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Forward inclusive jet productions in pA collisions
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Motivated by recent experimental LHC measurements on the forward inclusive jet productions and
based on our previous calculations on forward hadron productions, we calculate a single inclusive jet cross
section in pA collisions at forward rapidity within the color glass condensate framework up to the next-to-
leading order. Moreover, with the application of a jet algorithm and proper subtraction of the rapidity and
collinear divergences, we further demonstrate that the resulting next-to-leading-order hard coefficients are
finite. In addition, in order to deal with the large logarithms that can potentially spoil the convergence of the
perturbative expansion and improve the reliability of the numerical predictions, we introduce the collinear
jet function and the threshold jet function and resum these large logarithms hidden in the hard coefficients.
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I. INTRODUCTION

Due to Bremsstrahlung radiation, the gluon field
strength and density inside a hadron rise rapidly with
hadron energy. Generally, large-x quarks and gluons
inside fast moving hadrons can be viewed as color sources
from which small-x gluons [1,2] are emitted, where x is
the longitudinal momentum fraction of the gluon with
respect to the parent hadron. The increase in gluon density
can be described by the well-known Balitsky-Fadin-
Kuraev-Lipatov (BFKL) evolution equation [2], which
resums large logarithms in the form of a, In i When more
and more gluons are packed in a confined hadron, these
gluons start to overlap and recombine [3,4]. This can lead to
the nonlinear QCD evolution well described by the
Balitsky-Kovchegov (BK) and Jalilian-Marian-lancu-
McLerran-Weigert-Leonidov-Kovner (JIMWLK) equa-
tion [5-13]. Eventually, the radiation and reabsorption
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of gluons tend to balance, which leads to so-called gluon
saturation [3,4,14—17]. As is common practice, one usually
introduces the saturation momentum Q,(x) to characterize
the typical size of the soft gluons and separate the nonlinear
dynamics from the linear BFKL evolution.

One of the major goals of high energy QCD studies is to
search for the compelling evidence for the gluon saturation
phenomenon. In the past few years, tremendous contribu-
tions [18-27] have been made to the search for such an
intriguing phenomenon. The Relativistic Heavy Ion col-
lider (RHIC) [28—31] and the Large Hadron Collider (LHC)
[32-34] have provided us with a large amount of exper-
imental data [28-37]. Quantitative and precise phenom-
enological tests of saturation physics in heavy-ion
collisions have been a hot topic for the past decades.
Early attempts include the measurement of structure-
function at HERA and the measurement of the production
of a forward single inclusive jet (or hadron) in pA collisions
at RHIC and LHC. Also, studying the onset of gluon
saturation is one of three physics pillars of the upcoming
Electron-Ion Collider (EIC) [38—41].

Forward inclusive hadron and jet productions in pA
collisions have attracted many theoretical interests in recent
years [42—67]. For example, since the projectile proton (or
deuteron) can be treated as a dilute probe in comparison
with the ultradense gluon fields in the nuclear target
[48,51,68,69], the forward hadron (or jet) productions have
been widely used to study the gluon saturation. Moreover,
the experimental studies of the evolution of the nuclear
modification factor R 4, [28,29] have provided strong hints

Published by the American Physical Society
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for gluon saturation [53,70-73]. The forward inclusive
minijet cross section in pA collisions within the color
glass condensate (CGC) framework [14,15,74-84] was
first studied in Ref. [43]. Subsequently, thanks to the
abundant data made available by the RHIC and the LHC,
the research attention on the theoretical side was mostly
focused on hadron productions. In addition, a lot of
progress has been made on the calculation of the one-
loop diagrams and next-to-leading order (NLO) correc-
tions for hadron productions. In particular, the full NLO
contributions of single hadron productions include the
one-loop contributions computed in Refs. [51,68] and the
additional kinematic corrections [59].

The study of forward jet productions [85-94] provides
us with another channel besides the hadron probe.
Usually, one views the leading hadron in a jet as the
surrogate for the full jet. The theoretical calculation for the
inclusive jet production has many aspects in common with
hadron productions with a few notable differences.
Experimentally, the inclusive very forward jet production
in proton-lead collisions has been measured by the CMS
experiment at the LHC [95]. The comparison between the
CMS data and the LO CGC calculation is later carried out
in Ref. [96].

The main objective of this paper is to compute the NLO
corrections to the forward jet production in the CGC
framework based on the previous progress in the hadron
case. It is worth mentioning that the results presented in this
manuscript are akin to those in Ref. [67], while the detailed
computation and the resummation approach employed in
this paper are different.

In forward pA collisions, the active partons with longi-

tudinal momentum fraction x = i’/i-ey in the proton pro-

A
jectile can be treated as dilute probes. Here ¢, and /s are
the measured final state parton transverse momentum and
he center-of-mass energy per nucleon pair in proton-
nucleus collisions, respectively.1 Meanwhile, the active
partons in the target nucleus with longitudinal momentum
fraction x4, = q—jge‘y formed a dense gluon background.

When these partons traverse the ultradense gluonic medium
of the target, they can accumulate a typical transverse
momentum of the order of the saturation momentum
Q,(x) through multiple interactions with the nuclear
target.” For positive and sufficiently large rapidity y,
the active parton from the proton projectile is from the
large x region while the active parton from the nucleus
target is deeply in the low x region. In pA collisions, since
the target nucleus is large enough we can integrate over
the impact parameter to get the transverse area of the

'Note that the notations for the kinematic variables x and ¢ |
in this work are Xp and k,, respectively, in the forward
hadron paper [68].

*As pointed out recently in [97-100], the saturation effect may
also manifest itself in terms of twist corrections as well.

target. Therefore, we can neglect the impact parameter
dependence and greatly simplify the calculations in pA
collisions. Compared with other physical processes such
as pp collisions, the production of the forward single jet in
pA collisions is an ideal process for observing the
saturation phenomena. Compared with hadron produc-
tions, the advantage of measuring jet productions is that
jets provide more direct transverse momentum ¢ infor-
mation without involving fragmentation functions (FFs).
However, the saturation effects are expected to be small
for high p7 jets. It may be challenging to measurement
jets with relatively low transverse momenta around a few
times of Q,(x).

The physical picture of the forward single inclusive jet
production in pA collisions can be understood as follows,

p+A-—jet+X, (1)

where a parton from the right-moving proton (with
momentum ¢g) scatters off the nucleus target (with momen-
tum P,) and becomes a final sate jet with momentum P,
and rapidity #. The kinematics at NLO are similar to that in
Refs. [51,68]. One needs to resum multiple interactions as
the gluon density of the target becomes high. In this paper,
we follow the factorization formalism (color-dipole or
CGC) as in Refs. [51,68] to evaluate this process up to
one-loop order.

The leading order (LO) calculation is straight-
forward, and it has been studied extensively in
Refs. [46,47,50,52,55,56,96,101-103]. We first outline
the LO results in the following section. Then, to evaluate
NLO corrections, we calculate the gluon radiation con-
tributions, including both real and virtual diagrams at the
one-loop order. When one integrates over the phase space
of the additional gluon, one finds various divergences in
both real and virtual contributions [51,68]. For example,
there are collinear divergences associated with the incom-
ing parton distribution. With a proper jet definition, final
state collinear singularities cancel between real and virtual
diagrams. When the final state partons form a jet, there are
no collinear singularities anymore after summing real
diagrams and virtual diagrams. To tackle the calculation
more efficiently, we use the narrow jet approximation
(NJA) [104-107] (also known as the small cone approxi-
mation) to simplify the calculation. NJA allows one to
simplify calculations and neglect small contributions of
order R*> with R defined as the jet cone size. In addition,
there are also rapidity divergences associated with the
small-x multiple-point correlation function [69,102,108-
111]. These rapidity divergences allow one to reproduce
the BK equation [5,9]. After solving BK evolution
equations, one resums lné type logarithms automatically.

Furthermore, there are additional large logarithms from
the one-loop corrections which require further theoretical
treatments. In forward jet productions, one enters an
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extremely asymmetric kinematic region. In this region,
one finds x - 1 and x, — 0, which can maximize the
saturation effect to the greatest extent. Meanwhile, the
longitudinal momentum fraction of active partons in
the proton goes to 1, indicating that this process has
reached the kinematic boundary of the phase space.
Therefore, the logarithm, such as a;, In(1 — x), can become
large and cause an issue for the perturbative expansion. As
shown in Ref. [54], the NLO corrections for hadron
productions start to become large and negative. This
indicates that an additional theoretical technique is
required to ensure the reliability of the NLO calculation.
Early attempts have been devoted to solving this issue
[57-65,112-115]. We believe that the origin of the
negativity issue stems from the threshold logarithms
due to soft gluon radiations near the threshold region.
The resummation of such logarithms is known as the
threshold resummation, which is also called Sudakov
resummation in some literature. To deal with the remain-
ing final state collinear logarithms, we introduce
the collinear jet functions (CJFs) J;(z) which is similar
to the usual FFs D,,;(z) with z the longitudinal momen-
tum fraction of the parton carried by the final state
measured hadron or jet. The CJFs [J;(z) satisfy the
well-known Dokshitzer—Gribov—Lipatov—Altarelli—Parisi
(DGLAP) evolution equations equivalently.

In addition, we introduce the jet threshold resumma-
tion for the threshold logarithms, which arise from
integrating over the soft and collinear regions of soft
gluon emissions near the kinematic boundary. By
identifying the soft (and collinear) part of the phase
space, one can develop the corresponding counting rule
for the threshold logarithms and resum them in terms of
Sudakov factors. The threshold resummation can help
restore the predictive power of the CGC NLO calcu-
lation and extend its applicable window to larger trans-
verse momentum regions. Two different formulations of
the threshold resummation within the CGC framework
have been proposed in Refs. [66,114] and Refs. [64,65],
respectively. After choosing the appropriate initial con-
dition and semihard scales, it was shown in Ref. [66]
that the resummed NLO results can describe the
experimental data from both RHIC and the LHC well.
In this study, we follow the similar framework devel-
oped in Refs. [66,114] by introducing the CJFs for the
collinear logarithms and the jet threshold resummation
for Sudakov type single and double logarithms, while
we put the rest of the NLO contributions into the
NLO hard factor. By choosing proper scales, we ensure
that large logarithms are taken care of by various
evolution (or renormalization) equations and the NLO
hard factors only bring small corrections numerically. It
appears to us that the threshold and collinear resumma-
tions are universal and indispensable to many high
energy processes.

At last, we have been assuming the eikonal approxi-
mation for the interaction between the quark or gluon
from the projectile proton and the target nucleus. Lately,
there have also been efforts made beyond the eikonal
approximation for pA collisions [116-119]. Recently,
there have been many other NLO CGC calculations
[19,22-26,120-131] for various processes. This resum-
mation technique may be applied to other small-x calcu-
lations as well.

The rest of this paper is organized as follows. To be self-
contained, we briefly present the leading order results for
inclusive jet production in pA collision in Sec. II.
Section III is devoted to the NLO calculations which
are divided into four parts. In Sec. III A, we first evaluate
the ¢ — ¢ and set up the framework of the calculation for
the NLO forward jet cross section, present the cross
section in the coordinate space, then transform the results
into the momentum space to extract the large threshold
logarithms. Following the same strategy, we compute the
g— g, g — ¢, and g — g channels in Secs. III B-1II D,
respectively. In Sec. IV, various kinds of large logarithms
extracted from Sec. IIl are identified and resummed.
Firstly, we discuss the special plus function contributions
which stems from the final state gluon radiations. We
show that the resummation of collinear logarithms can be
achieved with two slightly different methods, i.e., the
DGLAP evolution and renormalization-group equation in
Secs. IVA and 1V B, respectively. In Sec. IV A, we resum
In R? and collinear logarithms with the help of the DGLAP
evolution by setting scale y; to the scale A. In Sec. IV C,
we take care of the threshold logarithms and derive the
final resummation results. The summary and further
discussions are given in Sec. V.

II. THE LEADING-ORDER SINGLE INCLUSIVE
JET CROSS SECTION

In this section, we present the LO results for the forward
single inclusive jet productions in pA collisions. Figure 1
illustrates the LO jet production. It can be used to probe
the gluon saturation phenomenon. In this process, a
collinear parton (either a quark or a gluon) with momen-
tum fraction x from the proton projectile scatters off the
dense nuclear target A and subsequently fragments into a

FIG. 1. A schematic diagram for the quark jet production at LO.
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final state jet which is measured at forward pseudorapidity
n with transverse momentum P; =zq,. At LO, the
outgoing parton is identified as the measured jet, thus
one finds z = 1. The LO results for the forward quark jet
cross section in pA collisions was first derived in
Ref. [43]. The LO calculation for jet productions is the
same as the hadron production case at the parton level. We
first take the quark channel in pA collisions as an
example, then the gluon channel can be done similarly.
The leading-order cross section for producing a quark
with transverse momentum ¢, at rapidity x can be
expressed as follows:

do'0 d2x, d?

pHA—=qg+X X407y —ig,-(x1=y.)

7—Exq(x)/7e R
dnd*q 7 ! (27)*

1

XN—<TYU(M)UT(M)>Y, (2)
where g/(x) is the quark distribution function with the
longitudinal momentum fraction x and the flavor f. U(x )
is the Wilson line in the fundamental representation which
contains the multiple interaction between the quark and
the dense gluon field of the target nucleus. The notation
(...)y represents the CGC average of the color charges
over the nuclear wave function with ¥ ~1n1/x,. As to the
gluon initiated channel, one finds

dUII;QA—’ngX _ dzde2yl —ig-(x1=y1)
T ) 2n? ¢ V

X (TWEOWL))y ()
2 _

where W (x ;) is the Wilson line in the adjoint representation.
By using the usual convention, one can rewrite the cross
section in a compact form with the Fourier transform
of the dipole scattering amplitude F(g,) and F(q,) in
the fundamental and adjoint representations, respectively.
Therefore, the full LO cross section for jet productions reads

d O'LO

-] 1 dZ
Lo [1E S gy ()7 (@0 7,02)
’ f

+xg<x>ff<qim<z>], 4

where T = P;e' /+/s is the longitudinal fraction of the final
state jet with P; =zq, the transverse momentum
of the jet. Note we introduce the CJFs J ;(z) which represent
the probability of final state partons becoming a jet with the
momentum fraction z, where the label f = ¢, g for quark and
gluon jets, respectively. In particular, the leading-order CJFs

J (qo) (z) and J '20) (z) are trivial since partons are identified as
jets at LO

I @) =61-2. TP =81-2). (5)

The dipole gluon distributions follow the definitions

d?x, d’y ‘
Flay) = [ St ernoisP w ). (6

N d’x, d>y, . =
Flaw) = [ Seterna3P w5, ()

o2 W2

with 837 (x 1.y )= (TrU(x1) U7 (v1))y and 857 (x,. 1) =
ﬁ(TrW(x 1 )W'(y,))y are the quark and the gluon dipole
amplitude, respectively. By utilizing the Fierz identity and
the large-N, limit, one can rewrite the scattering amplitude
W2 2 2 .

Sg/)(XLYL) as S§/>(XL)’L)S§/)()’LX¢)- As shown in pre-
vious studies [51,66,68], the large N, limit can greatly
simplify both the analytic and numerical computations.
Thus, we will take large N_. limit throughout this paper
for simplicity and only keep the leading N contributions.

III. THE NEXT-TO-LEADING ORDER
CROSS SECTION

In this section, we aim to present the detailed evaluations
for the NLO corrections. In principle, there are four
partonic channels that need to be considered: g — ¢g,
qg— 99, q— 9q, g — qq. We first take ¢ - gg as an
example to illustrate our calculation strategy and set up the
framework for the NLO calculations of jet production. We
mainly concentrate on the final state radiation since this is
the most difficult part compared to hadron productions.
Meanwhile, the initial state radiations, interference con-
tributions, and virtual contributions are akin to the calcu-
lations of the hadron production case once we take the
small cone limit. In the end, we list the final results in order
to be self-contained.

A. The g — q channel

For the ¢ — ¢ channel, the NLO real diagrams of this
channel have additional gluon radiation. This process
includes both initial state gluon radiation and final state
gluon radiation. One measures the final state quark jet after
the multiple scattering with the nucleus target. The g — ¢
channel has been studied widely in Refs. [48,51,68,69,132].
We take Eq. (11) of Ref. [68] as our starting point since the
partonic cross section is the same. According to the previous
studies [68,69], the partonic cross section reads as follows:
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(a) (b) (c)

FIG. 2. The definition of the jet cross section from partonic cross section where the symbol x indicates the measured jet with
transverse momentum P;. These three graphs correspond to two contributions. (a) represents in-cone contribution. In this case, the jet
momentum is equal to the total momentum of the quark-gluon pair. The second scenario corresponds to the out-of-cone contribution. By
subtracting (b) from (c), we remove the cone from the total phase space and thus obtain the out-of-cone contribution. In this case,
because the gluon is outside the jet cone, the total jet momentum is identified as the momentum of the quark. The cross x symbols in (b)

and (c) imply that the quark is the measured jet in these two figures when we compute the out-of-cone contribution.

do

2 2./ 2 25
gA—qgX + + dox, d X d*b, d bL =il (x=x) =ik (b, =Y,
— = 1 Cr — —k L 1(by-
Pk~ sCr >/ (27)? (22)2 (2)? (2 ¢ ' %{;‘/’ CACCIY
6 2 3 3
X SV (broxs b ) + 8 (00, 0)) = 8 (b o)) = 87 (000 B (8)
l

with / and & being the momenta of the final state gluon and Z‘/’a y (&, u) l//a/}(é: u,)
quark, respectively. & = £- is the longitudinal momentum Jafp
fraction carried by the flnal state quark with ¢ being the , 1 [1+ §2 u cuy
momentum of the incoming quark. x; and b, are the =2(27) p* 1—¢ e(1-¢) W3 (12)

transverse coordinates of gluon and quark in the ampli-
tude, respectively. x/, and 2’| are the transverse coordi-
nates of gluon and quark in the conjugate amplitude,
respectively. For convenience, we have also defined
uy =x; —by, vy =(1=8&x, +&by,
v = (1 =¢&)x'| 4 &b, . The correlators are

/A /
u), =x; —b,

S(Y6) (bL’xJJ bﬁ_vx/J_)

(Tr(U(b)

U (B')TIT)[W (x )W (x)]ed)y,

©)

T CpN,

S§f3>(b¢, X1, Uﬁ_)

_ | dyrt
N (Tr(U(b)TU" (v

DTOW(x L))y (10)

In addition, we also include virtual diagrams. The calcu-
lations of virtual diagrams are straightforward in the
dipole picture. It eventually leads to

2 2.0 42
davm _2q CF/ dvy d7 douy e—iq1(vi—v'))
&Sk (27)? (27)* (27)?
2
X Zwaﬁ uy) l//aﬁ ”L)[ng)(viy ')
Aap
— 5y (b / 11
y (bi.xi v (11)

The square sum of the splitting wave function (splitting
kernel) can be written as follows:

which is consistent with the splitting function in D =
4 — 2¢ dimension given by Ref. [133]. In the above
function, the contribution from the second correction
term —e(1 — &) is expected to be small. This correction
term only affects the contributions of the initial state
radiation, since the corresponding contribution has the
collinear divergence. In contrast, the final results of the jet
production are free of the collinear singularity, thus there
are no finite contributions from the —e(1 — &) term when
final state gluon radiations are considered.

1. The final state radiation

In this calculation, we use the narrow jet approximation
[104,105] together with the k,-type jet algorithm. Since we
are doing the NLO calculation at the partonic level, there
are maximum two partons in the final state. When the final
state quark and the gluon are close to each other, then these
two final state partons are deemed to be in the same jet. As
shown in Ref. [105], this is equivalent to requiring An? +
A¢? < R? in the small-cone approximation with Ay being
the pseudorapidity difference and A¢ the azimuthal angle
difference. This requirement is universal for all k,-type jet
algorithms.

In this subsection, let us elaborate the calculation on the
final state gluon radiation since this is the part which differs
the most from the hadron production case. The S( )(v 1)
term in Eq. (8) corresponds to the final state gluon radiation
contribution. It resums only the multiple interactions with
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nucleus target before the quark splitting. We use the narrow
jet approximation as described in Refs. [104—107]. Let us
explain the procedure and the results by using the Feynman
diagrams as depicted in Fig. 2. Depending on whether the
radiated gluon is inside the jet cone or not, there are three
different cases. Firstly, Fig. 2(a) represents the so-called in-
cone contribution which indicates the radiated gluon and its
parent quark are almost collinear. In this case, the final state
quark and gluon are combined together and treated as a
single jet. Therefore, the momentum of the measured quark
jet is equal to the sum of the momenta of these two
particles. Secondly, Fig. 2(b) stands for the false identi-
fication of the jet as the final state quark when the radiated
gluon is inside the quark jet cone. This part should be
subtracted from the total contribution. In addition, Fig. 2(c)
denotes the quark plus the gluon radiation without any
constraint. Therefore, o, — o}, yields the out-cone contri-
bution. Therefore, the corresponding quark jet cross section
can be expressed as follows:

oy = 0, + (0~ o) + oy, (13)
where avmuet is the virtual contribution. It is straightfor-
ward to determme the momentum constraints for the above
three cases via the light cone perturbation formalism. To
proceed, we need to define the jet cone. Firstly, we define
the momenta of the radiated gluon and the final state quark

- _ 1 - _ 1 - — _
as M = (l+ = %lLe”',l = —QIJ_e ﬂl’ll) and k* = (k+ =
\/Lik 1€k = sk e k), respectively. Then, the rel-

ative distance between the quark and the radiated gluon is
characterized by their invariant mass

(I+Kk)> =1,k (en™m 4 ehm)

ElLkLR

— 21,k cos(¢py — ¢»)
(14)

q9°

where R, = VAnp? + A¢? when their pseudorapidity
difference Anp =1#; —n, and azimuthal angle difference

A¢ = ¢ — ¢, are very small. Furthermore, the virtuality of
the quark-gluon pair can also be expressed as
(61— (1= &ky)?
[+k 15
A (e )

Here & is the longitudinal momentum carried by the
final state quark, and p, = &l — (1 — &)k, stands for the
relative transverse momentum of the quark-gluon pair.
Once we define the jet cone size as R, then the requirement
R,, < R indicates that the final state quark and the radiated
gluon are located within one jet cone.

In the following, we derive the momentum constraints
for the above three cases. First, the radiated gluon and the
final state quark are put inside the same jet cone. Therefore,
the momentum of the measured jet is equal to the

momentum summation of the quark-gluon pair that is P; =
zq, = z(l, + k) with z = 1. In order to get the differ-
ential cross section of the transverse momentum of jet, we
need to integrate the relative momentum p | . By requiring
that both the quark and gluon are inside the same jet cone,
we have the kinematic constraint as follows:

pi £1-9)
E1-¢)~ 2
where in the last step we approximately write z/, =
(1-¢)P; and zk, = EP;. Taking all considerations
into account, the kinematic constraint becomes pi <
E(1-8)%q. R,

The second diagram indicates the contribution from
the false identification of a tagged quark when the emitted
gluon is also inside the jet cone. In this case, the transverse
momentum of the measured final state quark jet is P; =
zk, = zq,. Note that the in-cone constraint is slightly
different from the constraint of o,. We still have the

<l k R*~

=5 PIRP=E(1-9)q1R?, (1)

approximate relation ,i—i = % Therefore, the constraint

becomes

PL kR, <Lk R = EmR )

fi-g e e

In this case, the kinematic constraint changes to
32 <(1-¢)2¢, %R This contribution should be sub-

tracted since it comes from the false tagging of an

individual parton inside a jet cone. Here we emphasize

that the above constraints are consistent with k,-type jet

algorithms [105].

For the last part, we do not impose any jet cone
constraints, and then integrate the momentum of radiated
gluon over the full phase space. In this case, the calculation
is identical to that of the hadron production.

To proceed, we apply the dimensional regularization
[134] and the modified minimal subtraction scheme (MS)
to evaluate the remaining part of the integral. Thus, we can
write o,, oy, and o, as follows:

Crll 3 1 R2 3. ¢2R?> 1 ZR?
s, =2 F{—+———1 —>In ‘“2 += 1112‘“2
27 2¢ e 2 2 u
3 1
+6—Zﬂ2+5}0’140(x7(]¢), (18)

a,Cr d xq\ 1+& 1 1 1 Eu?
e ol el
(

a;,Cp [1 x g, [In(1-¢)? 1+§2
"on / dém(é 5)[ (1-¢) L 2
R R

(XSC 1 1 q2 2 7[2 1 q2 2
271-F |:?—El’l ;2 _ﬁ+§ln2 ;2 O-LO(x’qJ_)
(XSCF 1 X 41 1_5
d e e | T o o 19
) ‘f"“’(i «s) 2 "
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fic)

072
E E

()

FIG. 3.
_a,Cyp d xg\ 1+& 11 ) ¢k
> / §L°<f 5)( =&, 52[ +“WJ
C 1-—
+a2”F / déor o (; qg ) 525, (20)

where ¢y = 2e77¢ with the Euler’s constant yp ~0.577.
The splitting function P, (&) is defined as

CENICE IR

In arriving at the above result, we have defined

oo <{ q_L)
£E
le dzl" X X _jaLrL
—s. ['FI0@ [ G5 )e

(22)

Za1-9. (1)

with r; = x; —y, and S, being the transverse area of the
target nucleus. We can see that the cone-size dependence
comes from o, and o},. Meanwhile, the rapidity divergence
only comes from o, when the radiated gluon almost is
back-to-back with the parent quark. In addition, Fig. 3
contains all virtual contributions of the ¢ — gg channel. To
illustrate the cancellation of final state singularities, we
single out part of the final virtual contributions asso-
ciated with the jet, and demonstrate the complete cancel-
lation. Comparing to the hadron production, this case is
new since there is a residual collinear divergence associated
with the hadron fragmentation function. The remaining
virtual contributions will also be taken into account later

and they are combined with other real contributions in the

following sections. The virtual jet contribution cyn U i

glVCIl as

2 2x 72
der_ igor q; 1

™
E

(c)

The virtual contributions to the quark jet from the ¢ — ¢ channel.

By combining all these contributions together as indicated
in Eq. (13), we find that all the divergences cancel. The
final results read as

dolinal _ a,Cr X q n 14 &2 c
2p d‘f 50L0 n=--5
dnd*P, 27 J, ¢ (1— & qirl

(1+52)<ln<‘gf)2>
- ),

- (6 —%;ﬂ) s(1 —5)} . (24)

1
—qu(§> IHF‘I‘

Note here we have terms proportional to (

and (%) in o,

In(1-¢)?
e

By implementing the definition

of the plus function [!d&(f(€)),g(&) = [1dEf(£)g(€) —
1) [o déf (&) with g(&) being a nonsingular funct10n and

f (cf) being singular at £ = 1, we can combine these two

terms as follows:
(M= 148 (@) 148
_/X dé( ¢ >+ £ +Kd§(1—€>+ 2

(-2
1o nz=] 148 2
[ 1-¢j, & 3 @)
which gives rise to an additional constant factor of — 22 1

comparison with the hadron production case, there are
several terms which are unique to the jet production. First,
the terms in the second line of Eq. (24) are new. Moreover,
the cone-size dependent term is akin to the collinear
divergence in the hadron production. Only the first term
inside the square brackets in Eq. (24) is identical to the
corresponding one in the hadron production.

MEM

FIG. 4. The real contribution to the quark jet due to initial state
gluon radiations.
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2. Other contributions

This section is devoted to the discussion of the remaining
contributions. As seen in the following, the computations
for these contributions are almost the same as those for the
hadron production case.

The Feynman diagram of the initial state gluon radi-
ation is illustrated in Fig. 4, where the multiple interactions
occur not only in the amplitude but also in the con-
jugate amplitude. Both the multiple scattering of the quark
and gluon with the target nucleus should be resummed,

which corresponds to the ng)(b 1.x0, 0, X)) term
in Eq. (8).

Figure 4 shows the initial state radiation. In principle,
the radiated gluon has a finite probability that it goes into
the jet cone of the final state quark. However, it is expected
that this probability is proportional to R?, and thus it is

|

d ainitial

dnd?

Note here in Eq. (26) we have used the usual subtraction
scheme of the rapidity divergence which changes the

negligible in the narrow jet approximation. Therefore, we
can approximately integrate the momentum of the
initial state radiated gluon over the entire phase space.
In this sense, the calculation is similar to the one in the
hadron production. By integrating over the unobserved
gluon momentum, we identify the transverse coordi-
nate of the gluon from x, to x’,, which simplifies

the correlator Sg/ﬁ)(b 1.x1, 0, x) and reduces it to
2
V(b b)),

The next step is to use dimensional regularization and the
MS subtraction scheme again together with the above
momentum constraints to evaluate the integration of

g,z)(vl, v/, ). The details can be found in Ref. [68]. We
list the final results here for completeness

e 1% ) /dzrL i /1 14+ & x x _1 0(2)
PJ—SJ_ o /| Z2jq (z) (2”)26 awriS(ry) df( — g, 561 ; €+ln,uzi

cr [1d &r
Slo’2 F r Z—fjﬁ,‘”(z)/ﬁe-wmsm)l d§;q<§>[1—§] (26)
la, [1dE
) =0 -1 ["Fep@a(3). @)

splitting function [ d.f““f into [ d& 1+§

mentioned before, by considering the full four-momentum
conservation before and after scattering, additional exact
kinematical constraints will occur, which is equivalent to
modifying the dipole splitting function. Therefore, for the
full rapidity subtraction, several new terms emerge [59].

In Eq. 8), S (b, .x,.v/,) and S (v, . x| . b,) are the
interference contributions. By taking the narrow jet
approximation, we can simplify the evaluation of interfer-
ence diagrams. We will list the final results in the next
subsection. By combining the collinear singularities in
Egs. (26) and (23), the coefficient of the collinear singu-
larities becomes

__chgé{%xq() J[1d5(1+§ikéq<%)]

i)

In arriving at Eq. (27), we have rewntten =] ! dé‘ 5(1—
&) to change the first term in the left- hand side. At the end
of the day, by redefining the quark distribution function we
can remove the collinear singularities as follows:

. In addition, as

where ¢(%)(x) is the bare quark distribution.

3. The complete one-loop cross section in the
coordinate space

After removing all the divergences by renormalizing the
quark distribution functions and the subtraction of the
rapidity divergences, the final contributions should be
finite. To proceed, we assemble all the finite terms together.
For the quark channel, gA — jet + X, we have the differ-
ential cross section in the coordinate space as the following
two parts:

dog, _d ogg ., dogs° _ dogy _1_2"1: dog, (29)
d]’]dZPJ d?’]dZPJ df’]dzPJ dﬂdzpj —a df’]dzpj’
where the LO and NLO parts read

dogg tdz )
=S = 2
anzp, v | 2T @xalew)
d2rJ_ .
—quMS(2) s 30
« [ Grae s, G0
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do? a dz o I ox [x d’r, c?
“__ g o /d— g / ~ig1 71 §(2) -9, (31
dﬂdZPJ 0 1%“F zjli (Z> . gfq 5/4 (2”)26 ( ) qq(é) ,M ( 5) ( )
do? a Idz o d’r ) 3 c2 1
9 _ _Zsg = 70 2 / L oiqgir g(2) “In—0_ 4 |, 32
dﬂd2PJ o 1Y“F i Zz jq (Z)XCI(X H ) (2”)26 (rJ_) 2 nricﬁ_ +2 ( )
D _ _g:%5,c 1%\7@(& / dezq (G / FUEVL iy i)
dgd2p, ~ 2ot e T\t (27)*
1 + 52 1 MJ_ ’UJ_
S@(u)SP(vy), 33
do?, ag ldz d>u, d?>v, .
— 8728 C u? L T pmigque(u—vy) §(2) K&
o =82 S.0r [ ST mate) [ ST ()8 (0,)
1 1+§’2 { - 1 |
x [ df ——=— |7 =arv — _ &2 (y / A i 34
A (1 _5/)+ Uﬁ_ ( J.) € ri’ ( )
do? ag IdZ (0) dzuldva_ —ia () —v
drszquJ—?SLCF[ Z—zjq (Z)XCI(X,HZ)/We 420 [S@) () SO (1) = S (uy — 0]
1 2,2 1 2 2,2 2 . 2
" |:21an_’;J_+21 qLvL_ 2L ;llnqﬂuémr} (35)
uy €o 1 €o wjvy €
doly,  «a 4 Idz a2,
=28 Cpl6—=7° —igyr1 §(2) . 36
arta % sice(6-32) [ FI @t [ Gl errse) (36)
doge _ _ &g o (192 0 1 X (X = e ey I G ) 37
— - _ — — ¢
-5 ['Gave [Nata(3) ] R [ G000, @)
do” a ldz Lox (x\ 1+& 1 d*r I c?
D5 Cr | = <O),/d— = —/ L eSO ) In—2-, 38
d}’]dZPJ 277: 1Y F . ZZ jq (Z) i égq 5 (1 _§)+ 52 (277:)28 (rJ_) nriqi ( )
i —sicr ['Sa00 [eea(3) 5Pul® [ st s imy (39)
=— — — e r —.
dpd?p, 2z T I 52 (27)? R

To compare our one-loop results with those in Ref. [67], we need to set ¢, to p, . Firstly, the LO results do(?) in Ref. [67]
are the same as our qu Secondly, our results from the initial state gluon radiations agree with Eqgs. (40) and (41) in
Ref. [67]. The n-pole induced BK logarithmic term H, g in their calculation is subtracted and put into the BK evolution
equation. The remaining unresolved term da%‘}:&egg}tv or H, xin. coincides with our o, term which arises from the kinematic
constraint. Therefore, our one-loop results are consistent with those in Ref. [67]. Nevertheless, as we will present in a later
discussion, our resummation strategy is different.

Since the splitting function reads as P, (&) = (;fé‘i +35(1 — &), we rewrite o” as

do” a 1dz L ox [/x\ 1 d?r Ty c?
99  _ % - 7(0) 1 i 0
and2p, 216" |, Z_2*7‘1 (Z)W(X)/X df‘q(—) 2Pu® | oase T SO (r)In 2

Er\g) & (277)2 rqy
3ay dz (0 &y o, <
_Ez—SLCF 2~7q (2)xq(x) (2”)2e 91 LS(Z)(rL)lnm, (40)

Note here the first term of the above equation should be combined with ¢”; therefore ¢ becomes

do?” a ldz (o Loox (x\ 1 d’r, ot c2
49 Cp | =W /d— i /—L B s (r ) In—2— . 41
dl/]dZPj o 1LF : ) jq <Z) ; 55 q £ 52 qu (5) (2”)2 e ¢ (rJ_) n—=——5 ( )

HQLRZ
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To summarize what we have done so far, let us compare
our calculations to the cross section of the hadron pro-
duction but without the FFs [68]. By comparison, we find
an interesting relation between the cone size logarithm of
the forward jet production and the collinear singularity in
the hadron production

1 (SN

The above replacement can be understood as follows: by
taking the R — 0 limit, and replacing the transverse
momentum ¢, by the transverse momentum of the pro-
duced parton k| for inclusive hadron productions, one can
reproduce the collinear singularity associated with the final
state gluon radiation. As a common practice in forward
hadron production calculations, one usually removes such
collinear singularities by redefining FFs. Therefore, we find
the corresponding relationship between the inclusive jet
production and the hadron production given by Eq. (42).
Moreover, note here our ¢, and o}, originate from the initial
state gluon radiation and the final state gluon radiation,
respectively. Also, the sum of ¢, and ¢, corresponds to o,
in the supplemental material of Ref. [66]. o, is the virtual
contribution. ¢, and o, are the interference contributions.
o, is the additional term that comes from kinematic
constraint correction [59]. ¢, 0., 6,4, and o, are the same

our results. By using the same procedure above one can do
the calculation of the other three channels accordingly. As
we will see in the following calculation, the relation
Eq. (42) holds for other channels too. The above relation
can help us to compare our jet calculation to the previous
calculation for hadron productions.

4. The complete one-loop cross section
in momentum space

This subsection is devoted to improving the accuracy of
the numerical calculations. Since the phase factor e=*+7+
results in an oscillatory integral, it is well known that
numerical calculations are easier to carry out in the
momentum space [66]. Therefore, we perform the Fourier
transform and convert the cross section into momentum
space in order to make it more suitable for numerical
calculations. More detailed discussions of this problem
and Fourier transform tricks can be found in Ref. [66].
After Fourier transformation, we get the cross section in the
momentum space as follows:

NLO
daqq

dndZPJ

LO
do,,  dog,

dnd?P, dnd®P,

11 i
_ doL? +Z doy,
d}’]dZPJ =1 d’,]dZPJ

(43)

The corresponding LO and NLO contributions are

as those in Ref. [66]. Note here that ¢/ and ¢ are unique o0
which are from jet productions; there are no such d d2 P / ‘-7 ¢ (2)xq(x,u*)F(qyr), (44)
corresponding terms in the hadron production case. ey
Therefore, Eq. (42) can also be the consistency check of
|
Yoy 2900 [ deza(G ) Pua A Fa) (43)
= — — — n—
d11d2PJ o F J_ . q . éq 5”“ qq /,{2 q1)
doZ, 3a tdz () q
== — Juo) 1 —F 46
dﬂdzpj 2277: 22 jq (Z)xq('x /" ) nA (ql) ( )

do?} a, ldz x
99 (0)
AP, 2x 55 CrSy 2 Jq (2) / df/dZCIud 917 6]( 2) (-9,

1+ &
S11(1) (5’ qg11-921 > qj_)7 (47)

de? a, dz o 1 1+ (g —&q,)?
= s, [ ST /kw/& e TP F(g )F(q). (48
dr]dzPJ oz FoL 2z Jq (z) A ¢ (]uX‘](x H )(1 _§/)+ qzl (Clu) (C]J_) ( )
Aow, 2506 [P 500 [ @anta W) 0 LR (g, - g11) - 0~ ) F(aL)
dﬂdZPJ 77,'2 . Z2 q ’ CI%J_ Q%J_ 1 1L
a, dz 4’
+;CFSJ_ 7«7510)(2)/dz‘]lLXCI(x’MZ)F(CIu)F(QL)lnzm
T 1411
2a, 5 a1
) CpS. (z d’q,, | & qr1xq(x, )F(CIu)F(QM)I m
T 1411
% (91— qi1) - ( — 1) (49)
(gL — Qu) (g1 CIZJ_)Q
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doS, a 4 ldz
=-8.Cp|6-37 HAF(qy), 50
st =Ss.cr(6-57) [' G @matvsF @) (50)
(1-¢)°
d07 a 1 dZ 0 1 X X ln 5)
o= _5,Cp | 5Ty /d - <\ F : 51
dﬂdZPJ 277'. LVF - ZZ jq (Z) . égq 5 1 _g N (QL/é) ( )
do® 3 a ldz el
dnqu;’, = gﬂcFSL ~7q (2)xq(x.4?) In°% e 5 Flqy), (52)
de?) a ldz I ox [x 1 A?
— 1 _759 C g 2(0) / dESg(Z 2 ) = 1 F ’ 53
dl1d2PJ o L-F i Zz jq (Z) ; ggq £ H 5Z,qu(é:) nqiRz (‘h./é) ( )
daég a Idz (0 L x [x
=2CpS — dESq( .2 (1 =&)F(q,), 54
d11d2PJ 2 FOL i ZZ jq (Z)l §§Q<§ H >( 5) (ql) ( )
da},ﬁ, la ldz
=—55-CrS HAF(qy). 55
dndZPJ 201 FoL jq ( )xq(x H ) (ql) ( )
where T E,lq)(f, q11-921-91) can be found in Ref. [66]. It is given by
— 2 1 A2
T grg1) = — DD g, (g, - Fla,)F(g.)
“ S (g1 +q1)*(qL/E+ q20)* u o (gL +q )N+ (q. +q1.) 2 L
1 A?
- Fqi/E)F(q1.1). (56)
(gL + 8020 )P N2+ (qu/E+ 20 ) =
By splitting the #-function inside azq into two terms, we can rewrite it as
dagq _ da% n dozz (57)
di’]dZPJ dﬂdzPJ d?’]dZPJ’
where
do? a ldz
d}’]dquq)J =5, Cr5L ~7q (2)xq(x.42)F (g, ) In> % AZ’ (58)
dagg 2a, Idz (0) 1 q a
P, - 2 CrS1 j Z—zjq (Z)/d2CIuXQ(X H )alnflu [Fg1 = q11) —0(A* = qi,)F(qL)]

a, ldz o 9
=55CrSu | TP @b p)Flan) 55

a, ldz 47
+—CpS, —2«751)(Z)/dzflu“l(x’ﬂz)F(Qu)F(fh)lnziLz

T z 2 (g0 —q11)

_ 20, Cli (g1 —q11) (g1 —q21)
(lh - 61u)2 (‘h - flu)z(QL - (]u)z

(59)

Idz o
St ZQJEJ)(Z)/(P%L/dZCIuXCI(xsMZ)F(Qu)F(ﬂIu)ln

This trick [66,114] allows us to extract the Sudakov double logarithm from af]q.
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B. The g — g channel

Since we have done the calculations for the ¢ — ¢
channel in the previous section and established the pro-
cedure for the jet calculation in CGC formalism, the
computation for the g — g channel then becomes straight-
forward. The momentum constraints in Egs. (16) and (17)
remain the same, and the NJA can also be applied
throughout the following calculations. Notice that £ here
represents the longitudinal momentum fraction of the
parent gluon carried by the observed gluon. The partonic
|

do

= d>x, d%x, d%b dzb
S = aNS(gt =1 = k") / R
Ik (27)* (27)* (27)* (27)?
1
X N.NIZ1) [(Faae[W(x )W (x

= (Faae W X)WV ) f e W (01))y+N (TIW (v )W (v

with f,,. being the antisymmetric structure constant. k
and [ are the momenta of the final state observed
and unobserved gluons, respectively. The initial
state gluon radiation of the g — gg channel is depi-
cted in Fig. 5. The contribution which is proporti-
onal 10 (faqe[Wx )W (X)W (b )W B )] Fape)y
in Eq. (60) stands for the initial state radiation. One
can greatly simplify the multiple interaction factor when
taking the large N, limit. Meanwhile, since we measure
the jet which is initiated by the observed state gluon, one
|

a2,

ane [ de; ()/?) <dzzn>2<zn>

Note here the g — gg splitting kernel is found to be

nggaﬂ 5 ul ll/ggaﬂ(é MJ_) - 4(271')
Aap

DI Wb L)W (B fabe)y

FIG. 5. The Feynman diagram of the initial state gluon
radiation for gluon jets.

cross section of the g — gg channel has been studied in
Ref. [69]. It can be written as

—lkL (x1=x)) —llL (b =0,
- thqaﬁ
Aaf

- <faderb(xJ_)Wec(bL)ffchfa(D/J_»Y

D)yl

ll/qqa/}(uL)

(60)

[
needs to integrate over the phase space of the unob-
served gluon which leads to b, =b',. Here b, and
b’ are the transverse coordinates of the unobserved gluon
in the amplitude and complex conjugate amplitude,
respectively. Therefore, the multiple scattering factor
U adel WG )W) W (b )W (8] fape)y s simpli-
fied to N28\7 (', x,)S¥ (x,.x ). Then the contribution
of the multiple interaction after the gluon splitting
becomes

e Ny R gt () SV (0 ) SY (Y x ). (61)
Aaf
E 1-¢ L uy
Tt HE-8)| T — 62
— f 5 ( ) C]+ ME”i ( )

Figure 6 shows the final state gluon radiation of the g — gg channel. The correlator (TrW (v )W'(¢/,)), in Eq. (60) arises
from the fact that the multiple interaction takes place before the gluon splitting, and it can be simplified as

N%Sg,z)(vj_, vl)Sg,z)(v’J_, v, ) in the large N, limit. Finally, we get o,, oy, and o, as follows:

(c)

FIG. 6. The three real diagrams of gluon splittings contributing to the gluon jet.
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0y = za_;ch.g('x) /

2 2,/
dev,d VL -iqs

(v =0 2
(v i)[S(f)(vl,vl)]

(2”)2
e e ot
P2, [ Gapieor [ i) G ()
+ B te) [ s s penen [ - InAE 2 L dlF) (64)
%_%Mk{/yueﬁ%w()L/dé—ﬁglﬂﬁgG>Pl+m63} (65)
7 (27) . E(1-¢, ¢\ e pry

Furthermore, we should also consider the g — gg
splitting when the final state particles are in the same jet
cone. The in-cone contribution from the ¢ — ¢g channel is
shown in Fig. 7 and we label it as 64. The partonic
cross section of the g — ¢ channel can be found in
Sec. IIID. The second term in the brackets of the
Eq. (120) is the corresponding final state radiation con-
tribution. Under the large N_. limit approximation, the
correlators of the multiple interaction before the gluon
splitting can be expressed entirely in terms of 2-point
functions S4(v |, 0", ) = S\ (v, . v/)S¥ (v, . v ). Then the
cross section as shown in Fig. 7 becomes

oq=a,Trd(q" — 1" —k*)xg(x)
/dzxL d*x', d*b,; d?b', —ik; (v, =)

(27)* (27)? (27)* (27)?

S sy (u ) S (v, 0))SY (v vy), (66)
Aap

=il (b, =b'))

where Ty = —, and k and [ are the momenta of quark
and antiquark, respectively. We have adopted the D-
dimensional splitting function of the ¢ — gg channel from

FIG. 7. The real diagram of the g — ¢g splitting with ¢ and g
being inside the jet cone. According to the jet definition and
measurement, we categorize this contribution as a part of the
gluon jet production.

|
Ref. [133], and modified it to the splitting kernel shown
below

Zl//qqa/)’ q s és ML)qu(l/}(qu, f, ML)
Aap

= 2020208 + (1 - &P = 2e6(1 = &) . (67)

_2
uy

This gives
O dZ’UJ_dQUI —ig, (v, =0 2 2
oo =GN Targle) [ e (o )

2
XP3_§_% # 1

9 3"2R +§ . (68)
The last constant term ( ) inside the square brackets in the
above equation originates from the product of the € term in
the splitting kernel and the % pole due to collinear
divergence. There is a similar term from the virtual
contribution of the g — ¢gg channel. These two terms will
cancel each other.

For the virtual contributions, we consider the virtual

gluon loop diagrams in Fig. 8. The partonic cross section is

given by
d? vL d?v', d’u,
—a,N
aNergt) [ 5J/ ") 22y

qugaﬂ q s é:v ul)l//gga/;’(q ’ 59 ML)
Aaf

x [SY) (v, 0/)SY (v v))
— S (byx )Y (e, v )SY (b))

—iky (v, =v'))

(69)

With dimensional regularization and the MS scheme, we
can perform the rest of the calculation directly and get

016016-13



WANG, CHEN, GAO, SHI, WEI, and XIAO PHYS. REV. D 107, 016016 (2023)

() (b) (c)

FIG. 8. The virtual gluon loop diagrams of the g — g channel.

(a) (b)

(c)
FIG. 9. The virtual quark loop diagrams in the g — g channel.
2 2
virtGet) 1IN a Ldz (o) d*ry .. o0 1 q1
Og =5 S149(x) j 27 (z) 2n)2° RSP | =2+ lﬂﬂ—z : (70)

Furthermore, we also compute the quark loop virtual contributions depicted in Fig. 9; its contribution is given by

d’u, d? d . ,
—2a,N Tgxg x)/ df/ uy vy dv) e—iki(vi=v")

(27)% (27)? (27)?
« 2 2 2 2
Syt W (1S (0. ms&’(v;, 1) =S¢ (x v )SP (v, b)) (71)

Aaf

After the evaluation, we arrive at

o B [ g [

9 3 2z . 20 (27)2

1 g5 1
s is(rP |-t . 1)
u 2
Similar to the ¢ — ¢ channel, we only pick out part of the virtual contributions to cancel the collinear singularities. The rest
of the virtual contributions would be combined with other real diagrams. The final state contribution 02;”‘1 can be obtained

virt(jet) v1rt(Jet)

by adding o,, 6y, 6., 04, 649~ ', and o, together,

virt(jet)

0'2;&1 =0,+ (6. —0p) + 064+ 04 " + O_;i;t(jet)' )
In the end, all the divergences cancel. With the CJF [J(z), we get

(1-¢)

Foyy™ g \[,(M 2T D=E0-9P ,1-¢0-9P < !
0 = 2 -2 In—2—P (£ In—
mitr, =5 | o3 %) Pie) -5, an e
a [(67 4 26
+§[(3_§HZ>NC_ENfTR:|G(x’QJ_)‘ (74)
Note here we have defined o10(} =S, [1%T 193 [ (d;:)ﬁ TS (r1)S®(r,). By combining the collinear

singularities from both real and v1rtua1 dlagrams of the initial state radiation, we find the coefficient of the collinear
singularities becomes

—NL.%E/;%PW—F (%—2[;’]{5’?)5(1 —5)] )—;g<)—;> = —Nc%é[ldépgg(cf%g@), (75)
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where we have used the delta function again to change the second term in the left-hand side. P, (¢) is defined as

-1 -9p
Poo(&) =2————+266(1 = &), 76
W®) =2 21 =) (76)
where f, = —é Nf £ As usual, we remove the collinear singularities by redefining the gluon distribution as follows:
lag(p) [1dé X
= ¢O(x) =22 =N, =, 77
g(x,u) g (X) e 21 ). ¢ L,ng<§)g £ ( )

Once we remove all the divergences, the final cross section is finite. Similarly, the next-to-leading order cross section for the
g — g channel in the coordinate space can be expressed as

oy _ ddf | doN0 a9 s de, o
dndzpj dﬂdzpj dl’]dzpj d”]dzPJ i—a dl’]dzpj,
where the LO and NLO cross section are given by
det0 d*r .
g =S [ SV @ratont) [ oSS ), (79
do? a Idz o I x [(x d’r, , c?
oy o [192 20 /d *o(Fe /_5(2> SO e arri -0 (80
d}’]dZPJ o 14V i sz!l (Z) . ffg é:ﬂ ,ng(g) (271_)2 (rJ_) (FL)e nriﬂz ( )
de? o Idz (0 d’ry Zig,r C(z)
dﬂdzqq :_2ﬁ0ﬂSlNc[ Z_zjg (z)xg(x,,uz)/(z”)ze " LS(z)(H)S@)(U)lnm’ (81)
dG le (0) dzuldzﬂl —ig v
d17d2P _SESLNfTRz Z—zjg (Z)Xg(X,Mz)/WE gL LS(z)(l/il)scxﬂl)
U . e~ i€q(u—vy) 5 5 el
X/df[f +(1—5)][m—5(h—%)/d’1 pei ] (82)
0 1=V i
do? a, [1dz o I x [x d?u, d*v . i)
9 — _16zS N.== [ =70 / deZ gl 2,2 /# —igqu(ur-v1) o= g
dnd’P, SNy o 2 T0 @) | G Q)¢ ¢ ¢
161 -9P 1 (uy—vi) vy
()5 (0, )5 (1, — v,) 1 , 83
( J_) ( J_) ( € J_) (1 _ §)+ 52 ( u, — Ul)zvi ( )
dog, Ldz o d?u, d*v
I o R ORI / —am SP S @) (uy — v,)
. / (1 — é:’) e—if/l]LUi ei‘h"’l
—iq,-(u—v,) dé ¢ §< — 52 /d2 / 84
xXe / 5 |:<1 _ 5/) + 2 Ui (UJ_> ry ri/ ’ ( )
do, as d’u, d*v
Gy = S [ ST @) [ et (5,5 0,) = 59, = o)
Loqul 1 v 2uy vy qifulv,|
x S®(u; —vy) [—zln bl el e (85)
1 €o vi €o ujvy €o
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i, = 55N - ‘3*,,2) LT wate) [ e s )5 )
_2—SJ_NfTR296 T Jg ) (2)xg(x )/((1227:;-26_WLU_S (r)S@(r,), (86)
s, = [ E700 [acga(3) Fnl(l-giz]f“_gél_a]%/ LSS e (8
d:dZZZ :_2ﬂ0;_;SiNc/TI§j§O)(Z)x9(x)/(d;:)lz e—iqrus(2)(rl)s(2)(rl)ln%7 (88)
=S, [" G000 [ aeko()Pae) [ S rs ) gt D s
s, = 3asTsSs [ G o) [ e s e (90)

Due to the reasons discussed in the last subsection, we also need to Fourier transform the above equations to the momentum
space analytically. The cross section in the momentum space is given by

LO NLO LO 11 i
do,, B dog, doy, B dog, do

— = 99 91
d?’]dzpj d}’]dZPJ d}’]dZPJ di’]d2PJ ;dl’]dzpj ( )
with
detO ldz
d dgio = jg (z )XQ(Xvﬂz)/dzCIuF(CIu)F(fh—CIu)v (92)
n J T
do! o Idz o) 1 x (x A?
dndjq;)J :ZNCSJ- : ?\79 (Z)K dé:/dZCIuEQ<E’/42)ng(5) lnﬂ_zF(‘h—CIu>F(¢1u), (93)
do?, a Idz ) ’ 2 il
PP, 2/}02_”NCSJ_ ?\79 (2)xg(x,u) | d*q1 1 F(q. —CIu)F(qu)lnF, (94)
J T
do? 1 o Idz o
dnnggpjz_gﬁNfTRSL g Z—zjé)(Z)XQ(x’ﬂz)/dzun(QL—CIu)F(Qu)a (95)
do?

aj ldz box (x 1-¢(1-¢)
dndjq;’ :;NcSL ?«75(10)(2)/ dizQ(g»/ﬂ)[ 5(1(_5) ) /dzCIudszudzquTé}J)(f,CIu’qu’C]slafﬂ)v (96)
J T X +

dagg a tdz (o 1 (g1 —Eq.)?
=-2ON,Tp-—= — u? de'd? 2 1-&)2F F - In———, 97
Gy = 2N TS [ ST @aten?) [ aeda e+ (-1 Fla, - i) m ©7)
de® 1 g 1
99 _ _AN de'd? 42 ZE(1=¢
dnd2P, 27[ jq (2)xg(x, 1 )/ §diq1d%gn, {—(1 —e., +25( ¢)
g1+ a1 —Eq,)*
x F(q11)F(q21)F(qL —q11)In (@11 + 21 =8q1) . (98)

CIJ_
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do! 2a; ldz (o 1 9
zgg =—F NS, —gj.gz >(Z)XQ(X,M2) / dzqudZQuTlnTlFWL —q1)[F(q11 +g21) = Q(Qi - Q%J_>F(QIJ_)]
dnd°P; = : 2 91 91
a, dz o 4
+—N.S; —2~7.£; >(z)xg(x,/42) / dzqudzC]uF(C]u)F(CIu)F(QL —qa1) In? — 3
T t Z (10 +g20—q1)

dz
_2j£10)(z)x9(xvﬂ2)/szlLdZQZLdZCBLF(CIlL)F(qZL)F(Q3L)

(‘h —q11+q31) (90— q21 +q31) 7

n , 99
(CIL G114+ 930)%(q1 — g2 +931)* (g1 — a1 +q31)° ®9)
dod, o« 67 4 1dz
dnd;}]’, :gsLNc <§—§ﬂ2> —zjg(Z)XQ(x)/dZQuF<C]u)F(CIL —q11)
26
_Z_SJ_NfTR 9 .79 (z)xg x)/d q1.F(q10)F(qL — q11)s (100)
o s, [0 [ i [ (L) [®aur@orae-an. (o)
dndzPJ_ g e 2z g \Z 59 5 1-¢ |, & qr.0'\qr11)r gL qi1.1)s
% dz (o) 2 il
dnd2P _2/302 NSL zjg (z) [ d CIuXQ(x)F(CM—41L)F(Qu)lnp7 (102)
doj)  a Lox [(x\ 1 5 A?
dndzPJ:ZNc oy .79 (2 )l dfgg : ?ng(f)/d CIuF(Cu/f—CIu)F(Qu)IHW- (103)

Again Té;)(i, q11-921-931-91) can also be found in Ref. [66] which is

1 (1=8)q11 +q31 —Eqr, ]

E(qii+a—q9.) (11 + 921 —q./8)?
-] A~ Flas — 410 F(a0)F(g3.)
(11 +930—qL)* N+ (g1 +g930—q.)° L= DL )T g8l

1 1 A2
E(qii+a1—q1/8* N+ (q11+921—q1/8)?

gy (5 CIu,C]u’Clu,ﬂﬂ) F(CIu)F(C]u)F(CIu)

F(q./§=q21)F(q21)F(q31).  (104)

Similarly, we can extract the Sudakov double logarithm from 0 g [66,114]. Then we get

dagg do’e do’?

= W 4 o 105
d11d2P 7 dndzP 7 dndzP 7 (105)
where
04 i =—-—=N.S = j(o)(z)x (x ,uz)lnz—qi/d2 F(gr—q10)F(q11) (106)
diyd2PJ e 1 : 2 g g\x, ) q1100'\q1 —4q11)r\q11)>
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9%
(g1 + g2 —q.1)?

dolb 2a; tdz (o) 14
P ="FNS, | 5T (Z)xg(x,ﬂz)/dzq gy 5—In5=F(q, —q11)
dl’[d2PJ ”2 + T Zz J - = q%L Q%L - =
X [F(q1L + qa1) —O(A* — Q%L)F(QIL)]
a, ldz 7
- %NCSJ_ z_zjg )(z)xg(x, ) lnzA—é d*q, F(q. —q11)F(q11)
ay tdz ) 2 2 2 2
+;N0Sl Z—zjg (2)xg(x,u%) | d°q1,d°q21 F(q11)F (921 )F(q1 —q21)1In
2a

y (90 —q11 +q31) (g1 — q21 +q31)

ldz
2 NS, ?jéo)(Z)XQ(X’ﬂz)/dZQILdzCIudzCluF(qu)F(‘]u)F(Qu)

'

(91— g1 +931)* (1 — 21 +931)°

C. The ¢ — g channel

Before we start the calculation for the off-diagonal
channels, let us comment on the similarity and difference
as compared to that for the diagonal ones. Note that the
partonic cross section of this channel is the same as
the ¢ — g channel [69], which is given by Eq. (8). For the
splitting after the multiple scattering case, we have
already computed the in-cone contribution in which
the final state quark and the radiated gluon are within
the same jet cone. Therefore, it is not necessary to
consider the in-cone contribution anymore. We do not
have virtual contribution either since we observe the
gluon jet in this channel. Here, the variable & is defined as
the longitudinal momentum fraction of the initial state
quark carried by the radiated gluon, and this ¢ is different
from what was defined in the ¢ — ¢ channel. In fact, we
always use & to denote the momentum fraction of the
produced particle. Note that the transverse momentum of
the measured jet is equal to the momentum of the radiated
gluon which is /| = P;, while in the ¢ — ¢ channel we
have k|, = P;.

To compute the jet cross section in the ¢ — g channel, let
us consider the diagrams shown in Fig. 10. Figure 10(a)
stands for the false identification of a gluon jet, while the
final state gluon and quark reside in the same jet cone. This
is similar to the case shown in Fig. 2(b), where the quark is
falsely identified as the jet. Figure 10(b) represents the
q — g contribution without any constraint. Hence the

. M N WSX

E :

(a) (b)

FIG. 10. The final state radiation contribution from the ¢ — ¢
channel.

(g1 — g1 +q30)*

(107)

correct out-cone contribution for the ¢ — ¢ channel can
be obtained by taking the difference of the contributions
from these two diagrams.

For the multiple interactions that take place before
the gluon emission, as shown in Fig. 11, the corresponding

correlator is S(Yﬁ)(b 1,x, b, x). Once we integrate
over the momentum of the final state quark, we set

b, = b'|. Therefore, we simplify 55,6)

(bL’va bi,x/i) to
Sg,z) (*,x L)S§,2> (x1,x'). Then the following evaluation is
straightforward. Again, the usual dimensional regulariza-
tion and MS subtraction scheme are applied to perform the
rest of the calculations. Following the same calculation as
that in the g — g channel, we remove the collinear

singularity by redefining the gluon distribution as follows:

st =) =152 ['Lerp@a(3). (108

where P, (&) = % At the end of the day, the final
cross section is found to be finite. In the ¢ — g channel,
there is no LO contribution. We write the cross section in
the coordinate space as

NLO i
do,, _ dog, _ i doy, (109)
dﬂdzp_] d?’]dZP_] —a d?’]dZP‘]’
where
M
FIG. 11. The initial state radiation contribution from the ¢ — ¢
channel.
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do? a Idz o L ox [x dr, . 2
e o 2 700 / deg( 2, 2 /_ ~iqiri§2) (r S 110
dpd?P, 22T ) 2 Jo @) i éch g (Zﬂ)ze (ru)SB0rs) | Poo(E) In iﬂ2+§ (110)
do?, a, [1dz ) I ox [x Pu v, g,
=82S, Cr—= - déSgl =, 2 SR UL it (ui-vy) ,—igy vy
andP, S| Fon 2 T (@1 fffI<§ H >/ (27)* e - ¢
L(up —vy) v
x s<2>(ul)s<2>(m)7ﬁgq(g)E—(;l — yi)%zl’ (111)
1
do§ a d?r; o 1 <5 (1-¢)°
v _%¢ o d / L e TS (r ) In—5—2——1 : 112
dnd?P, 2z 1Cr jg ()/ 55 <§) (2”)2e ¢ (rl)ézpyq(f) anqLRz n 2 (112)

Similar to the ¢ — ¢ channel, the extra & term inside the square brackets of Eq. (110) arises from the additional —eé
correction in the ¢ — ¢ splitting function in 4 — 2¢e dimension. After the Fourier transform, we obtain the cross section in the
momentum space as follows:

do, _ dagg“o :zs: da_f]q (113)
d?’]dZPJ di’]dZPJ 1 di’]dzpl’
where
daéq a, ) A2
dﬂdsz:ﬂCFSJ‘ jg / df/d (]u q é’ 2 qu(f)lnﬂ—zF(qu)F(ql—qu), (114)
do? a, dz I x [x
st =seewsy [(Ga00 [1ae [@anta(Fr)eranra - a0, (115)
do} a ldz !
dndzg;’J :27;2 CrSy i Z_zjé())(z)/x df/dZCIu/dzé]zﬂ“](x’Mz)qu@)Té;)(f,Clu,qu,qﬁ, (116)
do? a Idz Loox [x\1 A?

9 _ % ¢ & 70 /d_ 2 = In——F , 117
d?’]dZPJ o FOL i szg (Z) ; ijq £ g27ng(€) nqiRz (‘H_/é) ( )
dog, %s Yz o)y [1 g% (X (1-¢)?

=—5_CrS - dé-ql : 118

st ==5eces, G0 [N ata(F)Puie prasom (118)

with
_ _ _ 2
Tmé,q a1 _(CIJ_ 91 —921 41 5‘12J_>Fq Flq
gq( 42422 41) <CIL_QIL_C]2L)2 (‘h—fl]u)z (@1)F(21)
A? 1
- F(q21)F(q. —q
A2+<QJ__QIJ__‘12L>2 (‘IJ__QU__‘DJ_)z (@:0)F (4 21)
A? 1
F(‘Iu)F(CIL/f)- (119)

A+ (q1/6—q21)* (g1 — Eqn))?

D. The g — ¢ channel

The partonic cross section for the gluon splitting into a quark (with the momentum /) and an antiquark (with the
momentum k) can be written as [69]
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do

' d?b, d?b,

dgf;(—igqlzx agd(gt — I+ —k+)TR/(d2;c)l Ejz o L =ik (x =x)) p=ily-(by—b %ﬁ:wn* '/’aﬁ (uy)
X [Cy(x1, by, ¥ by )+ Sp(Gxy + (1=8)by, &X' + (1-¢4)b))
=8 (0 4 (1= 86 b1) = 83 (B vy + (1= b)), (120)
I
with

Z‘l’gﬁ* W W (u1)
Aaf
227 U, - u l
== e -
P u' L
The correlator S§,3> is given in the previous section and the
other two correlators read

—2eE(1-8). (121)

Cy(x,,by, X'\, b))

(Tr(UT (b )TU(x )UT (X )TU(D,)))y-

(122)

" CiN,

SH0L ) = g (W)W )y (123)

Figure 12 indicates that the multiple scatterings take
place before the pair production. For the interaction before
the gluon splitting, we only need to consider the out-cone
contribution since we have already considered in-cone
contribution in Sec. III B. Once we take the large-N,. limit
approximation, the correlator S (v, ) in Eq. (120) can
be expressed entirely in terms of the two-point func-
tion Sg,z)(vJ_, vl)Sg,z)(v’J_, v)).

For the interaction after the gluon splitting as shown in
Fig. 13, it is easy to write down the cross section after
integrating the momentum of the final state quark in
Eq. (120). Similarly, the multiple interaction correlator
Cy(xy,b;,x/,b|) can be expressed in terms of

Sg/z) (xL,xl)S( )(bl, b,) in the large-N, limit. After inte-
grating the momentum of the antiquark, we identify

(b)

FIG. 12. The contribution of the pair production after the
multiple scattering of the g — ¢ channel.

(a)

b, =b',, which gives Cy(x,,b, ., x|, b))~ Sg,z)(xl,xl).
Following the same calculation as previous channels, we
remove the collinear singularities by redefining the quark
distribution as follows:

X
4
where P, (&) = (1 — &) 4 £ In addition, we also have
interference contribution which is the same as hadron

production. At the end of the day, we get the cross section
of the ¢ — ¢ channel in the coordinate space as

lag(u) [1d¢

q(x.p) = ¢ (x) - —= :

Foryu(3). a2

ddqq ¢ doé(]
o5 —, 125
dnd*P, ;dndzP } (125)
where
doy a Idz o I x [x
4y _sST/_ (0 /d_ X
anep, 2Tk | 2 Ta (@) | diggl G
der_ Zigir
<Gt
2
X |:,qu(§)1n 202+2§(1 _5):|, (126)
rip

dob, dz L x [x
_ To—% - - 2
dndZP, =875, / 270 / d§§g<§ . >

2 2
/d Mld V| e_iqL'(“L_UL)_iql;i
(2m)*

1 - .

¢
(127)

FIG. 13. The contribution of the gluon splitting after the
multiple scattering of the g — ¢ channel.
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do a Lox (x dr; _u 1 c? (1-¢)?
dogy _a 4t (0 / L g )SD) (r )L n—S0___
=i [ G0 [(asa(Far) [ G (L)1) Py (6) It
(128)
The cross section in the momentum space reads
do,, 3 do!,
= , 129
df]dZPJ ;dl’]dzpj ( )
with
do! a 1dz I x [x A2
9 _%g¢p & 70 /d Zal 22 In—F 130
dndsz 7 14LR szq <Z) ; 559 57” qu(é) nﬂz (ql)’ ( )
do? a 1 x (x
-2 28T /d W) E(1=E)F(q)), 131
dr]dzPJ 2p LR .7,1 () fé:g f 5( f) (fh) ( )
dozg =% J_TR / df/dszu/d 4921 % g P, (5)7(1)(£’QIJ_7QZJ_’QJ_>’ (132)
dnd®pP, 2x° "”
do? a, ) 1 x /x 1 A2
dnquIQJ *g J_TR (Z)L df/dZngg(g,Hz) ?qu(f)lnﬁF(Qu)F(fh/f—CIu), (133)
do} a 0) 1 x (x 1 (1-¢)?
dndzq;’, T J_TR (Z)[C df/dzqugg(g,/ﬂ) ?qu(f)F(‘Iu)F(fh/f—Qu)ln 52 . (134)
where
_ _ _ 2
T(l) . ’ ’ :< 91 —&q11 — 921 _ 9179 > F F
10611 921, 41) (91 =¢q11 = ¢a21)* (91— qa1)’ (@1)F(g20)
1 A2
- F(g:1)F(q1/é—q
(qr=Eq10 =421 P N+ (qu/E = qi1 — 421 )? (@20)F (4 21)
1 A2
- F(q11)F(q.1). (135)
(g1 = 41)* N+ (g1 —q21)* u -

So far, we have achieved the full NLO results of single
inclusive jet productions in pA collisions. And the cross
section is consistent with Refs. [66,68]. Furthermore, we
have also extracted all the large logarithms in the momen-
tum space. In the next section, we focus on how to deal with
these large logarithms in detail.

IV. RESUMMATION OF LARGE LOGARITHMS

As discussed before, to improve the accuracy of the
theoretical prediction and numerical implementation we
need to resum all of the large logarithms arising near the
threshold boundary. Therefore, this section is devoted to
resum such large logarithms in the previous calculations.

|
The resummation strategy is similar to that used in the
hadron productions.

Before providing the details of the threshold resumma-
tion, let us comment on one technical issue. The resum-
mation strategy used here is analogous to that in Ref. [66]

)+ (e.g.,
doy, and dahg) As a matter of fact, those terms which are
n"(1- 5))
1-¢ /4
radiations. When £ — 1 (z — 1) near the threshold limit,
these terms would give us In> N contribution in the Mellin
space. Indeed, this term has a sign difference comparing
with the result from Cantani and Trentadue for the Drell-
Yan process [135]. It is well known that these kinds of
double logs is notoriously difficult to deal with when one

except the terms which are proportional to (%

proportional to ( stem from the final state gluon
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TABLE I. List of collinear and Sudakov logarithms in different channels.

Process Collinear log (initial) Single log Double log Collinear log (final)
94 Pyl /;*z lnj\—zé lnzf\—zé flzpqq(f) In
99 Py (&) % 2% 5Py (&) In%
q-y9 Pyq() I - E%qu(g)lnﬁ—;
9-4q Pg(&) In2s £ Pgy(&) I

performs inverse Mellin transform because of the so-called
Landau pole problem.

We first note that there are two kinds of sources that
contribute to these double logs: one originates from doy,
and dagg, the other from part of the kinematic constraint
correction. From Egs. (18) and (19), we can show that these
double logs from the jet contribution cancel. It means that
there is no Sudakov factor associated with the final state
radiation. This case is different from the hadron production
case where the double logs can contribute from both initial
and final states.

Another intuitive way to think about this question is from
the physical point of view. By tracing the source, we found
ln”(l—é))

=& /4
fication, where we treat the final state quark as a jet when
the radiated gluon is inside the jet cone. Once the radiated
gluon is inside the jet cone, it cannot be real soft since the
phase space of the gluon emission is small but not zero. As
long as the jet cone R is large enough, there is no soft
divergence anymore. This means that there are no double
logs for the final state radiations in the end.

With the above arguments in mind, we believe that there
are no double logarithmic divergences in the final state
gluon radiations of forward single inclusive jet production
in pA collisions. Therefore, we expect that there is a
cancellation between the terms proportional to the plus

1n”<1—¢“>)

1-¢
kinematic constraint corrections. The combined results are
expected to be small. Thus we do not resum them, and put
them together with other terms in the NLO hard factor. The
remaining double log terms that we need to resum now
come from initial state radiation and the left over (initial)
part of the kinematic constraint correction. Furthermore,
there are no single logarithmic divergences for the final
state gluon radiation either. We put those log terms in the
NLO hard factor.

Before we resum all the large logarithmic terms, let us
specify these logarithms. As can be seen from prev1ous
calculation results, there are collinear logarlthms (ln—

j’\g, In? "L) More

that the plus function ( comes from false identi-

function (

N and the double logs from final state

and In ”2) and Sudakov logarithms (In
J

discussions of the collinear logarithms can be found in the
Sec. IVA. We list all the large logarithms in Table I.

In Secs. IVA and IV B, we demonstrate two different
approaches developed by Ref. [66] to resum the collinear
logarithms. The resummation of soft logarithms is shown in
Sec. IV C. Because the resummation of the collinear and
soft logarithms for jet productions differ only slightly from
hadron production, we will show only the main results in
the latter subsections, and more detailed discussions can be
found in the supplemental material of Ref. [66].

A. Resummation via the DGLAP evolution equation

As discussed previously, there are two types of collinear
logarithms. One originates from the initial state radiation,
and the other one from the final state emission. Their
resummation corresponds to the scale evolution of parton
distribution functions (PDFs) and CJFs, respectively. For
the diagonal channels, we know that the differential cross
section is proportional to the plus functions as follows:

A R
de(l—gm In(1 - 7). (136)

When the gluon emission is near the boundary of the
allowed phase space, the integration over the plus function
then becomes divergent in the limit 7 — 1. More discussion
can be found in Ref. [66]. Therefore, one needs to resum
such collinear logarithms associated with the plus function.
Basically, there are two approaches to resum the collinear
logarithms. Motivated by the works in Ref. [66,114], the
collinear logarithms [136—138] can intuitively be resumed
with the help of the DGLAP evolution equations. This
method is called the reverse-evolution method in Ref. [66].

For the collinear logarithms In4; associated with initial
state gluon emissions as in Egs. (4§), (93), (114), and (130),
once we evolve the factorization scale u to the auxiliary
scale A, the resummation of the collinear part can be
achieved automatically. As demonstrated in Ref. [66], we
can apply the following replacement:
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{C](X’ﬂ)] il A ldf[CFqu(f) TRqu(é)] [q(x/é,y)] . [‘1(9@/\)}
o)) R ) E CrPyg(&) NcPy(&) | Lg(x/E m) g(x. A)
In order to resum the collinear logarithm (lnA—z2 with p; = P;R) arising from the final state radiations, our strategy is to

redefine the CJFs. Similar to the FFs in the hadroh production case [68], we take the ¢ — ¢ channel as an example and start
with Eq. (53), which can be cast into

(137)

A (1 x [(x\1 [Py
déCrP = F
2” Z jq ( ) Pszlz 5 F qq(é)é (5) 52 (Zf)
1d7 P, A% 1 dé ) z’
== F 1 —CP, hl
Z”l ZIZ xq(X) (Z ) nP3R2§2 ¢ (‘f)jq ¢ x=5.7'=z¢
ldz Py A% [1dé 0 (2
=/ Z—ZXCI(X)F<?> IHW i ?CFqu(é)jq ) (138)
where we have used | dz In® 52 j P =/ tdz lnZ 5(1 - ZE') = 0 in the last line, and changed the integration variable

7 — z. By combining the LO, ¢ — ¢ channel and ¢ — ¢ channel contributions together, we redefine the collinear quark jet
function as follows:

7/t =0+ g [ lep @70 (3) + cpa@a? (5)]. (139)

By differentiating Eq. (139) with respect to In A%, we can obtain

) + CrPyy (8T @] (140)

0T4(z.A) _ay [1dE
Rkt :

o[z
olmA2  2z). & [CFPW@V 7 (

¢

At first, Eq. (140) is not a closed equation. However, by taking higher loop contributions into account, we can promote

J (q())(z) to J,(z.A) and thus arrive at the closed evolution equation as follows:

Mo = ['F o0, ((n) + erpu@a, ()] (141)

It is obvious that the differential equation for the collinear quark jet function is identical to the DGLAP evolution equation.

The initial condition for this equation is given by the 7. E,O>(z) =6(1 —z) at scale u; = P;R. We should also consider
running coupling solution when we perform the numerical calculations. Following the same procedure, we can obtain the
evolution equation of the collinear gluon jet function

GeR-gf fhmn () s, o

with initial condition J éo) (z) = 6(1 — z) at scale yu; = P;R. Now we can resum the final state collinear logarithms In —222 as
J
in Egs. (53), (103), (117), and (133) through the DGLAP equation with the following replacement:

[jq@,m} 1 dg {Cﬂ’qq(é) cFqu<¢>] [Jq<z/5,m} . VAZ’M] (143)

+—1 —
jg(z,,u ) 2z /"J é TxP qq (é) NC,qu(é) jg(z/gvﬂl) jg(z’ A)

In practice, we require y; > Aqcp. This requirement allows us to perform perturbative QCD calculations.
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The quantitative prescription for the choice of A is the
same as the hadron production case. The detailed derivation
which determines the proper value of the auxiliary scale A2
can be found in Ref. [66]. Particularly, we can identify the
dominant contribution for the NLO correction via the
saddle point approximation and we find the natural choice
for the semihard scale A? in the ¢ — ¢ channel

2 —r
q7 (1 = &) |crine
A? ~ max {AgCD {%} e Qz}. (144)
QCD
Once we replace the color factor C with N in the above
equation and change Q; to the adjoint representation, we

can get the result for the g — g channel.

B. The resummation of the collinear logarithm
in Mellin space

Alternatively, we can resum the collinear logarithms
in Mellin space [135,139-141]. This type of threshold
resummation was first introduced for the DIS process [ 136—
138,142] within the soft collinear effective theory frame-
work. Our strategy used here is based on our previous work
[66]. Due to the plus functions and delta functions in
P,4(&) and P, (&), there are endpoint singularities in the
& — 1 limit. This limit corresponds to the large N limit in
the Mellin moment space. Therefore, the dominant con-
tributions arise from these endpoint singularities and they
are from diagonal channels. In contrast, the off-diagonal
channels have no plus functions or delta functions.
Therefore, we expect that the threshold effects from the
off-diagonal terms are small. We simply deal with the
diagonal channels in this subsection and keep the off-
diagonal channels unchanged.

We first Mellin transform the cross section of the
diagonal channels into Mellin space. In Mellin space, the
convolution of the differential cross section can be
factorized into an independent integral product and
the integration over £ One can exponentiate the corre-
sponding large logarithms in Mellin space under the
large-N limit. At the end of the day, we need to
perform the cross section back to the momentum space
with the help of the inverse Mellin transform. Since the
calculation 1is straightforward, we only list the main
results here and more details can be found in our previous
work [66].

We first take the ¢ — ¢ channel as an example and show
what is going on, then the g — ¢ channel can be done
similarly. Utilizing Mellin transform and inverse Mellin
transform, we resum the collinear logarithms associated
with PDFs and CJFs separately. For PDFs and CJFs, we
write

Mot [[Fa(3)Pute) = Puam. a9

A' dzzV~! /Z' %jq (f?) PoulE) = Poy(N)T,(N).
(146)

where  g(N) = [ dxxV~g(x) and P, (N)=
Jo dEENTIP, (&). The resummed quark distributions and
CJFs in Mellin space can be cast into

A? 3
q**(N) = q(N)exp [_%CFln_z <7’E——+1nN>}’
T U 4
(147)
T g A2 3
T (N) =T 4(N)exp |-—Cpln—(yp =7 +InN ||.
z My 4
(148)

In arriving at the above expressions, we have taken the
large N limit and exponentiated the collinear logarithms.
Next, we perform the inverse Mellin transform with respect
to ¢g"5(N) and obtain

dN
2\ — - =N N
)= [ S a)
A? 3
X exp {—ﬁCpln—ZQ/E———I—lnN)}
/s u 4
A? 3
= exp [—a—Cpln <yE——>]
7 u? 4
Ldx! dN [X\N
X/ —q(x. 2)/T<_>
0 C &l \ X

. A?
X exp {—ﬁCF ln—zlnN}.
T H

qres ( x [\2

(149)

After integrating over N, we arrive at the resummed
expression of quark distribution for the ¢ — ¢ channel.
It is given by

“TaaE=D) 1 gy Y\ 71
res A2 2\ — € 1
g, N 1) = ———— l o g, u)(nx) .

F(YA.#)
Re[yf\’ﬂ} > 0, (150)
where yj{’” =% 2> Cp ln Slmllarly, with the same strategy,

for the quark Jet functlon, we have

1d yAwl
CHNE ,m( ZZ) ,

(151)

3
e—}'j’w L (re=3)

F(qu\,ﬂ_l ) 2
Re[y}, |>0.

T (2, A2, 3) =
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o [ Wl
7/\,4] F g le P

Note that the above anomalous dimensions y§ , and yy

153
are formulated in the fixed coupling case. In the running (153)

coupling scenario, they read as
For the g — g channel, one just needs to replace
i ) the splitting function P, (&) to Py, (&) and color factor
/ N du” a, (4”)
=Cp
s

- i (152) Cr to N.. The Mellin transform of P (&) is given by
H T Pyy(N) = [ dEEN~1P, (&). Therefore, for the gluon case,

we obtain the following expressions for the resummed
gluon PDFs and CJFs:

. e TnurE=P0)  r1dy! ¥\ 74,1 ;
S A ) =——— | —9(X, In , R >0, 154
gr (x H ) 1—‘(}/3\”) /\: x/ g( H )( x) e[yl\,ﬂ} ( )
e—J’i/\M(}’E—ﬁO) 1 dZ/ ZI VLJ\M—I
T (2, A*, 13 :7/ — T3 (ln—) , Rely% , ] >0, 155
) =S e (1 A (155)
where the gluon channel anomalous dimensions read
A du” (1)
Yau=Ne e W w (156)
A du” a, ()
y/\’uj NC p ’[,{/2 ju (157)

One should note that the above resummed results are only applicable in the region Re[y} 4/9 At/ | > 0. Therefore, we need to do
the analytic continuation to extend to the whole space. Inspired by the analytic continuation of the gamma function, the
resummed PDFs and CJFs can be rewritten with the help of the star distribution [137,138,142]. With the star distribution,
they are given by

e‘VX,,(VE‘%) 1dx’ X 71\ ~1
qres(x7A27M2) — / q x /" < _> (158)
F(}’?\ﬂ) X ! X
e—ri,ﬂ(n—ﬂo 1dx! X yw—l
g (x, A%, u?) =7(/ — g @ ( - (159)
F(}’j\.”> X ! X
—77\ <7E_%> 1 / / 4 _q
e HJ dZ Z yA,MJ
TS (2, A% uj ——/ — T (243 <1n—> 160
q ( J) F(Y?\,ﬂ) . ZI 6]( J) 7). ( )
e—J’;J\M(YE—ﬂo) 1 dZ z 7A;¢
res Z,AZ, 2\ / Z <ln) J 161
jg ( ﬂ]) F(ylg\”J) . Z/ :u./ z ( )

where the detailed prescription of the star distribution can
also be found in Sec. III3 in the supplemental material
of Ref. [66].

hadron production case, except for the final state radiation.
As we have discussed at the beginning of this section, the
counting rule for the double logarithmic contribution is
different between hadron and jet production. We have only

C. Resummation of the soft logarithms initial state contribution for the jet production. Therefore,

The resummation procedures for both single and double
Sudakov logarithms are almost the same as those in the

we identify the following Sudakov logarithms for the
q — q channel and similarly for the ¢ — ¢ channel
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a; Cp Clt a3 QL

T2 W tan g (162
a N g7 | a 47

~35 —~In 2A 2—ﬂzﬁoNclnA—g. (163)

In addition, we can extend the above expression by
considering the running of the coupling as follows:

Cp [ d? ay(u?) 3 /qi dp? a, (1)
Sqq F g 1___C . ’
= [0 2 n,uz 2 F e 2 2

(164)

dO-Sud matching
dnd*pP,

N, (4 du® a,(u? z 7 d 2
Sg?ld:_L/ iizab(/’l )ln%_zﬁoNC iiz (//l )
2 ) womoop o ue 2w
(165)
The resummation of the soft logarithms can be

achieved by exponentiating the above Sudakov factor.
Following Ref. [66], to treat the NLO correction, the
Sudakov matching term is defined as follows:

1dz a, . 3, 4
= St/r Z—zxq(x,,uz)Jq(Z,/ﬁ)F(ql){ngd - [CF% (21 2/\2 ) np

ldz
+SJ_/ Z—ZXQ(xMz)jg(Z’ﬂ%)/dzun(Cht)F(Ch —q1.1)

a 2
s [t (-] )

D. The full resummation results

By using the DGLAP evolution equations, we resum the
initial state collinear logarithms in o, o, 0},, and 6, by
setting the factorization scale y”> to A” in Eq. (137), then
resum the final state collinear logarithms associated with
the jet in o3, o} and o}, by replacing PJR? by A?
in Eq. (143).

As discussed previously, only initial state radiations
contain the genuine Sudakov logarithms, thus we extract
the corresponding initial state Sudakov logarithms in aéq,
1054, 6%, and 1 6% and resum them by exponentiating the
Sudakov factor in Eqs (164) and (165) In contrast, the
remaining logarithms and 0,4 are associated with
the final state gluon radlatlon from the jet. We treat them
as normal NLO corrections along with other NLO terms

|

Ogg> O, gq’

(166)

in the hard factor. In the NLO hard matching term, there

are nine terms (o>, 6% 164 66 60 67 68 610 51l

99> %99°2%4q> 99> Oqq> 99> Oqq> Cqq> Oqq

in the ¢ — ¢ channel after removing the large logarithms

(04q» 054» 3009). In the g — g channel, there are also nine
ot 65 o6 Llgla Tb 8
terms (ogq, 90> Cog> Oag» 300> Cggs Oggs ogq, ) left after
2
removing (agg, Gy and 2agg) Be51des there are three
o3
terms (agq, 990 gq) and (aqg, 29> and O'qg) inthe g - ¢

and g — g channels, respectively. We put all of these
remaining small terms in the NLO hard factor which is
referred to as the “NLO matching” contribution.

The fully resummed result can be derived by collecting
Egs. (137), (143), (164), and (165) together, the detailed
derivation can be found in Ref. [66], and we present the
final “resummed” result here

Tt 5, [ Frale AT e NP e 5. [ T )7, [ @i Fla) =g
(167)
At the end of the day, the resummation improved NLO cross section is then given by
do _ d6 esummed , 4ONLO matching dosug matching ’ (1 68)
dnd?pP, dnd?P, dndP, dnd?P,

where
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dONLO matching _ dog, 1 do3 doh dot,
dnd*P, i=3.4.678.10,11 dnd*P;  2dyd*pP, ~ dyd*P, i=23.5 dnd*P,
. Y .
N doy, 1 dold doll N Z do!, (169)
i=3.45.6.8.9.10 dpd*P; ~ 2dpd*P;  dndP, =235 dnd?P,

and “Sud matching” is given by Eq. (166). Due to the
resummation of the threshold collinear logarithms, the
scale p for PDFs (or u; for CJFs) in 6 eqummea DECOMES
A. Meanwhile, the scales remain unchanged in
ONLO matching- After all resummations, we believe that all
of the large logarithms have been taken care of and the
remaining NLO hard factors are numerically small. There-
fore, the resummation improved results allow us to obtain
reliable predictions for forward jet productions.

V. CONCLUSION

In summary, we have systematically calculated the
complete NLO cross section for single inclusive jet
production in pA collisions at a forward rapidity region
within the small-x framework. As shown above, the narrow
jet approximation allows us to neglect the small contribu-
tion from the kinematic region where the radiated gluon is
located inside the jet cone. Therefore, the calculation for the
initial state radiation becomes identical to the single hadron
production case. The collinear divergences associated with
the initial state gluon radiation can also be factorized into
the splittings of the PDFs of the incoming nucleon. Thanks
to the jet algorithm, complete cancellations occur for final
state gluon radiations as expected. The residual contribu-
tion after the cancellation is proportional to In %, which is
only divergent in the small cone limit(R — 0). It is the
signature of final state collinear divergence, and corre-
sponds to the collinear singularity for FFs in the hadron
production case. By employing proper subtractions of both
rapidity and collinear divergences, we obtain the NLO hard
coefficients which can be numerically evaluated for future
phenomenological studies. The one-loop results obtained in
this study are consistent with the results in Ref. [67].
However, our resummation strategies for the collinear and
Sudakov logarithms from the initial state radiations and the
jet cone logarithms from the final state radiations are new.

The resummation strategy that we use is analogous to
that in our previous study, Ref. [66]. We first identify the
Sudakov type logarithms associated with the soft gluon
emissions near the threshold, then we perform the Sudakov
resummation in momentum space. The remaining single
logarithmic terms are resummed with the help of the

|

DGLAP equation. The procedure is also similar to the
practice in the Collins-Soper-Sterman formalism. In addition,
due to the introduction of jet cones which regularize the final
state divergence, we find that double logarithmic divergences
are absent in final state gluon radiations. Therefore, there are
no Sudakov double logs for final state radiations in the end.
We expect the numerical results of the jet cross section will be
similar to the hadron case. Our approach for resummation is
different from that in Ref. [67] where the threshold logarithms
are resummed in Mellin space.

Furthermore, by applying the threshold resummation
technique in the CGC formalism, we can improve the
theoretical calculation precision by resumming threshold
logarithms. In addition, the resummation of the collinear
logarithms can be achieved automatically through evolving
the scale u for PDFs (or pu; for CJFs) to the auxiliary scale
A. The results provide another channel at the NLO level for
the study of the onset of the gluon saturation phenomenon
in high energy collisions. The numerical evaluation of the
NLO forward jet production is underway, and it will be
presented in a separate work.

At last, the calculation presented in this paper can be
extended to the NLO computation of the well-known
Mueller-Navelet jet [143] process in proton-proton colli-
sions in which two jets with a large rapidity gap are
produced. The Mueller-Navelet jet offers a unique channel
for us to understand the BFKL dynamics. By choosing the
Coulomb gauge for this process, one can separate the gluon
radiation off the upper jet from the gluon emission from the
bottom one. Thus, similar techniques used in this paper can
be applied to both the forward and backward rapidity
regions. We will leave this study for future work.
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