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We investigate the impact of non-Hermiticity on the thermodynamic properties of interacting fermions
by examining bilinear extensions to the 3þ 1-dimensional SUð2Þ-symmetric Nambu–Jona-Lasinio (NJL)
model of quantum chromodynamics at finite temperature and chemical potential. The system is modified
through the anti-PT -symmetric pseudoscalar bilinear ψ̄γ5ψ and the PT -symmetric pseudovector bilinear
iBνψ̄γ5γ

νψ , introduced with a coupling g. Beyond the possibility of dynamical fermion mass generation at
finite temperature and chemical potential, our findings establish model-dependent changes in the position
of the chiral phase transition and the critical end point. These are tunable with respect to g in the former
case, and both g and jBj=B0 in the latter case, for both lightlike and spacelike fields. Moreover, the behavior
of the quark number, entropy, pressure, and energy densities signal a potential fermion or antifermion
excess compared to the standard NJL model, due to the pseudoscalar and pseudovector extension,
respectively. In both cases, regions with negative interaction measure I ¼ ϵ − 3p are found. Future
indications of such behaviors in strongly interacting fermion systems, for example, in the context of
neutron star physics, may point toward the presence of non-Hermitian contributions. These trends provide a
first indication of curious potential mechanisms for producing non-Hermitian baryon asymmetry. In
addition, the formalism described in this study is expected to apply more generally to other Hamiltonians
with four-fermion interactions, and thus, the effects of the non-Hermitian bilinears are likely to be generic.
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I. INTRODUCTION

The concept of PT (parity-time reflection) symmetry
has, since its inception by Bender and Boettcher in
1998 [1], become a highly active field of research in both
theoretical and experimental physics. In general, it has
overthrown the prevailing principle that physical systems
must be governed by a Hermitian Hamiltonian and has
demonstrated that rich and unexpected features are found
in non-Hermitian systems with PT symmetry. In particular,
the possible occurrence of exceptional points has illustrated
consequences beyond those observed in Hermitian models.
Various experimental realizations, displaying these par-
ticular properties of PT -symmetric systems have firmly

established PT symmetry as an important feature of
classical and quantum-mechanical systems [2–15].
On a fundamental level, however, the development

of a quantum-field-theoretical approach is essential. In
the context of 3þ 1-dimensional fermionic field theories,
the oddness of the time-reversal operator T , i.e., T 2 ¼ −1,
becomes a core feature when discussing non-Hermitian
models, centered around their behavior under combined
parity reflection and time reversal [16,17]. In a recent
study [18], we have shown that modifying free Dirac
fermions through the inclusion of non-Hermitian bilinears,
PT -symmetric or otherwise, results in a breakdown of the
existence of a real physical fermion mass. In hindsight, this
is due to the odd nature of the fermionic time-reversal
operator that also underlies Kramer’s degeneracy. It is not
ensured in the relativistic context, that both necessary
conditions for a real spectrum, ½H;PT � ¼ 0 and the
simultaneity of eigenfunctions to both H and PT , are
met. However, in further studies [19,20], we demonstrated
that such real-mass solutions can in fact exist, when higher-
order interactions are also present in the Hamiltonian. Then
mass can be generated dynamically through the inclusion
of the non-Hermitian but PT -symmetric pseudovector
extension igBνψ̄γ5γ

νψ .
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However, the existence of a real mass solution and even
of dynamical mass generation is not restricted to non-
Hermitian PT -symmetric modifications: a pseudoscalar
bilinear term gψ̄γ5ψ , for example, while being neither
Hermitian, nor PT -symmetric, still generates real fermion
mass dynamically when taken in combination with higher-
order interactions [19,20]. For this reason, we choose here
particularly to study these two model interactions, gψ̄γ5ψ
and igBνψ̄γ5γ

νψ , placed in such a context, as a function of
finite temperature and density. This is most conveniently
done within the Nambu–Jona-Lasinio (NJL) model, which
provides a fermionic system with a two-body contact
interaction [21,22], whose results may easily be taken over
for other similar systems [23,24]. As a commonly used
effective field theory of quantum chromodynamics (QCD),
that models in particular the spontaneous chiral-symmetry-
breaking phase transition at finite temperature and density,
the use of the NJL model furthermore ties this study to
the development of a general framework of PT -symmetric
field theories containing four-point contact interactions and
the possibility of applications of non-Hermitian physics
beyond the Standard Model; see, for example, [23–27], and
in atomic and condensed matter physics [28,29]. Here,
analyzing the effects of finite temperature and density on
non-Hermitian and in particular PT -symmetric theories
marks a crucial step towards developing feasible non-
Hermitian approaches and PT quantum field theories
applicable to experimental realizations, such as heavy-
ion collisions and astrophysical models of compact stars.
The crucial task of course is to identify characteristics
beyond the existence and generation of real effective
fermion mass, that may both differentiate between
Hermitian and non-Hermitian field theories, and examine
whether new features of quantum field theories may arise,
when the underlying system is generally non-Hermitian,
and specifically, when it is PT symmetric.
This paper is structured as follows. In Sec. II, the

standard SUð2Þ NJL model is reviewed. This discussion
serves as the baseline for the examination and the modified
approach used in the study of the non-Hermitian extensions
of the NJL model. The gap equation for the effective
fermion mass is presented in a self-consistent Hartree
approximation and within the Matsubara-formalism for
finite temperature T and at finite chemical potential μ,
introducing a three-dimensional regulator Λ. The thermo-
dynamic (grand) potential Ω is obtained following the
coupling-constant integration method. Based on this, the
phase diagram of the physical fermion mass is determined
and the behavior of the thermodynamic observables—
quark number, pressure, entropy, and energy density, as
well as the interaction measure—is established.
Section III adapts the NJL formalism for the study of the

model which is modified through the inclusion of a non-
Hermitian non-PT -symmetric bilinear extension based on
the pseudoscalar term γ5, introduced with the coupling

constant g. The qualitative results obtained at zero temper-
ature and chemical potential are seen to verify the behavior
found previously with an Euclidean four-momentum cutoff
under similar constraints [20]. The behavior of the effective
fermion mass, in particular, the spontaneous chiral-
symmetry-breaking phase transition and its critical end point
(CEP), as well as the effect on the thermodynamic observ-
ables is analyzed in dependence of the temperature T and
chemical potential μ, as well as T and the quark number
density n for illustrative values of the coupling g. Despite a
dynamical generation of fermion mass within the sponta-
neously broken approximate chiral symmetry regime, the
behavior of the thermodynamic observables is demonstrated
to coincide with the standard NJL model behavior at low
temperature and small chemical potential. In the vicinity of
the phase transition and throughout the restored symmetry
region, however, the pseudoscalar extension drives a fermion
excess compared to the standard NJL model and exhibits
interaction measures I ¼ ε − 3p < 0.
In Sec. IV, the NJL model is extended through the

inclusion of the non-Hermitian but PT -symmetric
pseudovector bilinear igBνψ̄γ5γ

νψ. The influence of this
modification on the effective fermion mass at finite T
and μ is analyzed for a spacelike, a lightlike, and a timelike
background field Bν. We confirm that the results for
the spacelike background field obtained in the zero-
temperature and vanishing chemical potential limit
coincide qualitatively with those previously found using
an Euclidean cutoff, demonstrating the robustness of the
regularization procedure in this limit. The effect on the
position of the chiral phase transition, the CEP and on
the behavior of the thermodynamic observables within the
T-μ–plane is investigated, finding a notable deviation from
the standard NJL model behavior and an emphasis on the
antifermionic component of the system. This contrasts with
the findings within the pseudoscalar extension.
We conclude and summarize our results in Sec. V.

II. THE NJL MODEL

In the grand canonical ensemble, the two-flavor version
of the standard NJL model [21] is characterized by the
Hamiltonian density,

HNJL − μN ¼ ψ̄ð−iγk∂k þm0 − μÞψ −G½ðψ̄ψÞ2
þ ðψ̄iγ5τ⃗ψÞ2�; ð1Þ

where N is the quark number density operator, μ is the
baryon chemical potential, G is the two-body coupling
strength, and m0 is a bare fermion mass term. τ⃗ denotes
the isospin SUð2Þ matrices. The Dirac matrices γ in
3þ 1-dimensional spacetime have the form,

γ0¼
�
1 0

0 −1

�
; γk¼

�
0 σk

−σk 0

�
; γ5¼ iγ0γ1γ2γ3; ð2Þ

FELSKI, BEYGI, and KLEVANSKY PHYS. REV. D 107, 016015 (2023)

016015-2



where σk with k ∈ ½1; 3� are the Pauli matrices. In the limit
of vanishing bare mass m0, this model can be used to study
the spontaneous chiral symmetry breaking, which occurs
through fermion-antifermion pair production, parallelling
the Bardeen-Cooper-Schrieffer mechanism of supercon-
ductivity [30]. It is therefore a commonly used effective
model for the study of QCD in the low-energy regime.
Due to the nonrenormalizability introduced by the contact
interaction, a cutoff length of Λ ¼ 653 MeV and the
coupling strength GΛ2 ¼ 2.14, determined traditionally
through the quark condensate density per flavor and the
pion-decay constant, are fixed within a three-momentum
cutoff regularization scheme in this context, cf. [22].
Following the Feynman-Dyson perturbation theory, the

gap equation for the effective fermion massm is determined
in a self-consistent Hartree approximation to take the
well-established form,

mNJL ¼ m0 − 2GNcNf

Z
Λ d3p
ð2πÞ3 T

X
n

eiωnηtr½SðpnÞ�; ð3Þ

where Nc ¼ 3, Nf ¼ 2, and tr denotes the spinor trace
over the fermion propagator SðpnÞ ¼ ð=pn þ μγ0 −mNJLÞ−1
with pn ¼ ðiωn;pÞ and ωn ¼ ð2nþ 1ÞπT. The effects of
the finite temperature T are included here through the
imaginary-time (or Matsubara) formalism, cf. [31,32]; the
parameter η denotes an infinitesimally small positive
imaginary-time difference, kept for definiteness and ulti-
mately taken to vanish. Upon evaluation of the Matsubara-
frequency summation and in the chiral limit m0 → 0, the
gap equation (3) becomes

mNJL ¼ 2GNcNfmNJL

×
Z

Λ d3p
ð2πÞ3

1

E

�
tanh

�
Eþ μ

2T

�
þ tanh

�
E − μ

2T

��
;

ð4Þ
where E2 ¼ p2 þm2

NJL, cf. [22].
When evaluating the self-consistent gap equation at

vanishing chemical potential μ, one obtains a finite effec-
tive fermion mass solution of mNJLð0; 0Þ ≈ 313 MeV at
T ¼ μ ¼ 0, which decreases monotonically as a function
of increasing temperature T, until a second-order phase
transition is reached at a critical value Tcðμ ¼ 0Þ≈
190 MeV. At higher temperatures, the initial spontaneously
broken chiral symmetry of the system is restored, and the
effective fermion mass mNJL vanishes. This behavior is
shown in Fig. 1. A qualitatively similar second-order phase
transition is found for small finite chemical potential μ,
differing in a decrease of the critical temperature TcðμÞ and
of the mass mNJLðT; μÞ in the spontaneously broken chiral-
symmetry phase.
When evaluating the gap equation (4) at vanishing

(or small) temperature T as a function of the chemical
potential μ, however, a parametric region is reached in

which the gap equation admits multiple real mass solutions.
The stable physical mass solution in this region can then be
determined as the global minimum of the thermodynamic
potential,

ΩNJLðT; μÞ ¼ −T ln½Z� ¼ −T lnðtr½e−ðHNJL−μNÞ=T �Þ; ð5Þ

under variation of m, where Z denotes the (grand canoni-
cal) partition function. Using the coupling-constant inte-
gration method, see, e.g., [22,32], ΩNJL can be determined
as follows: by considering the Hamiltonian density
Hλ ¼ H0 þ λHint, withHint denoting the two-body contact
interaction term in (1), Eq. (5) implies that

dΩλ

dλ
¼ 1

λZλ
trðλHintZλÞ ¼

1

λ
hHinti: ð6Þ

Accordingly, the thermodynamic potential ΩNJL of the
system (1), associated with λ ¼ 1, can be determined from
the thermodynamic average of the interaction energy to be

ΩNJL −Ω0 ¼
1

4G

�
ðmNJL −m0Þ2− 2

Z
1

0

dλ
λ
ðmλ −m0Þ

dmλ

dλ

�
;

ð7Þ

cf. [22]. By substituting the λ-dependent equivalent of the
gap equation (3) for mλ −m0, the coupling-constant inte-
gration thus results in the expression,

ΩNJL−Ω0¼
ðmNJL−m0Þ2

4G

−2TNcNf

Z
Λ d3p
ð2πÞ3 ln

"
coshðEþμ

2T ÞcoshðE−μ
2T Þ

coshðE0þμ
2T ÞcoshðE0−μ

2T Þ

#
;

ð8Þ

with E2
0 ¼ p2 þm2

0. Subtracting the contribution of the
denominator in the logarithm, which is associated with the

50 100 150 190

100

200

313

FIG. 1. Behavior of the effective fermion mass m within the
NJL model in MeVat the chemical potential μ ¼ 0 and μ ¼ 0.2Λ
as a function of the temperature T in MeV.
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thermodynamic potential Ω0 of the free theory obtained at
λ ¼ 0, one thus finds

ΩNJLðT; μÞ ¼
ðmNJL −m0Þ2

4G
− 2NcNf

Z
Λ d3p
ð2πÞ3 E

− 2TNcNf

Z
Λ d3p
ð2πÞ3 lnð½1þ e−ðEþμÞ=T �

× ½1þ e−ðE−μÞ=T �Þ: ð9Þ

The gap equation (4) can be regained from the extremal
condition dΩ=dm ¼ 0 in the chiral limit.
In Fig. 2, the behavior of the thermodynamic potential is

visualized for vanishing temperature T and various chemi-
cal potentials μ as a function of the effective mass m.
For small chemical potentials μ < μ− ≈ 314 MeV (dotted
black line), the only minimum lies at a finite value of
the fermion mass, which identifies the physical solution in
this region of spontaneously broken chiral symmetry. For
μ− < μ < μþ ≈ 333 MeV, the thermodynamic potential
admits a second minimum at vanishing mass, which for
μ− < μ < μc ≈ 326 MeV (dashed black line) is only a
local, not a global minimum of ΩNJLðT ¼ 0; μÞ.
Therefore, the vanishing mass solution is a metastable
state in this region. At μc (solid black line) both minima of
ΩNJL lie at the same height. The abrupt transition from the
finite fermion mass to the vanishing mass solution at μc

thus marks a chiral-symmetry-breaking first-order phase
transition. For μc < μ < μþ (dashed red line), the global
minimum characterizing the physical solution lies at
vanishing mass, while the finite-mass solution describes
a local minimum associated with a metastable solution
only. When μ > μþ (solid red line), the only minimum
lies at vanishing mass. No additional solutions exist.
Moreover, a local maximum of ΩNJLðT ¼ 0; μÞ can be
found for μ < μ− at m ¼ 0 (see dotted black curve) and for

μ− < μ < μþ in between the two existing minima (see
dashed curves and solid black curve). While this maximum
denotes a possible mass solution of the gap equation, such a
solution is an unstable state.
The behavior of the stable physical fermion mass, as well

as the metastable and unstable mass solutions of the gap
equation, are visualized as a function of the chemical
potential μ in Fig. 3 as solid, dashed, and dotted lines,
respectively. A qualitatively similar first-order phase tran-
sition behavior is found at small finite temperatures T,
causing a small decrease in the critical chemical potential
μcðTÞ and the massmNJLðT; μÞ in the spontaneously broken
chiral-symmetry phase.
In Fig. 4, the behavior of the physical massmNJL is shown

as a function of both the temperature T and the chemical
potential μ, with the chiral phase transition being denoted in
red. The red dot marks the critical end point (CEP) at which
the first-order transition behavior, found at small temper-
atures, changes to a second-order transition, found at small
chemical potentials. It lies at TCEP ≈ 79 MeV and μCEP ≈
281 MeV [with a ratio of ðμ=TÞCEP ≈ 3.56].
Another instructive representation of the chiral phase

transition that is commonly used in the context of heavy-
ion collisions and astrophysical models of compact stars,
considers the behavior of the effective fermion mass as a
function of the quark number density nðT; μÞ instead of the
chemical potential μ, which is determined through the
thermodynamic potential as

nNJLðT; μÞ

¼ −
∂ΩNJLðT; μÞ

∂μ

����
T

¼ NcNf

Z
Λ d3p
ð2πÞ3

�
tanh

�
Eþ μ

2T

�
− tanh

�
E − μ

2T

��
:

ð10Þ

FIG. 2. Qualitative behavior of the thermodynamic potential
ΩNJL at vanishing temperature T as a function of the effective
mass m for various chemical potentials μ. The different cases
illustrate the possible existence of extrema at vanishing and
finite mass.

FIG. 3. Behavior of the effective fermion mass m within the
NJL model in MeV at vanishing temperature T as a function of
the chemical potential μ in MeV. The stable physical mass
solution associated with the global minimum of ΩNJL is shown as
a solid black line, undergoing a first-order phase transition at μc.
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It is the physical quantity that enters into the equations of
state and which is accessible experimentally. Such a repre-
sentation also has the advantage that the stable, metastable
and unstable solutions of the fermion mass found in the
region with a first-order phase transition arise as separate
regions of a single-valued function in the quark number
density, while these solutions form overlapping branches in
the chemical potential between μ− and μþ. This is illustrated
for the case of vanishing temperature in Fig. 5(a), where
nNJLðT ¼ 0; μÞ is shown as a function of the chemical
potential. The solutions for stable, metastable, and unstable
fermion masses are indicated as solid, dashed, and dotted
lines, respectively, and the corresponding regions of the
quark number density nNJL are indicated. The chiral phase
diagram in the T-n–plane is shown in Fig. 5(b). The phase
transition is denoted as a solid black line. Red lines denote
the spinoidals associated with μ�, that bind the regions of
metastable solutions (shaded in red) and mark the transition
to the region of only unstable results.

Beyond the identification of the physical effective
fermion mass, the thermodynamic potential in (9) allows
for the study of various thermodynamic observables. In
addition to the quark number density nNJL, the entropy
density sNJL is determined through ΩNJLðT; μÞ to be

sNJLðT; μÞ ¼ −
∂ΩNJLðT; μÞ

∂T

����
μ

¼ 2NcNf

Z
Λ d3p
ð2πÞ3

�
lnð½1þ e−ðEþμÞ=T �½1þ e−ðE−μÞ=T �Þ þ E

T
−
Eþ μ

2T
tanh

�
Eþ μ

2T

�
−
E − μ

2T
tanh

�
E − μ

2T

��
:

ð11Þ

FIG. 5. (a) Quark number density at vanishing temperature as a
function of the chemical potential μ in MeV, illustrating that,
while the stable, metastable, and unstable mass solutions of the
gap equation are a function of the chemical potential with
multiple branches, they form a single-valued function of the
quark number density. (b) Chiral phase diagram of the NJL model
in the temperature-quark number density plane. The phase
transition of the stable physical fermion mass is denoted as solid
black line. Red lines denote the spinoidals associated with μþ
(dashed) and μ− (solid) marking the transition from the meta-
stable (shaded) to the unstable mass regions.

FIG. 4. Effective fermion mass mNJL as a function of the
temperature T and the chemical potential μ in MeV. The chiral
phase transition is denoted in red, with a red dot indicating the
CEP. At low temperatures, the mass undergoes a discontinuous
first-order chiral phase transition, while the transition is of second
order at small chemical potentials.
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The pressure density pNJLðT; μÞ corresponds to the
thermodynamic potential (9) up to an overall sign and
relative to the physical vacuum at vanishing temperature
and chemical potential,

pNJLðT; μÞ ¼ −½ΩNJLðT; μÞ −ΩNJLð0; 0Þ�: ð12Þ

The energy density ϵNJLðT; μÞ and the interaction measure
(or trace anomaly of the energy-momentum tensor)
INJLðT; μÞ, quantifying the deviation from an ideal-gas
behavior, have the respective forms,

ϵNJLðT; μÞ ¼ −pNJL þ TsNJL þ μnNJL; ð13Þ

INJLðT; μÞ ¼ ϵNJL − 3pNJL: ð14Þ

To study the behavior of these observables (10)–(14),
their analysis as a function of the temperature T along
lines of constant μ=T in the T-μ–plane is instructive.
Furthermore, the influence of the three-momentum cutoff
scale Λ can be examined by considering the behavior of the
thermodynamic observables along these lines in the limit
Λ → ∞. Note that, while the quark number density (10)
and entropy density (11) remain convergent in this limit,
the thermodynamic potential (9), and consequently. the
pressure density (12), energy density (13), and interaction
measure (14), show an ultraviolet divergence. In the
form (9), however, one finds this divergence contained
in the last term contributing to ΩNJLðT; μÞ, while the three-
momentum integration of the logarithmic term remains
finite in the large cutoff limit. Since the divergent term is,
in particular, independent of the temperature T and the
chemical potential μ, it is sufficient to remove the cutoff of
the finite logarithmic term in (9) to study the behavior at
high temperatures.
Notably the algebraic behavior of ΩNJL in the large

temperature limit for fixed μ=T and when removing the
cutoff scale Λ → ∞ is found to be

ΩNJLðT; μÞ ∼ −T4NcNf

�
7π2

180
þ 1

6

�
μ

T

�
2

þ 1

12π2

�
μ

T

�
4
�
;

ð15Þ

and coincides with the Stefan-Boltzmann (SB) behavior
of an ideal massless fermion gas, which is expected to
dominate the behavior of the NJL model in the chirally
symmetric region. Together with the corresponding expan-
sions of (10) and (11),

nNJLðT; μÞ ∼ T3NcNf

�
1

3

�
μ

T

�
þ 1

3π2

�
μ

T

�
3
�
; ð16Þ

sNJLðT; μÞ ∼ T3NcNf

�
7π2

45
þ 1

3

�
μ

T

�
2
�
; ð17Þ

it is thus sensible to present the scaled quantities n=T3,
s=T3, p=T4, ϵ=T4, and I=T4 when considering the behavior
of these observables as functions of T for fixed values μ=T,
because they approach finite limits at large temperatures.
To compare the behavior of the thermodynamic observ-

ables along different lines of fixed values μ=T, they are here
furthermore normalized to their respective SB limit values,
as determined by (15)–(17). An exception is the asymp-
totically vanishing interaction measure, which is scaled to
its value at the phase transition in the Λ → ∞ case instead.
Their behaviors are shown in Figs. 6(a)–6(e). In each case,
the solid lines denote the behavior with fixed cutoff length
Λ as a function of the scaled temperature T=Tc for μ=T ¼ 2
(red), i.e., in the second-order phase-transition region, and
for μ=T ¼ 5 (blue), i.e., in the first-order transition region.
For comparison with the frequently presented case along
the temperature axis, the behavior for close-to vanishing
chemical potential, μ=T ¼ 10−4, is included in black. This
value of μ=T is not taken to vanish exactly in order to
present a nontrivial reference for the quark number density
n as well, whose SB limit otherwise vanishes as μ → 0;
see (16). The respective normalizations, as well as the
critical-temperature values Tc of the phase transition, are
listed in Table I.
In the region of restored chiral symmetry, that is at large

temperatures T > Tc, the effective fermion mass vanishes,
and thus, the free quarks are expected to dominate the
physical behavior of the system. Accordingly, the quark
number density, as well as the pressure, entropy, and energy
densities, should saturate to the behavior of an ideal gas
of massless fermions. Instead, Figs. 6(a)–6(d) show an
asymptotic decay of these quantities at large temperatures
beyond the chiral phase transition. The comparison to the
Λ → ∞ behavior illustrates, however, that this decay is the
consequence of the momentum cutoff within the model.
For definiteness, regard Fig. 6(c) for the pressure, which is
continuous in all cases. While the NJLðΛÞ curves (solid
lines) undershoot the SB limit and in fact go to zero, the
NJLð∞Þ curves (dashed lines), found by removing the
cutoff, approach the SB limit quite rapidly. The ideal
gas behavior is not only reached in the asymptotic
large-temperature limit, as previously indicated by the
expansions (15)–(17), but one finds rather, that the thermo-
dynamic observables plateau rapidly after crossing the
phase transition at Tc—in agreement with expectation.
Notably, the quark number density, Fig. 6(a), and entropy
density, Fig. 6(b), reach their respective SB limits essen-
tially upon undergoing the phase transition, while p, ϵ,
and I, Figs. 6(c)–6(e), approach the limits rapidly, but not at
the phase transition point. So while the effective mass
solution m vanishes immediately, resulting in the presence
of a massless fermion gas, the free ideal-gas behavior is
obtained only at some distance from Tc. The effective
degrees of freedom remain restricted around the chiral
phase transition, which is reflected in the reduced pressure
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and higher energy densities as the fermions are still
correlated, and the interaction measure rapidly declining
rather than immediately vanishing due to the absence of
confinement.

At small temperatures T < Tc, the chiral symmetry is
spontaneously broken through the formation of fermion-
antifermion pairs and the fermions gain a finite effective
mass. The behavior of the system is thus expected to be

TABLE I. Chiral phase transition temperature, Stefan-Boltzmann limits of the quark number, entropy, pressure,
and energy densities, as well as the interaction measure value at the phase transition (for Λ → ∞) along lines of
constant μ=T in the T-μ-plane for μ=T ¼ 10−4 (close to the T axis), μ=T ¼ 2 (second-order transition region), and
μ=T ¼ 5 (first-order transition region).

Tc
NJL ðn=T3ÞSB ðs=T3ÞSB ðp=T4ÞSB ðϵ=T4ÞSB ðI=T4Þc

μ=T ¼ 10−4 190 MeV 0.0002 9.2116 2.3029 6.9087 1.7399
μ=T ¼ 2 120 MeV 5.6211 17.2116 7.1135 21.3404 11.0912
μ=T ¼ 5 59 MeV 35.3303 59.2116 58.9658 176.8973 182.9054

FIG. 6. Thermodynamic observables as a function of the scaled temperature T=Tc with three-momentum cutoff Λ (solid) and in the
limit Λ → ∞ (dashed).

THERMODYNAMIC PROPERTIES OF NON-HERMITIAN … PHYS. REV. D 107, 016015 (2023)

016015-7



governed by the massless pionic Nambu-Goldstone mode.
Nevertheless, since the standard NJL model is not confin-
ing, the thermodynamic functions reflect the presence of
fermions within this region as well. Their increasing effect
with the temperature T rising toward the phase transition
value Tc is clearly seen in the growth of the quark number,
entropy, pressure, and energy densities in Figs. 6(a)–6(d).
Notably, the removal of the momentum cutoff, Λ → ∞,
initially does not result in a significant difference of
behavior. Such a deviation is only found as the transition
to the massless-fermion-gas behavior at Tc is approached.
This difference between the solid NJLðΛÞ and dashed
NJLð∞Þ curves, as well as the influence of the fermions
in the broken symmetry region overall, is much less
pronounced at large ratios μ=T, for which the system
undergoes a first-order phase transition with a sudden
discontinuous decrease in the effective fermion mass.
While the thermodynamic potential and thus the pressure
density, remains a continuous function in all cases, the
characteristic discontinuity of the first-order transition is
found in the quark number, entropy, and energy densities,
as well as the interaction measure.
The interaction measure INJLðT; μÞ in Fig. 6(e) further-

more depicts the change in the system between the sponta-
neously broken and restored chiral-symmetry regions
clearly: expressing it in terms of the scaled pressure density,

INJL
T4

¼ T
∂

∂T

�
pNJL

T4

�
þ μ

∂

∂μ

�
pNJL

T4

�
; ð18Þ

illustrates that INJL naively counts the change in the effective
degrees of freedom of the fermions, cf. [33]. As indicated
previously, the results at temperatures close to the phase
transition and throughout the chirally symmetric phase are
affected by themomentumcutoffΛ. In particular the behavior
of an ideal massless fermion gas is only recovered in the limit
Λ → ∞. Thus the behavior of INJL in Fig. 6(e) accounting for
a finite cutoff (solid lines) has to be considered largely
artificial. In the limit Λ → ∞ (dashed lines), however, one
finds a characteristic peaked structure, centered around Tc,
which illustrates the increase in the fermionic effective
degrees of freedom as the system transitions from a mixture
of massive interacting fermions to the free massless fermion
gas in the chirally symmetric region.
Overall, the NJL model can only provide schematic

insight into the nature of the chiral phase transition,
especially in the self-consistent first-order approximation
discussed here. But it provides an adequate, accessible
framework in the search for general characteristic signals of
non-Hermitian fermionic field theories at finite temperature
and chemical potential. To this end, the effects of the non-
Hermitian PT -symmetry breaking pseudoscalar extension
gψ̄γ5ψ and the non-Hermitian PT -symmetric pseudovec-
tor extension igBμψ̄γ5γ

μψ are investigated in the following
sections.

III. PSEUDOSCALAR EXTENSION

The NJL model is now extended through the inclusion
of the pseudoscalar bilinear term gψ̄γ5ψ , a modification
that breaks the Hermiticity of the system. Nevertheless, an
investigation of this model at vanishing temperature and
chemical potential in [20] has established the existence of
real mass solutions and, moreover, dynamical mass gen-
eration due to this non-Hermitian extension term within
the framework of the Euclidean four-momentum cutoff
scheme. This feature is particularly relevant in the context
of PT theory, for which the existence of real solutions to
non-Hermitian models is a characteristic property. The non-
Hermitian pseudoscalar extension, however, breaks PT
symmetry: fPT ; γ5g ¼ 0 for the parity-reflection and time-
reversal operators,

P ∶ ψðt;xÞ → Pψðt;xÞP−1 ¼ γ0ψðt;−xÞ;
T ∶ ψðt;xÞ → T ψðt;xÞT −1 ¼ iγ1γ3ψð−t;xÞ; ð19Þ

in 3þ 1-dimensional spacetime. The extension term is thus
anti-PT -symmetric and the Hamiltonian density,

H ¼ HNJL þ gψ̄γ5ψ ; ð20Þ

of the full extended system is non-PT -symmetric overall.
Therefore, in the context of (at least) this fermionic
quantum field theory, the reality of the effective fermion
mass solution alone appears not to be a sufficient distin-
guishing feature of PT models. To identify such properties
of non-Hermitian fermionic systems, we analyze here the
behavior of the effective fermion mass and the thermody-
namic observables of the non-Hermitian NJL model with
the pseudoscalar extension gγ5 at finite temperatures and
densities. The following section then contrasts this with the
behavior of a non-Hermitian but PT -symmetric pseudo-
vector extension.
In addition to breaking PT symmetry, the bilinear

extension based on γ5 also explicitly breaks the chiral
symmetry of the model considered, similar to including a
small bare mass m0 in the NJL model; see (1). The limit of
vanishing bare mass,m0 → 0, is therefore not a chiral limit.
Nevertheless, the system retains an approximate chiral
symmetry for small bilinear couplings g. Its effect on
the behavior of the effective fermion mass in the T-μ-plane
and across the phase transition is, however, distinctly
different to that of the scalar bare mass m0, as shown in
the following.
Since the non-Hermitian bilinear extension leaves

the two-body interaction structure of the NJL model
unchanged, the structure of the Feynman-Dyson perturba-
tion approach remains applicable, cf. [19,20]. The self-
consistent Hartree approximation to the gap equation for
the effective fermion mass keeps the general form (3).
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However, the full fermion propagator now depends on the extension term gγ5 and can, for the evaluation of the gap
equation, be written in the form,

SðpnÞ ¼ ð=pn þ μγ0 −m − gγ5Þ−1 ¼
=pn þ μγ0 þm − gγ5

ðiωn þ μÞ2 − ðp2 þm2 − g2Þ ; ð21Þ

with pn ¼ ðiωn;pÞ, ωn ¼ ð2nþ 1ÞπT, and thus,

tr½Sðωn;pÞ� ¼
4m

ðiωn þ μÞ2 − ðp2 þm2 − g2Þ

¼ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − g2

p
"

1

iωn − ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − g2

p
− μÞ

−
1

iωn þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − g2

p
þ μÞ

#
; ð22Þ

similar to the treatment within the four-momentum cutoff scheme at vanishing temperature and chemical potential [19,20].
Note in particular, that the non-Hermitian coupling constant g enters effectively as a quadratic shift of the fermion mass m,
in the form m2 − g2. Accounting for this shift, the Matsubara-frequency summation can be performed analogously to the
standard NJL model, resulting in the gap equation of the modified system,

m ¼ 2GNcNfm
Z

Λ d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − g2

p
"
tanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − g2

p
þ μ

2T

!
þ tanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − g2

p
− μ

2T

!#
: ð23Þ

Notice that the hyperbolic tangents, in combination with
the square root in the denominator, form a real-valued
expression, even in the case that p2 þm2 − g2 < 0, ena-
bling the existence of real effective mass solutions. In fact,
because of the formal similarity to the gap equation (4),
with m2

NJL replaced by m2 − g2, one can directly infer the
existence of a finite real fermion mass solution m of the
modified NJL model as long as a finite mass solution mNJL
in the standard NJL model exists, satisfying,

m2ðT; μ; gÞ ¼ m2
NJLðT; μÞ þ g2; for mNJL ≠ 0: ð24Þ

This generalizes the relation found in [20] from the limit of
vanishing temperature and chemical potential into the finite
T-μ–plane. However, the existence of such a solution m
does not ensure its physicality; i.e., the solution obtained
from (24) is not guaranteed to correspond to the global
minimum of the thermodynamic potential Ω. And more-
over, real fermion masses in the modified NJL model are
not restricted to the same T-μ regime as in the standard NJL
model, since the relation (24) allows for real solutions m
where the corresponding solution in the standard NJL
model is an unphysical imaginary result, i.e., where
−g2 < m2

NJL < 0. Nonetheless, a qualitative resemblance
of the effective fermion mass behavior to the NJL-model
result is found upon evaluating the self-consistent gap
equation (23) of the modified NJL model.
When both the temperature and chemical potential are

zero, one notes that the effective fermion mass increases as
a function of the bilinear coupling strength g; see Fig. 7(a).

That is, mass is generated on including this term, which
confirms the robustness of the qualitative result previously
obtained for the four-momentum Euclidean cutoff, applied
to this model [19,20]. At small (or vanishing) fixed
chemical potential μ the real finite effective fermion mass
solution decreases monotonically with increasing temper-
ature T until a second-order phase transition is reached at
TcðgÞ > Tc

NJL and the spontaneously broken approximate
chiral symmetry is restored; see Fig. 7(a) and Table II.
Notably, the mass vanishes exactly for temperatures
T > TcðgÞ, even though the pseudoscalar extension term
breaks the chiral symmetry explicitly. Contrary to the
inclusion of a bare mass m0, the phase transition is not
smoothed out, but remains sharp yet shifted to larger
temperatures with increasing bilinear coupling strength g.
While this behavior is found for arbitrarily large values
of the real bilinear coupling g, we note that at gmax ≈
0.877Λ≈573MeV, the effective fermion mass at T¼μ¼0
reaches the cutoff scale Λ. Therefore, no higher coupling
values are considered in the following discussion.
When evaluating the gap equation (23) at small (or

vanishing) temperature T as a function of the chemical
potential μ, again a qualitative resemblance to the standard
NJL-model behavior is found, see Fig. 7(b): real finite mass
solutions exist up to a maximum value μþ beyond which
the mass solution vanishes. Contrasting the second-order
transition behavior of the mass found as a function of
temperature at small chemical potential, see Fig. 7(a), the
fermion mass does not decrease to vanish continuously.
Instead a parametric region with multiple real finite fermion
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mass solutions is found. As in the standard NJL model, the
thermodynamic potentialΩ has to be studied to identify the
stable physical mass solution in this region. The position of
the critical chemical potential μcðgÞ of the approximate
chiral phase transition, as well as the effect of the non-
Hermitian extension on it, are not immediately apparent.
Note, however, the evidently decreasing lower bound μ−ðgÞ
of the region with multiple real mass solutions as the
bilinear coupling g increases, while the upper bound μþ ≈
333 MeV remains unaffected.

The thermodynamic potential ΩðT; μ; gÞ of the modified
NJL model can be determined from the thermodynamic
average of the interaction energy, following a coupling-
constant integration method that parallels the discussion for
the standard NJL model; see (7). As such, it is structurally
not affected explicitly by the bilinear non-Hermitian
extension term. However, the substitution of the effective
mass within the coupling-constant integral here relies on
the modified gap equation (23), through which the exten-
sion enters implicitly,

2

Z
1

0

dλ
λ
ðmλ −m0Þ

dmλ

dλ
¼ 4GNcNf

Z
Λ d3p
ð2πÞ3

Z
1

0

dλ
dEλ

dλ
Eλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
λ − g2

q
2
64tanh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
λ − g2

q
þ μ

2T

1
CAþ tanh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
λ − g2

q
− μ

2T

1
CA
3
75

¼ 8GNcNfT
Z

Λ d3p
ð2πÞ3

�Z
xð1Þ

xð0Þ
dx tanhðxÞ þ

Z
yð1Þ

yð0Þ
dy tanhðyÞ

�

¼ 8GNcNfT
Z

Λ d3p
ð2πÞ3 ln

�
cosh½xð1Þ� cosh½yð1Þ�
cosh½xð0Þ� cosh½yð1Þ�

�
; ð25Þ

where E2
λ ¼ p2 þm2

λ and the variable of integration λ is changed to xðλÞ ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
λ − g2

q
þ μ
�
=2T and yðλÞ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
λ − g2

q
− μ
�
=2T, with dx ¼ dy ¼ dλðdEλ=dλÞ



Eλ=2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
λ − g2

q �
. One thus arrives at the formal equivalent of (8),

Ω −Ω0 ¼
ðm −m0Þ2

4G
− 2TNcNf

Z
Λ d3p
ð2πÞ3 ln

2
64cosh


 ffiffiffiffiffiffiffiffiffi
E2−g2

p
þμ

2T

�
cosh


 ffiffiffiffiffiffiffiffiffi
E2−g2

p
−μ

2T

�
cosh


 ffiffiffiffiffiffiffiffiffi
E2
0
−g2

p
þμ

2T

�
cosh


 ffiffiffiffiffiffiffiffiffi
E2
0
−g2

p
−μ

2T

�
3
75; ð26Þ

which establishes the thermodynamic potential ΩðT; μ; gÞ after subtracting the contribution associated with the
thermodynamic potential Ω0 of the non-Hermitian free theory obtained at λ ¼ 0,

ΩðT;μ; gÞ ¼ ðm−m0Þ2
4G

− 2NcNf

Z
Λ d3p
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2− g2

q
− 2TNcNf

Z
Λ d3p
ð2πÞ3 ln


h
1þ e−ð

ffiffiffiffiffiffiffiffiffi
E2−g2

p
þμÞ=T

ih
1þ e−ð

ffiffiffiffiffiffiffiffiffi
E2−g2

p
−μÞ=T

i�
:

ð27Þ

FIG. 7. (a) Behavior of the effective fermion mass m within the pseudoscalar extension of the NJL model in MeV at vanishing
chemical potential μ as a function of the temperature T for various bilinear coupling values g. (b) Behavior of the effective mass m at
vanishing temperature T as a function of the chemical potential μ for various bilinear coupling values g. The stable physical solutions
associated with the global minimum ofΩ are shown as solid lines, while metastable and unstable solutions of the gap equation are shown
as dashed and dotted lines, respectively.
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Like the gap equation (23) of the modified NJL model,
which is recovered from the extremal condition dΩ=dm¼0
in the limit of vanishing bare mass m0, the thermodynamic
potential (27) is a real-valued expression, even in the
case that E2 − g2 < 0. This property is seen clearly in (26),
whereas the separation of the momentum integral in (27)
obfuscates this slightly. Nevertheless, this separation of
the square-root term, without explicit dependence on
the temperature or the chemical potential, is advantageous
for the identification of cutoff effects in the SB limit of
large temperatures T, where it separates off the ultraviolet
divergence of ΩðT; μ; gÞ. Canceling imaginary contribu-
tions are in particular restricted to a fixed region of small
momenta jpj ≤ g < Λ and as such unaffected by a removal
of the cutoff limit in the logarithmic integral contribution
for comparison to the SB limit.
The stable physical mass solution is now determined

as the global minimum of the thermodynamic poten-
tial ΩðT; μ; gÞ under variation of the effective mass m,
whereas local minima characterize metastable solutions and
unstable solutions of the gap equation are maxima of Ω.

These characterizations of the possible real mass results are
visualized in Fig. 7(b) as solid, dashed, and dotted lines,
respectively. The chemical potential μc of the phase tran-
sition is denoted as a dot. Similar to the standard NJL model,
the modified system at small temperatures undergoes a first-
order phase transition marked by the abrupt transition from a
finite to a vanishing physical mass at μc. Notably, μc

decreases with increasing bilinear coupling strength g
of the non-Hermitian extension term, see Table II, contrast-
ing the trend in the second-order transition behavior,
cf. Fig. 7(a). This implies in particular, that while the
relation (24) connects the possible finite real mass solutions
of the standard NJL gap equation to possible real masses of
the modified system, it does not preserve the physicality of
this solution: finite real physical masses in the NJL model do
not necessarily have corresponding finite real physical mass
solutions in the non-Hermitian model.
The overall behavior of the phase transition within the

T-μ-plane is visualized in Fig. 8(a) for the coupling
strengths g ¼ 0.4Λ and g ¼ 0.6Λ of the non-Hermitian
extension term. The respective critical end points, marking
the change from a second-order transition behavior at low
chemical potentials to a first-order behavior at low temper-
atures, are shown as dots and their position is listed in
Table III. Note in particular, that with an increase in the
bilinear coupling g, the position of the CEP in the modified
NJL model follows the trend previously outlined of moving
to higher temperature and lower chemical potential.
One observes furthermore, that the spinoidal which

marks the upper bound μþðTÞ of the region with multiple

FIG. 8. Phase diagrams of the modified NJL model in the T-μ–plane (a) and the T-n–plane (b) at various strengths g of the non-
Hermitian extension. The phase transitions are denoted as solid lines, while the dotted and dashed lines mark the position of the
spinoidals associated with μþðT; gÞ and μ−ðT; gÞ, respectively. The positions of the critical end-points are shown as dots.

TABLE II. Phase transition temperatures Tcðμ ¼ 0; gÞ at van-
ishing chemical potential and transition chemical potentials
μcðT ¼ 0; gÞ at vanishing temperature for various coupling
strengths g of the non-Hermitian extension term.

NJL (g ¼ 0) g ¼ 0.4Λ g ¼ 0.6Λ gmax

Tcðμ ¼ 0; gÞ 190 MeV 224 MeV 256 MeV 307 MeV
μcðT ¼ 0; gÞ 326 MeV 310 MeV 282 MeV 197 MeV
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finite mass solutions in the case of a first-order phase
transition, cf. the special case of T ¼ 0 shown in Fig. 7(b),
remains generally independent of the bilinear coupling g.
Its position in the T-μ-plane, shown as a dotted line in

Fig. 8(a), does not deviate from the NJL model case (in
black), but merely extends beyond it as the CEP moves to
higher temperatures and lower chemical potentials with
increasing bilinear coupling g.
On the other hand, the position of the spinoidal marking

the lower bound μ−ðTÞ, shown as dashed lines in Fig. 8(a),
rapidly moves towards a small chemical potential with
increasing g, like the phase transition itself, cf. again the
case of vanishing temperature in Fig. 7(b).
In addition to the analysis of the phase diagram in the

T-μ–plane, the thermodynamic potential (27) of the modi-
fied NJL model enables the study of the thermodynamic
observables, paralleling the standard NJL model approach.
The evaluation of the quark number density,

nðT; μ; gÞ ¼ −
∂ΩðT; μ; gÞ

∂μ

����
T
¼ NcNf

Z
Λ d3p
ð2πÞ3

�
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − g2

p
þ μ

2T

�
− tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − g2

p
− μ

2T

��
; ð28Þ

in particular, allows for the visualization of the phase
transition in the T-n–plane, where regions of stable,
metastable, and unstable effective fermion mass solutions
are distinguished clearly. Like the thermodynamic potential
and the modified gap equation, nðT; μ; gÞ is a real-valued
function. The behavior of the phase transition in the
T-n–plane is shown in Fig. 8(b) for the coupling values

g ¼ 0.4Λ and g ¼ 0.6Λ. The transition is in each case
denoted through solid lines, while the spinoidals associated
with μþ and μ−, which bind the shaded regions of
metastable solutions and mark the transition to a region
of unstable results only, are denoted as dotted and dashed
lines, respectively, cf. also Fig. 5(b).
Together with the entropy density,

sðT; μ; gÞ ¼ −
∂ΩðT; μ; gÞ

∂T

����
μ

¼ 2NcNf

Z
Λ d3p
ð2πÞ3

�
ln

h

1þ e−ð
ffiffiffiffiffiffiffiffiffi
E2−g2

p
þμÞ=T

ih
1þ e−ð

ffiffiffiffiffiffiffiffiffi
E2−g2

p
−μÞ=T

i�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − g2

p
T

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − g2

p
þ μ

2T
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − g2

p
þ μ

2T

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − g2

p
− μ

2T
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − g2

p
− μ

2T

��
; ð29Þ

and the pressure density, determined by the thermodynamic
potential (27) of the modified system,

pðT; μ; gÞ ¼ −½ΩðT; μ; gÞ −Ωð0; 0; gÞ�; ð30Þ

the energy density and interaction measure are found to be

ϵðT;μ;gÞ¼−pðT;μ;gÞþTsðT;μ;gÞþμnðT;μ;gÞ; ð31Þ

IðT; μ; gÞ ¼ ϵðT; μ; gÞ − 3pðT; μ; gÞ; ð32Þ

analogous to the standard NJL model. Like ΩðT; μ; gÞ
itself, they are entirely real-valued functions, even when
E2 − g2 < 0. Note furthermore, that the non-Hermitian
bilinear coupling ultimately always enters in combination
with the temperature as g=T in (28) to (32). As such, the

large temperature limit remains unchanged by the inclusion
of the non-Hermitian pseudoscalar bilinear extension,
which is temperature suppressed, when considered for
fixed μ=T and removing the cutoff scale Λ → ∞ (with
the exception of the UV-divergent term in Ω in the related
pressure and energy densities as well as in the interaction
measure, cf. the discussion within the standard NJL model).
One finds the same SB limits (15) to (17) of an ideal
massless fermion gas as in the standard NJL model.
To illustrate the effect of the non-Hermitian extension on

the thermodynamic observables at finite values of the
temperature and the chemical potential, the behavior of
the quantities n, s, p, and ϵ, scaled to their respective
SB limits, is presented in Figs. 9(a)–9(h). Shown is
their behavior for the non-Hermitian coupling strengths
g ¼ 0.4Λ and g ¼ 0.6Λ along lines in the T-μ–plane with

TABLE III. Temperature and chemical potential of the critical
end-points of the modified NJL model for various coupling
strengths g of the non-Hermitian extension term.

NJL (g ¼ 0) g ¼ 0.4Λ g ¼ 0.6Λ

TCEPðgÞ 79 MeV 122 MeV 163 MeV
μCEPðgÞ 281 MeV 253 MeV 236 MeV
ðμ=TÞCEP 3.56 2.07 1.45

FELSKI, BEYGI, and KLEVANSKY PHYS. REV. D 107, 016015 (2023)

016015-12



FIG. 9. Thermodynamic observables as a function of the scaled temperature T=Tc
NJL with three-momentum cutoff Λ (solid) and in the

limit Λ → ∞ (dashed) for fixed μ=T ¼ 0.5 (second-order transition regime; in red) and μ=T ¼ 5 (first-order transition regime; in blue).
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constant ratio μ=T ¼ 0.5 (red), in which case the
phase transition remains of second order, and for the ratio
μ=T ¼ 5 (blue), for which the system undergoes a first-
order phase transition, cf. Fig. 8(a). Solid lines denote the
behavior with a fixed cutoff length Λ as a function of the
temperature scaled to the associated transition temperature
within the standard NJL model, T=Tc

NJL, while dashed lines
show the behavior when the cutoff is removed. Table IV
lists the corresponding critical temperatures TcðgÞ.
In both the second-order transition case with μ=T ¼ 0.5

and the first-order transition case with μ=T ¼ 5, the
behavior of the thermodynamic functions (28)–(32)
coincides with the behavior of the standard NJL model
functions within the overlapping spontaneously broken
symmetry regions, despite the dynamical generation of
fermion mass. This is to be expected because, like for the
modified gap equation (23), these functions show a formal
equivalence to the corresponding standard NJL model
observables (10)–(14) with m2

NJL replaced by m2 − g2.
Due to the relation (24) between the effective fermion
masses, any dependence on the non-Hermitian extension
term thus cancels exactly at values of T and μ that lie within
the spontaneously broken symmetry region of both the
standard NJL model and the modified system. However,
the position of the phase transition within the T-μ–plane is
affected by the non-Hermitian extension term, resulting in
some notable differences.
Due to the increase of the transition temperature TcðgÞ

in the second-order phase transition case with μ=T ¼ 0.5
(red), one observes a continued increase of the quark
number density n for Tc

NJL < T < TcðgÞ; see Fig. 9(a).
When the cutoff is removed (dashed lines), this increase in
particular exceeds the SB limit. Beyond the phase tran-
sition, n then displays an asymptotic decay toward either a
vanishing limit, for finite Λ, or toward the SB limit, for
Λ → ∞. As in the standard NJL model, the vanishing large-
temperature behavior can thus be identified as a cutoff
artifact. The asymptotic decay throughout the restored
approximate chiral symmetry region at T > TcðgÞ toward
the standard SB limit of an ideal massless fermion gas for
Λ → ∞, contrasting the plateauing behavior found in the
NJLð∞Þ case, is a result of the temperature-suppressed
influence of the extension term. A notable deviation from
the massless ideal gas behavior in the form of a fermion
excess remains until the temperature well exceeds the

transition value TcðgÞ. A comparable phenomenology is
found for the entropy, pressure, and energy density,
cf. Figs. 9(c), 9(e), and 9(g).
In the first-order transition case with μ=T ¼ 5 (blue), see

Figs. 9(b), 9(d), 9(f), and 9(h), the pseudoscalar extension
results in a decrease of the transition temperature TcðgÞ
with increasing bilinear coupling g instead. As such, the
behavior of the modified system coincides with the NJL
model behavior throughout the entire region of sponta-
neously broken approximate chiral symmetry at T < TcðgÞ.
However, after undergoing the phase transition at TcðgÞ,
with the characteristic discontinuous jump in all thermo-
dynamic quantities but the pressure, a notable increase
beyond the SB limit is observed in all functions, followed
again by an asymptotic decay toward either an artificial
vanishing limit at high temperatures, for finite Λ, or toward
the SB limit of an ideal massless fermion gas, when the
cutoff is removed. As in the second-order transition case, a
notable deviation from the ideal gas behavior remains until
the temperature well exceeds the transition value TcðgÞ.
The behavior of the interaction measure is illustrated in

Figs. 9(i) and 9(j). Since IðT; μ; gÞ vanishes in the SB limit,
it is normalized instead to the value Ic at the phase
transition of the NJLð∞Þ case as before. The behavior
of the pressure and the energy density close to the phase

TABLE IV. Phase transition temperature along lines of constant
μ=T ¼ 0.5 (second-order transition region) and μ=T ¼ 5 (first-
order transition region) for various coupling strengths g of the
non-Hermitian extension term.

Tc
NJL Tcðg ¼ 0.4ΛÞ Tcðg ¼ 0.6ΛÞ

μ=T ¼ 0.5 182 MeV 213 MeV 242 MeV
μ=T ¼ 5 59 MeV 58 MeV 54 MeV

FIG. 10. Behavior of the speed of sound as a function of the
scaled temperature T=Tc

NJL for fixed μ=T ¼ 0.5 [(a); second-order
transition regime; in red] and μ=T ¼ 5 [(b); first-order transition
regime; in blue] in the case of removed three-momentum
cutoff, Λ → ∞.
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transition and beyond are affected notably by the momen-
tum cutoff Λ, so that again the behavior of I=Ic when
accounting for a finite cutoff (solid lines) has to be
considered largely artificial. In the limit Λ → ∞ (dashed
lines), the interaction measure behaves as follows.
Like the corresponding energy and pressure densities,

the behavior of I=Ic coincides with the behavior of the
standard NJL model within the overlapping spontaneously
broken symmetry regions. For the second-order transition
case with μ=T ¼ 0.5, see Fig. 9(i), where the transition
temperature increases with the bilinear coupling g, the
interaction measure decreases less rapidly than in the
standard NJL model for Tc

NJL < T < TcðgÞ until TcðgÞ is
reached, reflecting the presence of a fermion excess in the
modified system. Beyond the phase transition I=Ic con-
tinues to decrease, although—contrary to the standard NJL
case—it notably does not approach the vanishing SB limit
monotonically. Instead, a decrease to negative values is
found, until a minimum is reached and the vanishing large-
temperature limit is approached from below. For the first-
order transition case with μ=T ¼ 5, see Fig. 9(j), the
interaction measure of the extended system coincides with
the standard NJL model all throughout the spontaneously
broken symmetry region, since the transition temperature
here decreases with increasing g. The fermion excess
becomes apparent only after undergoing the phase tran-
sition, cf. Fig. 9(d); similar to the second-order transition
case, I=Ic takes on larger values than in the standard NJL
model in the restored symmetry regime close to the phase
transition, but rapidly decreases toward a minimum at
negative values before approaching the vanishing SB limit
from below.
Altogether the behavior of the interaction measure in the

modified system shows the characteristic peaked structure
found in the standard NJL model due to the system
transitioning from a mixture of massive interacting fer-
mions and bound states to a free massless fermion gas,
combined with the effects of a fermion excess in the
vicinity of the phase transition due to the non-Hermitian
extension. The presence of negative interaction measure
values within the region of restored approximate chiral
symmetry marks a notable change in behavior of the
modified NJL model that includes a non-Hermitian pseu-
doscalar bilinear term when compared to the standard NJL
model case. While relativistic theories satisfying ϵ < 3p
were initially disregarded based on the observation that
ϵ ¼ 3p for the electromagnetic field and ϵ > 3p for
massive free noninteracting particles [34], it has long
been demonstrated that such theories are not necessarily
at odds with relativistic causality [35]. In the case of the
present study, this can be clearly seen in the presence of a
subluminal (vs < 1) speed of sound,

v2sðT; μ; gÞ ¼
�
∂pðT; μ; gÞ

∂T

����
μ

��
∂ϵðT; μ; gÞ

∂T

����
μ

�
−1
; ð33Þ

shown in Fig. 10. While in accordance with relativistic
causality, it is noteworthy that v2sðT; μ; gÞ does exceed the
conjectured speed of sound bound of v2s ¼ 1=3 [36]; this
bound has, however, been called into question by exami-
nations of the constraints of neutron star masses and
radii [37–39] finding higher speeds of sound crucial for
the existence of neutron stars above two solar masses.
Models with negative interaction measure have, further-
more, been considered recently [40–42] in the context of
scalar-tensor theories, where this property may result in a
significant deviation from the theory of general relativity
around neutron stars. Considering that the discussion of
quark matter within neutron stars is frequently modeled
using an equation of state taken from the NJL model, the
possible occurrence of negative interaction measure values
due to the non-Hermitian pseudoscalar extension provides
a noteworthy feature of this system, connecting it to the
discussion of extended theories of general relativity.
Overall, modifying the NJL model through the inclusion

of a non-Hermitian pseudoscalar bilinear term gψ̄γ5ψ
results in a dynamically generated increase of the effective
fermion mass in the spontaneously broken approximate
chiral regime of the system at finite temperature and
chemical potential. The position of the phase transition
in the T-μ–plane is affected by this extension, moving
toward higher temperatures for low chemical potential
values (second-order transition region) and toward lower
chemical potentials for low temperatures (first-order tran-
sition region); the position of the CEP follows this trend,
moving toward higher TCEP and lower μCEP with increasing
coupling strength of the non-Hermitian term. Despite
the generation of fermion mass, the behavior of the quark
number, entropy, pressure, and energy densities remains
unchanged for small T and μ. In the vicinity of the phase
transition and throughout the restored symmetry regime,
however, a notable fermion excess is observed, which
decreases asymptotically, approaching the limit of an ideal
massless fermion gas deep within the restored symmetry
region. Here, at some distance from the phase transition, the
modified system is furthermore characterized by negative
interaction measure values, which mark a notable deviation
from the standard NJL model behavior.

IV. PSEUDOVECTOR EXTENSION

Another possible non-Hermitian bilinear extension of the
NJL model is the addition of an imaginary pseudovector
extension term igBνψ̄γ5γ

νψ . As with the previous modi-
fication, an investigation at vanishing temperature and
chemical potential has demonstrated the retained existence
of real mass solutions and the possibility of dynamical
mass generation due to the non-Hermitian extension term,
within the Euclidean four-dimensional cutoff regulariza-
tion scheme, and with spacelike fields Bν [19,20]. Unlike
the previous modification, however, this pseudovector
bilinear preserves the PT symmetry in 3þ 1-dimensional
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spacetime: ½PT ; iγ5γν� ¼ 0 for the parity-reflection and
time-reversal operators in (19). Thus the full extended
non-Hermitian system with the Hamiltonian density,

H ¼ HNJL þ igBνψ̄γ5γ
νψ ; ð34Þ

is PT symmetric overall. As is characteristic of many PT
systems, the existence of real fermion masses at T ¼ μ ¼ 0
is restricted to a finite region up to a critical value of
the coupling strength g, cf. [19,20], beyond which the
(nontrivial) mass solutions occur in complex conjugate
pairs. This transition is the consequence of a spontaneous
breaking of the PT symmetry of the system.

Moreover, the pseudovector extension anticommutes
with γ5, preserving the axial flavor symmetry and thus,
the overall chiral-symmetry properties. As such, the limit of
vanishing bare mass, m0 → 0, remains the chiral limit of
this modified NJL model.
Similar to the pseudoscalar extension discussed in the

previous section, the two-body interaction structure of
the NJL model remains unchanged under the addition of
the pseudovector bilinear term and the general form (3)
of the self-consistent Hartree approximation of the gap
equation is kept intact. The full fermion finite temperature
propagator, which accounts for the axial bilinear modifi-
cation, takes the form,

SðpnÞ¼ð=pnþμγ0−m− igBνγ5γ
νÞ−1

¼ð=pnþμγ0þmþ igBνγ5γ
νÞfðiωnþμÞ2−p2−m2−g2B2þ2igmBνγ5γ

νþ2ig½B0ðiωnþμÞ−B ·p�γ5g
½ðiωnþμÞ2−p2−m2þg2B2�2þ4g2f½B0ðiωnþμÞ−B ·p�2−B2½ðiωnþμÞ2−p2�g ; ð35Þ

and thus,

tr½Sðωn;pÞ� ¼
4m½ðiωn þ μÞ2 − p2 −m2 þ g2B2�

½ðiωn þ μÞ2 − p2 −m2 þ g2B2�2 þ 4g2f½B0ðiωn þ μÞ −B · p�2 − B2½ðiωn þ μÞ2 − p2�g ; ð36Þ

where pn ¼ ðiωn;pÞ, ωn ¼ ð2nþ 1ÞπT, and B2 ¼ BνBν,
similar to the treatment within the four-momentum cutoff
scheme [19,20].
The gap equation of the modified NJL model now

follows after evaluating the summation over the
Matsubara frequencies. It can be performed analogously
to the standard NJL model after a partial fraction decom-
position of (36). To this end, one first determines the
roots of the denominator, which is a depressed quartic
polynomial,

tr½Sðx;pÞ� ¼ 4mðx2 − aÞ
ðx2 − aÞ2 − ðbx2 þ cxþ dÞ ; ð37Þ

denoting x ¼ iωn þ μ, as well as

a ¼ p2 þm2 − g̃2ð1 − s2Þ; b ¼ −4g̃2s2;

c ¼ 8g̃2sjpj cos θ; d ¼ −4g̃2p2ð1 − s2sin2θÞ: ð38Þ

For the latter parameters, the angle θ between the
spatial vectors B and p has been introduced, so that
B · p ¼ jBjjpj cos θ, which remains an argument of the
three-momentum integration in the gap equation (3).
Furthermore, g̃ ¼ gB0 denotes the scaled bilinear coupling
constant and the parameter s ¼ jBj=B0 quantifies the
characteristics of the background field Bν: s > 1 for a
spacelike background, s < 1 for a timelike background,
and s ¼ 1 for a lightlike background field.

Following Ferrari’s method [43], the depressed quartic
denominator is expanded to the form,

½x2−aþn�2− ½ð2nþbÞx2þcxþðd−2naþn2Þ�; ð39Þ

where n is then chosen to complete the square in the second
term. That is to say, n satisfies the cubic equation,

n3 þ n2
�
1

2
b − 2a

�
þ nðd − abÞ þ

�
1

2
bd −

1

8
c2
�

¼ 0:

ð40Þ

Out of the three solutions determined by the cubic formula,

n ¼ 4a − b
6

−
K1

3½1
2
ðK2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K3

1 þ K2
2

p
Þ�1=3

þ 1

3

�
1

2



K2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K3

1 þ K2
2

q ��1=3
; ð41Þ

is selected for simplicity, where

K1 ¼ −4a2 − ab −
1

4
b2 þ 3d;

K2 ¼ 16a3 þ 6a2b −
3

2
ab2 −

1

4
b3 þ 27

8
c2 − 18ad − 9bd:

ð42Þ
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The denominator of (36) thus takes the form,

½x2 − aþ n�2 −
�
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ b

p þ c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ b

p
�
2

; ð43Þ

which is now factorized straightforwardly into

ðxþ r1Þðxþ r2Þðx − r3Þðx − r4Þ; ð44Þ
with

r1;2 ¼
1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ b

p ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b− 2nþ 4a−

2cffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ b

p
s !

;

r3;4 ¼
1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ b

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b− 2nþ 4aþ 2cffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ b
p

s !
: ð45Þ

While not immediately apparent, r1 and r2, as well as r3
and r4, form complex conjugate pairs, as is to be expected,
based on the complex conjugate root theorem, since the
coefficients (38) are real-valued expressions.
Using this factorization, the partial fraction decomposi-

tion of the trace of the full fermion propagator (36) has
the form,

1

4m
tr½Sðωn;pÞ� ¼ −

α1
iωn þ ðr1 þ μÞ −

α2
iωn þ ðr2 þ μÞ

þ α3
iωn − ðr3 − μÞ þ

α4
iωn − ðr4 − μÞ ;

ð46Þ
with the coefficients,

α1;2 ¼
r21;2 − a

ðr1;2 − r2;1Þðr1;2 þ r3Þðr1;2 þ r4Þ
;

α3;4 ¼
r23;4 − a

ðr3;4 þ r1Þðr3;4 þ r2Þðr3;4 − r4;3Þ
; ð47Þ

obtained using the residue theorem. As a consequence
of the complex conjugate pair structure of (45), the
coefficients α1 and α2, as well as α3 and α4, are complex
conjugate expressions.
The summation over the Matsubara frequencies ωn can

now be performed in complete analogy to the standard NJL
model, cf. [22,31,32], resulting in the gap equation of the
modified system in the chiral limit,

m ¼ 4GNcNfm
X4
i¼1

Z
Λ d3p
ð2πÞ3

�
αi tanh

�
ri þ sgnμ

2T

��
;

ð48Þ

where sgn isþ1 for i ¼ 1, 2 and−1 for i ¼ 3, 4. Notice that
this is a real-valued expression due to the complex

conjugate pair structure of (45) and (47), facilitating the
existence of real effective mass solutions.
Before discussing the behavior of the effective fermion

mass m at finite temperature and chemical potential,
it is instructive to consider briefly the case of vanishing
T and μ and compare the results obtained within the three-
momentum cutoff scheme used in this study, with those of
the previously employed four-momentum cutoff regulari-
zation in [19,20]. In particular, utilizing the parameter s, the
behavior of both timelike and lightlike cases of the back-
ground field Bν can be examined, whereas the discussion
in [19,20] was restricted to the spacelike case only. Their
behavior is visualized in Fig. 11 as a function of the scaled
coupling strength g̃ for the illustrative values s ¼ 0.5
(timelike), s ¼ 2 (spacelike), and the lightlike case with
s ¼ 1. The dynamical mass generation of the spacelike case
at small coupling values reproduces the behavior observed
within the four-momentum cutoff scheme in [19,20]. A
mass increase relative to the standard NJL model is found
furthermore in the lightlike case, as well as timelike cases
close to the lightlike case. However, sufficiently far within
the timelike sector (small values of s), one instead observes
a monotonic decrease of the effective fermion mass with
increasing strength of the non-Hermitian extension term.
Dynamical mass generation is then no longer possible.
At sufficiently large coupling values, g̃ the existence

of real (nontrivial) fermion mass solutions, indicative
of an unbroken PT -symmetric region, breaks down for
any value s, and the system is realized in a regime of
spontaneously broken PT symmetry instead. Contrary to
the behavior within the four-momentum cutoff scheme,
where the system undergoes a continuous, second-order
transition, one instead finds the PT phase transition to be
of first order within the three-momentum cutoff regulari-
zation for all parameters g̃ and s. [The position of the
transition as well as the identification of stable (solid lines),
metastable (dashed lines), and unstable mass solutions

FIG. 11. Effective fermion mass m of the modified NJL model
at vanishing temperature and chemical potential as a function of
the (scaled) coupling strength g̃ of the extension term for a space-,
light-, and timelike background field case.
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(dotted lines), see Fig. 11, is determined based on the
thermodynamic potential Ω, as described for finite T and μ
in the following.] This difference between regularization
schemes, together with the observation that the PT tran-
sition typically occurs at comparably large coupling values
relative to the cutoff length Λ, suggests that for the
characterization of the PT -symmetry breaking phase tran-
sition of the modified NJL model, the self-consistent Hartree
approximation is not robust in this regime. From a physical
point of view, onemight expect dynamical mass changes that
are small, so that values g̃ ≪ 1 are important. Thus, the
following discussion focuses on the system at small coupling
values of the PT extension term (g̃ ¼ 0.2Λ and g̃ ¼ 0.3Λ),
the study of its behavior at finite temperature and baryon
chemical potential, and an examination of the effects of the
PT bilinear term on the chiral phase transition.
Figure 12(a) presents the effective fermion mass m, as

determined by the self-consistent gap equation (48) of
the extended model, as a function of the temperature T at
vanishing chemical potential μ. Illustrated are a spacelike
(s ¼ 2, blue), a lightlike (s ¼ 1, green), and a timelike
(s ¼ 0.5, red) case at coupling values g̃ ¼ 0.2Λ and
g̃ ¼ 0.3Λ. As in the standard NJL model, visualized in
black, the system undergoes a continuous second-order
chiral phase transition, beyond which chiral symmetry is

restored and the effective mass vanishes. The position
Tcðg̃; sÞ of this transition increases with the coupling g̃ and
with increasing values of s; see also Table V. In all cases,
the extension of the system through the inclusion of the
PT -symmetric non-Hermitian term results in a raised
critical temperature compared to the standard NJL model.
An effective increase of the fermion mass relative to the
standard NJL result is found at small finite values of the
temperature as well, when s ¼ 2 and s ¼ 1, in agreement
with the behavior of mðT ¼ 0; μ ¼ 0Þ shown in Fig. 11.
For s ¼ 0.5, however, an effective mass loss due to the
extension term is observed. A notable difference to the
behavior of the effective mass in the standard NJL model
is the fact that it does not decrease monotonically with
increasing temperature T. Instead, m increases initially
to reach a maximum, before decreasing to vanish at the
transition temperature Tc.
When the gap equation (48) is evaluated as a function of

the chemical potential μ at vanishing temperature T, the
behavior of the effective mass qualitatively resembles that
obtained within the standard NJL model; see Fig. 12(b).
Shown are again a spacelike (s ¼ 2, blue), the lightlike
(s ¼ 1, green), and a timelike (s ¼ 1=2, red) case at the
coupling values g̃ ¼ 0.2Λ and g̃ ¼ 0.3Λ, in addition to the
standard NJL model behavior in black. The effective

TABLE V. Phase transition temperatures Tcðμ ¼ 0; g̃; sÞ at vanishing chemical potential and transition chemical potentials
μcðT ¼ 0; g̃; sÞ at vanishing temperature for various coupling strengths g̃ and parameters s of the non-Hermitian extension term.

g̃ ¼ 0 (NJL)
s ¼ 0.5,
g̃ ¼ 0.2Λ

s ¼ 0.5,
g̃ ¼ 0.3Λ

s ¼ 1,
g̃ ¼ 0.2Λ

s ¼ 1,
g̃ ¼ 0.3Λ

s ¼ 2,
g̃ ¼ 0.2Λ

s ¼ 2,
g̃ ¼ 0.3Λ

Tcðμ ¼ 0Þ 190 MeV 193 MeV 197 MeV 211 MeV 234 MeV 261 MeV 319 MeV
μcðT ¼ 0Þ 326 MeV 286 MeV 212 MeV 310 MeV 288 MeV 359 MeV 365 MeV

FIG. 12. (a) Behavior of the effective fermion massm within the pseudovector extension of the NJL model in MeVas a function of the
temperature T at vanishing chemical potential μ for the bilinear coupling values g̃ ¼ 0.2Λ and g̃ ¼ 0.3Λ in a spacelike (s ¼ 2), the
lightlike (s ¼ 1), and a timelike case (s ¼ 0.5). (b) Behavior of the effective mass m as a function of the chemical at vanishing
temperature T potential μ for various values of the bilinear coupling strength g̃ and the parameter s. The stable physical solutions
associated with the global minimum ofΩ are shown as solid lines, while metastable and unstable solutions of the gap equation are shown
as dashed and dotted lines, respectively.
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fermion mass does not decrease to vanish continuously.
Instead a parametric region with multiple mass solutions
is found, and the physical stable result has to be identified
again using the thermodynamic potential ΩðT; μ; g̃; sÞ.
It can be determined from the thermodynamic average
of the interaction energy in analogy to the discussion
for the standard NJL model, cf. (7), by following a

coupling-constant integration method. As in the case of
the pseudoscalar extension, the non-Hermitian pseudo-
vector bilinear term does not affect the approach struc-
turally. But the substitution of the effective mass within
the coupling-constant integral relies on the modified
gap equation (48), through which the extension enters
implicitly,

2

Z
1

0

dλ
λ
ðmλ −m0Þ

dmλ

dλ
¼ 4GNcNfT

Z
Λ d3p
ð2πÞ3

X4
j¼1

Z
xjð1Þ

xjð0Þ
dxj

�
4mαj

�
drj
dm

�
−1
�
tanhðxjÞ

¼ 4GNcNfT
Z

Λ d3p
ð2πÞ3 ln

�
cosh½x1ð1Þ� cosh½x2ð1Þ� cosh½x3ð1Þ� cosh½x4ð1Þ�
cosh½x1ð0Þ� cosh½x2ð0Þ� cosh½x3ð0Þ� cosh½x4ð0Þ�

�
;

where x1ðλÞ ¼ ðr1ðλÞ þ μÞ=2T, x2ðλÞ ¼ ðr2ðλÞ þ μÞ=2T,
x3ðλÞ ¼ ðr3ðλÞ − μÞ=2T, and x4ðλÞ ¼ ðr4ðλÞ − μÞ=2T.
The λ dependence refers to the use of the mass result
mλ, which solves the λ-dependent equivalent of the gap
equation (48), where G → λG within the coupling-
constant integration method. One thus obtains the formal
equivalent of the relation (8), which establishes the
thermodynamic potential ΩðT; μ; g̃; sÞ after subtracting
off the contribution Ω0 of the non-Hermitian free theory
obtained at λ ¼ 0,

ΩðT;μ; g̃; sÞ ¼ ðm−m0Þ2
4G

−
1

2
NcNf

X4
i¼1

Z
Λ d3p
ð2πÞ3 ri

− TNcNf

Z
Λ d3p
ð2πÞ3 ln

Y4
i¼1

½1þ e−ðriþsgnμÞ=T �;

ð49Þ

where once again sgn is þ1 for i ¼ 1, 2 and −1 for i ¼ 3,
4. Like the gap equation (48), which is recovered from
the extremal condition dΩ=dm ¼ 0 in the limit of vanish-
ing bare mass m0, the thermodynamic potential (49) is a
real-valued expression due to the complex conjugate pair
structure of (45). Notably, this property is unaffected by a
removal of the three-momentum cutoff limit Λ in the
logarithmic integral contribution for the comparison to
the SB limit.
As in the previous sections, the stable physical fermion

mass result is determined as the global minimum of the
thermodynamic potential ΩðT; μ; g̃; sÞ under variation of
the fermion massm. Meanwhile, local minima characterize
metastable solutions, and maxima correspond to unstable
solutions of the gap equation. These properties of the
fermion mass are shown in Fig. 12(b) as solid, dashed, and
dotted lines, respectively. The position μc of the first-order
chiral phase transition, accompanied by an abrupt transition
to a vanishing fermion mass, is visualized as a dot, and its
values are listed in Table V. Notice that with increasing

coupling strength g̃ of the non-Hermitian modification
term, this transition moves to larger values of the chemical
potential in the spacelike case with s ¼ 2, while decreasing
in the lightlike case, where s ¼ 1, and the timelike case
with s ¼ 0.5. Similar to Fig. 12(a), an effective mass
increase relative to the standard NJL result is found when
s ¼ 2 and s ¼ 1, while an effective mass loss arises for
s ¼ 0.5, in agreement with the behavior of mðT ¼ 0;
μ ¼ 0Þ shown in Fig. 11.
The overall behavior of the chiral phase transition within

the T-μ–plane is visualized in Figs. 13 for the timelike case
with s ¼ 0.5, the lightlike case (s ¼ 1), and the spacelike
case with s ¼ 2. Shown is the boundary between the
spontaneously broken and restored regions for coupling
strengths g̃ ¼ 0.2Λ (solid line) and g̃ ¼ 0.3Λ (dashed line)
of the non-Hermitian extension, as well as the standard
NJL model case in black. The phenomenological behavior
along the T and μ axes, as shown in Fig. 12, is generally
continued into the T-μ–plane: For small chemical poten-
tials, the model undergoes a second-order chiral phase
transition at sufficiently large temperatures; the transition
temperature increases with the coupling g̃ and with the
value s quantifying the space- or timelikeness of the non-
Hermitian background. At small temperatures, a first-order
chiral phase transition is found at sufficiently large chemi-
cal potentials; the transition chemical potential decreases
with increasing g̃ for s ¼ 0.5 and s ¼ 1, but increases in
the spacelike case with s ¼ 2. The respective critical end
points, marking the change from a second-order to a first-
order transition behavior, are illustrated as dots and their
position is listed in Table VI. The CEP moves to higher
values of the temperature and chemical potential with an
increasing bilinear coupling g̃; for increasing value s, the
chemical potential μCEP decreases, while the temperature
TCEP increases.
Beyond the identification of the physical fermion mass

at finite temperature and chemical potential, the thermo-
dynamic potential (49) of the modified NJL model allows
for the study of the thermodynamic observables. Again, the
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approach parallels that within the standard NJL model,
leading to the quark number density,

nðT;μ; g̃;sÞ

¼−
∂ΩðT;μ; g̃;sÞ

∂μ

����
T

¼NcNf

Z
Λ d3p
ð2πÞ3

1

2

X4
i¼1

�
sgn tanh

�
riþsgnμ

2T

��
; ð50Þ

the entropy density,

sðT; μ; g̃; sÞ ¼ −
∂ΩðT; μ; g̃; sÞ

∂T

����
μ

¼ 2NcNf

Z
Λ d3p
ð2πÞ3

�
1

4T

X4
i¼1

ri

þ 1

2
ln

�Y4
i¼1

½1þ e−ðriþsgnμÞ=T �
�

−
1

2

X4
i¼1

�
ri þ sgnμ

2T
tanh

�
ri þ sgnμ

2T

���
;

ð51Þ

and the pressure density,

pðT; μ; g̃; sÞ ¼ −½ΩðT; μ; g̃; sÞ −Ωð0; 0; g̃; sÞ�: ð52Þ

The energy density and interaction measure are then
determined through the well-established relations,

ϵðT; μ; g̃; sÞ
¼ −pðT; μ; g̃; sÞ þ TsðT; μ; g̃; sÞ þ μnðT; μ; g̃; sÞ; ð53Þ

and

IðT; μ; g̃; sÞ ¼ ϵðT; μ; g̃; sÞ − 3pðT; μ; g̃; sÞ: ð54Þ

As with the thermodynamic potential (49) itself, these
quantities form real-valued expressions, due to the complex
conjugate pair structure of (45).
Moreover, the bilinear coupling g ultimately always

enters in combination with the temperature as g=T
in (50) to (54), since the terms r1 to r4 in (45) enter
as r=T, with g contained in the parameters (38). The
large temperature limit therefore remains unchanged by
the inclusion of the non-Hermitian PT -symmetric pseu-
dovector bilinear extension along lines of fixed μ=T and
when removing the cutoff scale Λ → ∞ (except for the
UV-divergent term inΩ and the related pressure and energy
densities as well as the interaction measure). The same SB
limits of an ideal massless fermion gas are found as in the
standard NJL model; see (15)–(17).

FIG. 13. Phase diagrams of the modified NJL model in the
T-μ–plane for coupling values g̃ ¼ 0.2Λ and g̃ ¼ 0.3Λ in
the timelike case with s ¼ 0.5, the lightlike case (s ¼ 1), and
the spacelike case with s ¼ 2.
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The effect of the PT extension on the thermodynamic
observables at finite values of the temperature and chemical
potential is illustrated in Figs. 14 and 15. Shown is the
behavior of the expressions (50) to (53), scaled to their
respective SB limit, as a function of the scaled temperature
T=Tc

NJL. The timelike case with s ¼ 0.5 is shown in Fig. 14,
while Fig. 15 shows the spacelike case with s ¼ 2. In both
cases, the thermodynamic observables are evaluated along
lines in the T-μ–plane with constant ratio μ=T ¼ 0.5 (red),
where the phase transition remains of second order for
all cases, and for the ratio μ=T ¼ 5 (blue), for which the
system undergoes a first-order phase transition. Coupling
values of g̃ ¼ 0.2Λ and g̃ ¼ 0.3Λ are shown as light and
dark color variants, respectively. Solid lines denote the
behavior with a fixed cutoff length Λ, while dashed lines
show the behavior when the cutoff is removed. A list of the
critical temperatures Tcðg̃; sÞ for the illustrated cases can be
found in Table VII.
For the second-order transition case with μ=T ¼ 0.5, a

decrease of all thermodynamic functions with increasing
coupling strength g̃ is observed compared to the corre-
sponding standard NJL model observables throughout the
spontaneously broken and the restored chiral symmetry
phases for both a finite cutoff and for Λ → ∞. When
considering, for instance, the behavior of the quark number
density n in Figs. 14(a) and 15(a), one notes that, contrary
to the monotonically increasing behavior toward the phase
transition within the standard NJL model, n decreases to a
minimum at negative values within the non-Hermitian NJL
model before subsequently increasing when approaching
the phase transition at Tc. This behavior remains present
when removing the three-momentum cutoff, Λ → ∞, and
is therefore not a cutoff artifact. In the case of a finite cutoff
the quark number vanishes asymptotically beyond the
phase transition, while it approaches the SB limit when
the cutoff is removed. In this, the behavior of the modified
system qualitatively agrees with that of the standard NJL
model, but a notable deviation from the massless ideal
fermion gas behavior remains present until the temperature
well exceeds the transition value Tc. For a finite cutoff Λ,
the behavior in the spacelike case with s ¼ 2 differs from
that in the timelike case with s ¼ 0.5 only in so far as that
the decrease of the thermodynamic functions compared
to the NJL model is more pronounced. For Λ → ∞, on the
other hand, the decrease of the thermodynamic functions is
initially more pronounced at small temperatures, but in the

vicinity of the phase transition, the difference to the
standard NJL model behavior becomes less prominent
when s ¼ 2, than in the timelike case with s ¼ 0.5. In
addition, the position of the minimum within the sponta-
neously broken chiral symmetry region increases to higher
temperatures in the spacelike case with s ¼ 2 but remains
decidedly below the phase transition temperature Tc.
A comparable phenomenology is found for the entropy,
pressure, and energy density.
In the first-order transition case with μ=T ¼ 5 of the

timelike (s ¼ 0.5) system for Λ → ∞, shown as dashed
blue lines in Fig. 14, one again observes a decrease of the
thermodynamic functions relative to the standard NJL
model. Similar to the second-order transition case, the
quark number density n, see Fig. 14(b), admits an initial
decrease to negative values. A notable difference to the
previous case is the fact that the range of temperatures in
which a decrease toward a minimum is found, lies beyond
the phase transition when the coupling constant is suffi-
ciently large: For g̃ ¼ 0.2Λ, such a minimum occurs in the
spontaneously broken symmetry phase, with n increasing
monotonically thereafter when approaching the phase
transition and following the behavior of nNJL qualitatively.
For g̃ ¼ 0.3Λ, however, n decreases up to the phase
transition, undergoing the characteristic discontinuous
jump at Tc, and then continues to decrease toward a
minimum within the restored chiral symmetry regime
before asymptotically approaching the SB limit. The
behavior of the entropy, pressure, and energy density
follows a comparable trend with respect to the standard
NJL model behavior. For a finite three-momentum cutoff
Λ, an additional asymptotic decay at high temperatures is
found, as in all models discussed prior.
In the spacelike case with s ¼ 2, see Fig. 15, the first-

order transition behavior for μ=T ¼ 5 at Λ → ∞ also
admits a region, in which the thermodynamic functions
decrease toward a minimum, similar to the timelike
case. But these regions here occur at even higher temper-
atures, deep within the restored chiral symmetry region.
With an increase of the coupling constant g̃, the minimum
again shifts toward even higher temperatures. As such, the
decrease of the thermodynamic functions due to the
non-Hermitian extension within the spontaneously broken
symmetry region at low temperatures is found to be less
pronounced for g̃ ¼ 0.3Λ than for g̃ ¼ 0.2Λ. Another
notable difference to the timelike case with s ¼ 0.5 is

TABLE VI. Temperature and chemical potential of the critical end-point of the modified NJL model for various coupling strengths g̃
and parameters s of the non-Hermitian extension term.

g̃ ¼ 0 (NJL)
s ¼ 0.5,
g̃ ¼ 0.2Λ

s ¼ 0.5,
g̃ ¼ 0.3Λ

s ¼ 1,
g̃ ¼ 0.2Λ

s ¼ 1,
g̃ ¼ 0.3Λ

s ¼ 2,
g̃ ¼ 0.2Λ

s ¼ 2,
g̃ ¼ 0.3Λ

μCEP 281 MeV 315 MeV 347 MeV 286 MeV 294 MeV 259 MeV 266 MeV
TCEP 79 MeV 80 MeV 94 MeV 112 MeV 141 MeV 180 MeV 240 MeV
ðμ=TÞCEP 3.56 3.92 3.70 2.55 2.07 1.44 1.11
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FIG. 14. Thermodynamic functions for s ¼ 0.5 (timelike) along μ=T ¼ 0.5 (red) and μ=T ¼ 5 (blue) at couplings
g̃ ¼ 0.2Λ (light colors) and g̃ ¼ 0.3Λ (dark colors). Standard NJL case in black.
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FIG. 15. Thermodynamic functions for s ¼ 2 (spacelike) along μ=T ¼ 0.5 (red) and μ=T ¼ 5 (blue) at couplings g̃ ¼ 0.2Λ (light
colors) and g̃ ¼ 0.3Λ (dark colors). Standard NJL case in black.
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the increased jump at the discontinuous phase transition.
Due to this increase, the quark number density n and the
energy density ϵ even increase in the restored symmetry
region beyond Tc when being close to the phase transition,
exceeding the SB limit. Nevertheless, this is followed by a
rapid decrease toward the aforementioned minimum at high
temperatures and a successive asymptotic approach of the
SB limit. A finite three-momentum cutoff Λ introduces an
additional asymptotic decay toward a vanishing limit at
high temperatures instead.
The effects of the non-Hermitian but PT -symmetric

pseudovector extension igBνψ̄γ5γ
νψ can be interpreted by

considering the particle and antiparticle contributions to
the fermion wave function ψ . Due to the structure of the
Dirac matrices (2), the B0 component of the bilinear
extension introduces a mixing between fermionic and
antifermionic contributions, while the Bk, k ∈ ½1; 3� com-
ponents do not. Instead, they modify the system com-
parable to a mass term, resulting in either an increase
(s ¼ 2) or a decrease (s ¼ 0.5) of the effective fermion
mass, cf. Fig. 12. In direct contrast to the pseudoscalar
extension discussed in Sec. III, a decrease of the quark
number density, n ¼ nq − nq̄, compared to the standard
NJL model and the occurrence of negative values of n
describes an emphasis on the antifermionic component
within the pseudovector-extended theory, rather than
the fermion excess found in the pseudoscalar-extended
system. One nevertheless observes an increase toward the
same SB limit of an ideal massless fermion gas as in the
pseudoscalar extension case and the standard NJL model at
high temperatures, because of the temperature-suppressed
influence of the extension term.
Figures 14(i), 14(j), 15(i), and 15(j) show the behavior of

the interaction measure (54), scaled to the value Ic at the
phase transition of the NJLð∞Þ case since its high temper-
ature limit vanishes. As in all previous cases, the pressure
and the energy density are affected notably by the momen-
tum cutoff Λ, so that the behavior of I=Ic when accounting
for a finite cutoff (solid lines) has to be considered largely
artificial. For Λ → ∞ (dashed lines), the interaction mea-
sure shows two competing trends in both the second-order
(μ=T ¼ 0.5) and the first-order (μ=T ¼ 5) transition region
and in both the spacelike (s ¼ 0.5) and timelike (s ¼ 2)
case: a localized decrease toward a minimum in accordance
with the corresponding behavior within the other thermo-
dynamic observables, in particular the quark number
density, and an overall increase of the interaction measure

compared to the standard NJL model behavior, is found
throughout all temperatures. As before, the localized
decrease toward a minimum arises at higher scaled temper-
atures for larger coupling constant values g̃, for the first-order
transition region with μ=T ¼ 5 compared to the second-
order region with μ=T ¼ 0.5, and in the spacelike case with
s ¼ 2 compared to the timelike case with s ¼ 0.5. Notably,
the interaction measure becomes negative within this region,
marking a notable change in behavior of the modified non-
Hermitian system compared to the standard NJL model.
Contrary to the pseudoscalar extension discussed in Sec. III,
this deviation from the standard NJL model arises typically
at comparatively low temperatures and within the sponta-
neously broken chiral symmetry regime.
Overall, the inclusion of the non-Hermitian, but PT -

symmetric and chiral symmetry preserving, pseudovector
bilinear term igBνψ̄γ5γ

νψ presents an intriguing comple-
ment to the non-Hermitian pseudoscalar extension. The
dynamical generation of effective fermion mass within the
spontaneously broken chiral symmetry region, previously
described for a spacelike background Bν at vanishing T and
μ [19,20], remains a prominent and robust feature at finite
values of the temperature and chemical potential. However,
this property does depend on the space- or timelikeness of
the background; an effective mass loss can be found for a
timelike Bν instead. The extent of the spontaneously broken
chiral symmetry regime and the position of the chiral phase
transition within the T-μ–plane are affected by the exten-
sion term as well, ranging toward higher temperatures for
low chemical potential values, i.e., in the second-order
transition region, similar to the effects of the pseudoscalar
extension. At low temperatures (second-order transition
region), the position of the phase transition decreases
toward lower chemical potential values in the time- and
lightlike cases of the background field—again similar to the
gψ̄γ5ψ modification. But for a sufficiently spacelike back-
ground, it increased to higher values of μc instead. A
notable departure from the behavior of both the standard
NJL model and the pseudoscalar extension of the system
is found in all cases within the quark number, entropy,
pressure, and energy densities, displaying a marked
decrease compared to the standard NJL model behavior
and even extending to negative values. Instead of the
fermion excess within the pseudoscalar extension of the
system, the PT -symmetric pseudovector modification
shows an emphasis on the antifermionic component within
the theory.

TABLE VII. Phase transition temperature Tcðg̃; sÞ along lines of constant μ=T ¼ 0.5 (second-order transition
region) and μ=T ¼ 5 (first-order transition region), cf. Fig. 13.

g̃ ¼ 0 (NJL) s ¼ 0.5, g̃ ¼ 0.2Λ s ¼ 0.5, g̃ ¼ 0.3Λ s ¼ 2, g̃ ¼ 0.2Λ s ¼ 2, g̃ ¼ 0.3Λ

μ=T ¼ 0.5 182 MeV 185 MeV 189 MeV 247 MeV 300 MeV
μ=T ¼ 5 59 MeV 66 MeV 42 MeV 68 MeV 72 MeV
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V. CONCLUDING REMARKS

Due to the presence of real effective fermion masses in
non-Hermitian extensions of the NJL model at vanishing
temperature and density [19,20], there seems to be no
reason for discarding such systems. In this study, we have
generalized the established finite temperature and chemical
potential approach of the NJL model to investigate the
effects of the non-Hermitian bilinear extension terms
gψ̄γ5ψ and igBνψ̄γ5γ

νψ on the thermodynamic behavior
of the system in search for general characteristic signals of
non-Hermitian fermionic quantum field theories.
In both extensions of the NJL model, a dynamical

generation of effective fermion mass due to the non-
Hermitian contribution can be observed in the spontane-
ously broken (approximate) chirally symmetric regime; in
the case of the pseudovector modification, however, this
property depends on the characteristics of the background
field Bν, resulting in an effective mass loss for sufficiently
timelike cases instead. The position of the chiral phase
transition in the T-μ–plane moves to higher temperatures at
small fixed chemical potentials, that is in the second-order
transition region, in both non-Hermitian systems. In the
first-order transition region at small fixed temperatures, on
the other hand, the transition chemical potential decreases
for increasing coupling strength of a non-Hermitian pseu-
doscalar bilinear. In the pseudovector modified model, the
change of the transition chemical potential depends on the
characteristics of the background field again, increasing for
sufficiently spacelike cases, but decreasing otherwise. The
position of the critical end point marking the boundary
between first- and second-order chiral phase transitions
moves toward higher critical temperatures TCEP in both

modified NJL models; for the pseudoscalar extension, the
critical chemical potential μCEP decreases, while it increases
for the inclusion of a pseudovector bilinear term.
Further deviations from the standard NJL model

become apparent in the behavior of the quark number,
entropy, pressure, and energy densities. When the
system is extended through the inclusion of the term
gψ̄γ5ψ , these thermodynamic observables remain initially
unchanged compared to the standard NJL model behavior
in the spontaneously broken approximate chiral sym-
metry region at low temperature and chemical potential
despite the dynamical fermion mass generation. But in the
vicinity of the phase transition and throughout the restored
symmetry phase, a notable fermion excess arises, increas-
ing beyond the high-temperature SB limit. This is
contrasted by the behavior of the PT -symmetric pseudo-
vector modification, where the thermodynamic observ-
ables decrease due to the extension term, reaching even
negative values. This non-Hermitian extension reflects
an emphasis on the antifermionic component of the
theory instead. These trends may provide a first indication
of curious potential mechanisms for producing non-
Hermitian baryon asymmetry.
Moreover, negative values of the interaction measure

I ¼ ϵ − 3p are found in both non-Hermitian extensions of
the NJL model, arising within the restored approximate
chiral symmetry region for the pseudoscalar bilinear, but in
the spontaneously broken symmetry region and the vicinity
of the phase transition for the pseudovector term. This
feature builds an interesting connection to recent discus-
sions of the constraints of neutron star masses and extended
theories of general relativity.
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