ÞNðηi; k⊥;iþ1Þ
Δðηi; k⊥;iþ1ÞNðηiþ1; k⊥;iþ1Þ

; ð25Þ

which is the backward evolution form factor describing the
probability for no radiation in the rapidity region ½ηiþ1; ηi�.

This form factor can be cast into a different form. It is
convenient to re-express the Eq. (11) as

d ln
Nðη; k⊥;iþ1Þ
Δðη; k⊥;iþ1Þ

¼ dη
ᾱs
π

Z
μ

d2l⊥
l2⊥

Nðη; k⊥;iþ1 þ l⊥Þ
Nðη; k⊥;iþ1Þ

: ð26Þ

Carrying out the integration of η in the range of ½ηi; ηiþ1�,
we obtain,

FIG. 2. Comparison of the gluon k⊥ distributions obtained from the forward evolution approach with the numerical solutions of
the GLR equation at different rapidities. The left and right plots show the results for the standard GLR evolution in the fixed coupling
case and the running coupling case respectively.
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Δðηiþ1; k⊥;iþ1ÞNðηi; k⊥;iþ1Þ
Δðηi; k⊥;iþ1ÞNðηiþ1; k⊥;iþ1Þ

¼ exp

�
−
ᾱs
π

Z
ηiþ1

ηi

dη
Z
μ

d2l⊥
l2⊥

Nðη; k⊥;iþ1 þ l⊥Þ
Nðη; k⊥;iþ1Þ

�
; ð27Þ

where the new form of the backward evolution form factor
is given on the right side of the above equation. Unlike the
case for the forward evolution which may be used as a way
of solving the GLR equation, the evolved gluon distribution
is used as the input to guide the evolution path toward the
initial condition at η0. The primary aim is to generate the
correct distribution of gluons emitted in the initial state
cascade.
Both non-Sudakov forms can be equally well-used to

generate ηi for a given ηiþ1 by solving the following
equation:

Πðηiþ1; ηi; k⊥;iþ1Þ ¼ R1: ð28Þ

The transverse momentum of the radiated gluon sampled
in the backward evolution approach is different from that
in the forward approach. One should generate l⊥ by solving
the following equation,

ᾱs
π

Z
l⊥

μ

d2l0⊥
l02⊥

Nðηi; k⊥;iþ1 þ l0⊥Þ

¼ R2

ᾱs
π

Z
P⊥

μ

d2l0⊥
l02⊥

Nðηi; k⊥;iþ1 þ l0⊥Þ: ð29Þ

Notice that, in the backward evolution case, one should not

sample l⊥ according to the distribution of ᾱs
π

R
l⊥
μ

d2l0⊥
l02⊥

that is

used in the forward evolution approach. Once again, a veto
algorithm is employed in our practical implementation to
make this sampling procedure more efficient. As mentioned
before, due to the mismatch between the phase spaces of
real and virtual contributions, the unitarity is violated in the
small x evolution. As a consequence, the generated event

has to be reweighted after each branching in the backward
evolution method as well. The reweighting factor associ-
ated with backward evolution is the ratio of the fraction of
gluons that come from branchings in the region of ½ηi; ηiþ1�
and the fraction of gluons that vanish in the region of
½ηi; ηiþ1� due to the virtual correction and the fusion
process. It reads,

Wbackðηiþ1; ηi; k⊥;iþ1; k⊥;iÞ

¼
R
ηiþ1
ηi

dη½lnðk2⊥;i=μ
2Þ þ Nðη; k⊥;iÞ�R

ηiþ1
ηi

dη lnðP2⊥=μ2Þ
: ð30Þ

The procedure outlined above is repeated until ηi is smaller
than η0. The last step of the simulation is to construct
four momenta of the radiated gluons. It is worth mentioning
that the minus component of the t-channel gluon’s four
momentum can only be reconstructed after the full cascade
has been generated. By going from the last t-channel gluon
(closest to the nucleus), which has the vanishing minus
component, forward in the cascade to the hard scattering
process, the true minus component of the t-channel gluons
are constructed. It is straightforward to extend to the
running coupling case as it has been done in the previous
section. The corresponding reweighting factor and non-
Sudakov form factor are given by

Wback;rcðηiþ1; ηi; k⊥;iþ1; k⊥;iÞ

¼
R
ηiþ1
ηi

dη½lnðk2⊥;i=μ
2Þ þ Nðη; k⊥;iÞ�R

ηiþ1
ηi

dη lnðP2⊥=μ2Þ
αsðk⊥;iÞ
αsðk⊥;iþ1Þ

; ð31Þ

and

Πrcðηiþ1;ηi;k⊥;iþ1Þ

¼ exp

�
−
ᾱsðk2⊥;iþ1Þ

π

Z
ηiþ1

ηi

dη
Z
μ

d2l⊥
l2⊥

Nðη; k⊥;iþ1 þ l⊥Þ
Nðη; k⊥;iþ1Þ

�
:

ð32Þ

FIG. 3. Compassion of the gluon k⊥ distributions obtained from the backward evolution approach with the numerical solutions of the
GLR equation at different rapidities. The left and right plots show the results for the standard GLR evolution and the running coupling
case, respectively.
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In Fig. 3, we compare the gluon k⊥ distributions at
different rapidities generated from the backward evolution
with the numerical solutions of the GLR equation. One can
see that the backward approach perfectly reproduces the
numerical solutions as shown in Fig. 3. Therefore, the
branching algorithm for backward evolution presented in
this section passes the important consistency check.

V. CONCLUSION

We have developed a Monte Carlo algorithm for sim-
ulating the initial state parton branching in the small x
region. The underlying parton branching equation
employed in our formulation is the GLR equation. To
the best of our knowledge, this is the first time that a
practical parton shower generator including saturation
effect has been constructed. We first derived a folded form
of the GLR equation and the associated non-Sudakov form
factor which is the starting point for the Monte Carlo
implementation. With the derived non-Sudakov form fac-
tor, a forward evolution scheme which can be viewed as a
direct way of solving the evolution equation, is developed
and is shown to reproduce the numerical solutions of the
GLR equation. As a more efficient procedure, the backward
evolution approach is also presented. It yields the same
results as the forward approach produces as expected.
To build a full hadron-level Monte Carlo generator for

simulating events in eA collisions, the next step is to
perform the hadronization using multipurpose generators
such as PYTHIA [72] after parton-level events have been
generated. Such an event generator can be used for the
description of fully exclusive observables in eA collisions
or the forward region of pA collisions, as well as for EIC
impact studies. We leave this for future works. Apart from
the studies of exclusive events, another advantage of the
Monte Carlo method over the conventional analytical
approach is that four-momentum conservation is explicitly
imposed in each step of the parton branching. As pointed
out in Refs. [58,73–77], it is crucial to take into account the
exact kinematics effect to correctly describe particle pro-
duction near the threshold region. As long as the momen-
tum conservation is kept, the threshold resummation is

automatically carried out in the parton branching algorithm,
whereas it is quite a nontrivial task to achieve in the
analytical calculations.
There still remains much room for further theoretical

progress in the development of a small x parton shower
generator. For example, it is important to investigate
whether a Monte Carlo implementation of the BK equation
is possible or not. To this end, one has to go beyond the
triple pomeron vertex approximation represented by the
nonlinear term in the GLR equation. The multiple rescat-
tering between the emitted gluons and the dense medium
inside the large nucleus has to be properly treated in the
parton shower generator. On the other hand, the linear
polarization of small x gluons [78] needs to be taken into
account in future updates as well. Moreover, for the case
of the processes involving multiple well-separated hard
scales, a joint small x and kt resummation [79–84] needs to
be performed. The extension of the parton branching
algorithm to embody kt resummation is crucial for the
phenomenological studies of back-to-back two particles/
jets production processes in eA collisions. We will address
these issues in a future publication.
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APPENDIX A: THE DIFFERENT FORMS OF THE
VIRTUAL PART OF THE BFKL KERNEL

It is easy to show the equivalence of the following two
integrals using the dimensional-regularization method

Z
d2l⊥

ðk⊥ − l⊥Þ2
k2⊥
2l2⊥

¼
Z jk⊥j d2l⊥

l2⊥
: ðA1Þ

With the help of the standard Feynman parameters
approach, we obtain

�
μ2eγE

4π

�
ϵ
Z

d2−2ϵl⊥
ð2πÞ2−2ϵ

k2⊥
l2⊥ðk⊥ − l⊥Þ2

¼
�
μ2eγE

4π

�
ϵ
Z

1

0

dx
Z

d2−2ϵl⊥
ð2πÞ2−2ϵ

k2⊥
½ð1 − xÞl2⊥ þ xðk⊥ − l⊥Þ2�2

¼
�
μ2eγE

4π

�
ϵ
Z

1

0

dx
Z

d2−2ϵl⊥
ð2πÞ2−2ϵ

k2⊥
½l2⊥ þ ð1 − xÞxk2⊥�2

¼ 2

4π

�
−
1

ϵ
þ ln

k2⊥
μ2

�
þOðϵÞ:

ðA2Þ

On the other hand, one has

�
μ2eγE

4π

�
ϵ
Z

d2−2ϵl⊥
ð2πÞ2−2ϵ

1

l2⊥
θðjk⊥j − jl⊥jÞ ¼

�
μ2eγE

4π

�
ϵ 1

ð2πÞ2−2ϵ
2π1−ϵ

Γð1 − ϵÞ
1

−2ϵ
1

k2ϵ⊥
¼ 1

4π

�
−
1

ϵ
þ ln

k2⊥
μ2

�
þOðϵÞ: ðA3Þ
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Therefore, the relation given in Eq. (A1) holds. We also
checked this relation using the different regularization
prescriptions and confirmed the equivalence.

APPENDIX B: THE VETO ALGORITHM IN THE
MONTE CARLO SIMULATION

In this appendix, we discuss the veto algorithm in more
details. Let us first recall how to sample a distribution fðxÞ
in the Monte Carlo simulation. First, we calculate the
integral FðxÞ ¼ R

x
xmin

dx0fðx0Þ and the normalization factor
C ¼ R

xmax
xmin

dx0fðx0Þ where xmin and xmax define the x regime
where the sampled events reside. We can simply generate a
random number R ∈ ½0; 1� and obtain the sampled event
of x by solving x ¼ F−1ðCRÞ where F−1 is the inverse
function of F. We replicate the same procedure to generate
more events. Statistically, the sampled events automatically
satisfy the fðxÞ distribution.
However, if the integral fðxÞ can not be carried out

analytically, the above approach does not apply. The
solution to this problem is the veto algorithm. The essential
point is to find a simple analytically integrable function,
which is always larger than the desired distribution fðxÞ.
As an example, we explain how to generate the value of k⊥
at the initial rapidity with a veto algorithm. The gluon k⊥
distribution Nðη0 ¼ 0; k⊥Þ is computed in the MV model.
First, we construct a test function fðk⊥Þ ¼ C=ðk2⊥ þQ2

0Þ.
By properly choosing the C and Q0 parameters, we make
sure that fðk⊥Þ ≥ Nð0; k⊥Þ in the whole k⊥ region of
interest. Next, we generate a value of k⊥ according to the

test function. Third, this event is accepted with the
probability according to the ratio Nð0; k⊥Þ and fðk⊥Þ.
Otherwise, the event is rejected.
The non-Sudakov form factor associated with the GLR

equation involves the gluon distribution function which is
not an analytically integrable function. It is necessary to
invoke a veto algorithm [85] for selecting the value of ηiþ1

as well. The gluon k⊥ distribution Nðη; k⊥Þ can be replaced
with the test function fðk⊥Þ that satisfies fðk⊥Þ > Nðη; k⊥Þ
in the entire kinematic region and the entire rapidity region
of interest. Thus a simple analytically calculable form of
the non-Sudakov form factor is obtained. The algorithm is
described as follows:

(i) We generate a ηiþ1 by solving the following equation:

R1 ¼ exp

�
−ᾱsðηiþ1 − ηiÞ

�
ln
k2⊥;i

μ2
þ fðk⊥;iÞ

��
:

ðB1Þ

(ii) This generated event is accepted with the probability

of P ¼ ½ln k2⊥;i

μ2
þ Nðηiþ1; k⊥;iÞ�=½ln k2⊥;i

μ2
þ fðk⊥;iÞ�.

(iii) If the generated event is rejected, we first replace ηi
with ηiþ1 generated from the first step and then go
back to the first step to regenerate a new ηiþ1. We
repeat this procedure until a ηiþ1 is accepted.

(iv) After we finally obtained an accepted ηiþ1, we can
then proceed to generate the transverse momentum
of the radiated gluon as described in Sec. III.
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[63] B. Ducloué, E. Iancu, A. H. Mueller, G. Soyez, and
D. N. Triantafyllopoulos, J. High Energy Phys. 04 (2019)
081.
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