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We study the benefits of jet- and event-level deep learning methods in distinguishing vector boson fusion
(VBF) from gluon-gluon fusion (GGF) Higgs production at the LHC. We show that a variety of classifiers
(CNNs, attention-based networks) trained on the complete low-level inputs of the full event achieve
significant performance gains over shallow machine learning methods (BDTs) trained on jet kinematics
and jet shapes, and we elucidate the reasons for these performance gains. Finally, we take initial steps
toward the possibility of a VBF vs GGF tagger that is agnostic to the Higgs decay mode, by demonstrating
that the performance of our event-level CNN does not change when the Higgs decay products are removed.
These results highlight the potentially powerful benefits of event-level deep learning at the LHC.
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I. INTRODUCTION

The discovery [1,2] of the Higgs boson in 2012 was a
monumental occasion, providing a capstone to decades
of experimental and theoretical works in particle physics,
and confirming the final missing piece of the Standard
Model (SM).
Since the original discovery, much effort [3,4] has been

devoted to measuring ever more precisely the couplings
of the Higgs boson to other SM particles. Since the Higgs
has numerous production modes and decay modes,
measurements in many different final states are necessary
to disentangle all the various effects and pin down the
Higgs couplings to all the SM fields [5–11]. A key
component of this program is distinguishing the vector
boson fusion (VBF) production mode from other produc-
tion modes, most predominantly gluon-gluon fusion
(GGF). VBF is essential for measuring the Higgs cou-
plings to the SM W=Z gauge bosons, thereby testing the
most essential property of the Higgs, namely its role in
electroweak symmetry breaking (EWSB).
Previous works [12,13] have studied the question of

VBF vs GGF classification with machine learning methods

(see also [14] for earlier work on high-level features for
VBF vs GGF). The main thing that distinguishes VBF from
GGF events is that VBF events come with two forward
quark-initiated jets from the hard process, while GGF jets
are going to be from initial-state radiation and will tend to
be gluon-initiated. In Ref. [12], boosted decision trees
(BDTs) trained on high-level physics variables such as
invariant mass and rapidity difference of the leading jets,
sum of transverse momenta of the Higgs decay products,
and various jet shape variables were brought to bear on
the question of VBF vs GGF classification, in the context
of H → γγ and H → WW� final states specifically.
Meanwhile, Ref. [13] studied the multiclass classification
of multiple Higgs production modes (including VBF and
GGF) in the boosted H → bb regime, considering BDTs
trained on high-level features, as well as a specialized two-
stream convolutional neural network (CNN), which was
previously developed for boosted H → bb tagging [15],
and was trained on event images made out of low-level
inputs (the pixelated pT’s of all the particles in the event).
Experimental studies [5–10,16–19] have also used BDTs

or dense neural networks (DNNs) on a variety of Higgs
decay modes to discriminate VBF from GGF events, while
other techniques such as recurrent neural networks (RNNs)
were also found useful in practice [6]. The BDTs, DNNs,
RNNs used by the experimental groups take the high-level
features as input.
In this work we will revisit the question of VBF vs GGF

event-level classification, exploring the benefits that
machine learning methods (both shallow and deep) can
bring to this problem. Our starting point will be a BDT
trained on high-level features (HLFs) defined from the
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leading two jets and the Higgs decay products; this
baseline method is designed to characterize the previous
state of the art from [12] and from the actual ATLAS and
CMS analyses. To go beyond, we consider the following
methods:

(i) Training a jet-level CNN to distinguish the leading
two jets from VBF from their GGF counterparts, and
adding the jet-CNN scores to the inputs of the
HLF BDT.

(ii) Training an event-level CNN to distinguish full VBF
events from full GGF events; we make full-event
images out of the energy deposits of all the recon-
structed particles in the event.

(iii) Training an event-level network based on the self-
attention mechanism [20,21] as an interesting
alternative to the event-level CNN. In such a
self-attention model, we convert the input event
into a sequence which directly records the detector-
level information.

We will see that while augmenting the HLFs with the jet-
CNN scores offers some gain in classification performance,
a much bigger boost comes from the event-level classifiers
trained on low-level inputs. We investigate the reasons for
the performance gains of the event-level CNN and find it is
due in part to additional hadronic activity beyond the
leading two jets. Interestingly, this includes both additional
jet activity, as well as unclustered hadronic activity in the
event (i.e., hadronic activity that leads to softer jets below
the jet pT threshold). The pattern of soft radiation is
different in VBF vs GGF events, again presumably due
to differing quark vs gluon content in the initial states.
In this paper we will also highlight an added benefit of

event-level classifiers trained on low-level inputs: they can
be Higgs decay mode agnostic. Since the Higgs is a color
singlet, the Higgs decay should be fairly well factorized
from the VBF or GGF initial state jets, especially when it
decays to electroweak states. Besides, the pT-balance of the
full event ensures that the kinematics of the Higgs can be
well reconstructed from all the other final state objects.
Using the diphoton mode as an explicit example, we will
show that as long as our models take the whole event into
account, adding information from the Higgs decay does not
improve the performance of the classifier. This raises the
possibility that a single VBF vs GGF classifier could be
trained and deployed in a variety of Higgs analyses with
different final states, with no loss in performance.
Much work in the literature has focused on boosted jet

classification [15,22–88], but relatively less work has been
done on event-level classification [13,15,40,56,66,89–93].
Our work illustrates the potential benefits of full event-level
classification.
For simplicity, we will not consider SM backgrounds

in this work; of course, these backgrounds are highly
dependent on the Higgs final state. In certain decay modes
such as H → ZZ� → 4l [6,11,94,95], the non-Higgs

background is highly suppressed, so our work could
directly apply there. For other decay modes where the
SM background is less suppressed (e.g., H → γγ), we
imagine the “universal” VBF vs GGF classifier could be
combined with a Higgs decay classifier for full event
classification including non-Higgs background rejection
if necessary [5,7,19].
An outline of our paper is as follows. In Sec. II, we

describe the simulation of our sample as well as the VBF
preselection criteria and the numbers of training, vali-
dation, and testing sets for the classifier. In Sec. III, we
describe the classifiers used in this study. We show the
results in Sec. IV, which is comprised of a comparison of
tagger performances, a discussion about what the event-
level CNN has learned, and possible improvements of the
BDT from adding information beyond the leading two
jets. In Sec. V, we examine the pT-balance of the full
event and explore the possibility of the Higgs-decay-
mode-agnostic classifier. Finally, we conclude in Sec. VI.
Appendix A lists the structures of all the classifier models
considered in this study. Appendix B examines an
extension of CNN for our classification problem moti-
vated by [13] and finds no further improvement.
Appendix C studies and compares the impacts of using
our parton showering setting in PYTHIA, the local dipole
recoil scheme, with the default setting. The performance
of each of our classifiers is found to improve in the
former scheme.

II. SAMPLE PREPARATION

We use MadGraph5_aMC@NLO 2.7.3 [96] (MG5) with parton
distribution functions (PDFs) of CT10 [97] to generate
Higgs plus up to three jets events starting from pp
collisions at

ffiffiffi
s

p ¼ 14 TeV. The additional jets are matched
using the MLM matching scheme [98] with parameters
xqcut ¼ 30 GeV and qcut ¼ 45 GeV. For VBF we just
use tree-level MG5, while for GGF we use a model
generated by FeynRules 2.3.33 [99] following the effective
vertex method.
The samples are then showered and hadronized by PYTHIA

8.245 [100,101], and finally passed through the DELPHES 3.4.2

[102] fast detector simulation. Note that for the showering
of VBF we toggle on the local dipole recoil option [103]
in PYTHIA, which models the emission of additional jets
in a way compatible with QCD [104–106]. This is achieved
by specifying SpaceShower:pTmaxMatch=2,
SpaceShower:dipoleRecoil=on, TimeShower:
QEDshowerByL=off, and PDF:lepton=off. Also
note that the detector configuration in DELPHES is based
upon the default ATLAS card, while the inputs of the jet
cluster module are EFlow objects instead of the default
Tower objects. The jet clustering is done by FastJet 3.3.2 [107]
using the anti-kT [108] algorithm with R ¼ 0.4. Jets are
required to have pT > 25 GeV in the simulation stage.
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In our sample preparation, we let the Higgs decay to two
photons and use their invariant mass cut to select the
required Higgs production samples. Although we generate
samples in this particular Higgs decay mode, as discussed
in the Introduction, we will demonstrate later that the full-
event classifiers trained on low-level inputs are actually
agnostic to the Higgs decay products, in that their perfor-
mance does not suffer when those decay products are
removed.
The samples used in the following analysis of this study

are all extracted from the events passing the VBF prese-
lection criteria, as inspired by experimental studies, that
Nγ ≥ 2, 120 ≤ Mγγ ≤ 130 GeV, Nj ≥ 2, and Δηjj ≥ 2,
with the jets in these criteria required to have
pT > 30 GeV. We have generated 500 k events each for
the VBF and GGF samples and, after the VBF preselection,
are left with 177 k events for VBF and 139 k for GGF.
Throughout this paper, we consider VBF as the signal

and GGF as the background. For all of the event-level
classifiers, the generated samples are split into training,
validation, and testing sets as indicated in Table I. Since for
any event we take the leading two jets as the samples of
the jet-level classifier (i.e., jet-CNN), the numbers of the
samples in different sets of the jet-level classifier are twice
as those in Table I.

III. CLASSIFIER MODELS

A. BDT

We start by considering BDT models that are imple-
mented in XGBoost 1.5.0 [109]. (The hyperparameters and the
details of the BDT models are summarized in Table II.) We
train three different BDTs based on the features summa-
rized in Table III and Fig. 1. The first, “baseline,” is based
on six high level features from the study of VBF vs GGF
classification in Ref. [12], which is inspired by ATLAS’s
setup [110]. This baseline BDT characterizes the discrimi-
nation power from the kinematics of the photons and the
jets in the event.1

Based on the experimental setup, Ref. [12] further
considers the jet shape variables [111] as additional input
features, such as the girth summed over the two leading jets
and the central/sided integrated jet shape. Including these

jet shape variables leads to our second BDT, which we
call “baselineþ shape.”
Finally, we consider the benefits of replacing the human-

engineered jet shape variables of [12,111] with the output
of a jet-level CNN classifier trained on VBF vs GGF jets.
We call this the “baselineþ jet-CNN” BDT. For more
details on the jet-level CNN, see Sec. III B.

B. Jet-CNN

In this subsection, we introduce the VBF vs GGF jet-
level CNN used in the “baselineþ jet-CNN scores” BDT
described in the previous subsection. The jet-level CNN is
trained on jet images formed out of the leading two jets
from the VBF and GGF events.2 Our image preprocessing,
which basically follows the procedure outlined in Ref. [45],
contains image centralization, rotation, and flipping, fol-
lowed by pixelation from the detector responses to the jet
image. Finally, we pixelate the detector responses into
images (10 × 10 pixels) for each of the following four
channels: Tower ET, Tower hits, Track ET and Track hits.
(Following the DELPHES particle flow algorithm: “Tower”
means EFlowNeutralHadron or EFlowPhoton, and “Track”
means EFlowTrack.)
Our jet-CNN model starts from a batch normalization

layer [112], followed by several convolution layers and
average pooling layers, which capture the features of the
images. The sizes of the filters in convolution layers and
pools in pooling layers are all 2 × 2. Due to the relatively
small size of the images (10 × 10 pixels), the neural
network (NN) does not need to be very deep. Since the
image size shrinks as it passes through a pooling layer, the
number of pooling layers is restricted. After the convolu-
tion and pooling layers, the images are then flattened and
fully connected to three dense layers with 128 neurons
respectively. The last dense layer with 2 neurons, activated
by the SoftMax function, represents the final output score
as probabilities. All the other dense layers and convolution
layers use the ReLU activation function [113]. The model
structure is plotted in Fig. 10.

TABLE I. Numbers of training, validation, and testing sets for
event-level classifiers.

Training Validation Testing

VBF events 113 k 28 k 35 k
GGF events 89 k 22 k 28 k

TABLE II. Hyperparameters of the BDT.

Max depth 3
Learning rate 0.1
Objective Binary logistic
Early stop 10 epochs
Evaluation metric Binary logistic

1We have checked that a simple DNN trained on these high-
level features does not outperform the BDTs, so we will focus on
BDTs as our baseline.

2Another possible labeling scheme is to identify whether the
jet is quark or gluon initiated, since VBF (GGF) events tend to
contain more quark (gluon) jets. However, our trials show that
both labeling schemes are equally useful when they are consid-
ered as features in the subsequent event-level BDT. We will focus
exclusively on the process-labeling in the following study.
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FIG. 1. Distributions of BDT input variables. All histograms are normalized so that the area under each curve is one.

TABLE III. Summary of the features used in BDT. j1 and j2 mean respectively the pT-leading and -subleading jets, while γ1 and γ2
mean respectively the pT-leading and -subleading photons. In the jet shape variables, i represents the constituent of the jet and r is the
distance between the constituent and the jet axis.

Baseline 1. mjj, the invariant mass of j1 and j2
2. Δηjj, the absolute difference of the pseudorapidities of j1 and j2
3. ϕ�, defined by the ϕ-difference between the leading diphoton and dijet
4. pγγ

Tt, defined by jðpγ1
T þ pγ2

T Þ × t̂j, where t̂ ¼ ðpγ1
T − pγ2

T Þ=jpγ1
T − pγ2

T j
5. ΔRmin

γj , defined by the minimum η − ϕ separation between γ1=γ2 and j1=j2
6. η�, defined by jηγ1γ2 − ðηj1 þ ηj2Þ=2j, where ηγ1γ2 is the pseudorapidity of the leading diphoton

Shape 7. the girth summed over the two leading jets
P

2
j¼1 gj ¼

P
2
j¼1

P
N
i∈Jj p

j
T;ir

j
i =p

j
T

8. the central integrated jet shape Ψc ¼
P

2
j¼1

P
N
i∈Jj p

j
T;ið0 < rji < 0.1Þ=ð2pj

TÞ
9. the sided integrated jet shape Ψs ¼

P
2
j¼1

P
N
i∈Jj p

j
T;ið0.1 < rji < 0.2Þ=ð2pj

TÞ
Jet-CNN 10. the jet scores of the two leading jets, output by the jet-CNN, soon to be introduced in Sec. III B
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The CNNs in this study are all implemented in TensorFlow

2.0.0 [114] with KERAS [115] as its high-level API. We use
Adam [116] as our optimizer during the training stage with
the categorical cross entropy loss function in all of our NN
models. By monitoring the loss of the validation set, early
stopping is implemented to prevent overfitting in all of the
NN and BDT models. The hyperparameters of the model
are summarized in Table IV.
Our jet-CNN takes a jet image as its input and outputs a

score ranging from 0 (GGF-jet) to 1 (VBF-jet). The scores
of leading and subleading jets can thus be useful features
for subsequent event-by-event classification. The distribu-
tions of the jet-CNN scores and the receiver operating
characteristic (ROC) curve for the jet-CNN are shown in
Fig. 2, where the horizontal (vertical) axis label TPR (FPR)
refers to the true positive rate (false positive rate). The area
under the ROC curve (AUC) of the jet-CNN is 0.734,
which is less than an efficient classifier. However, we will
show that the jet-CNN scores are indeed useful information
in the subsequent event-level classification. Instead of
training and testing separate taggers for the leading and
subleading jets respectively, we utilize one tagger which is
trained on mixed samples including the leading and
subleading jets. Our trial explicitly shows that such training
does not sacrifice the performance of the classifier.

C. Event-CNN

A potentially more powerful way to perform event-
level classification is to leverage the capabilities of deep
learning to predict the VBF vs GGF label directly from the

lowest-level features of each event (in our case, the
4-vectors of all the particles in the event). In this paper
we consider two approaches to this, a CNN trained on
whole-event images, to be described in this subsection, and
a self-attention model trained on sequences of the particle
4-vectors, to be described in the next subsection.
Our whole-event images are preprocessed similarly to

the jet images of the previous subsection. However, unlike
jets, the whole event is not a localized object, nor is there an
approximate boost or rotation invariance. So the prepro-
cessing consists of just the following steps: we first move
the ϕ coordinate of the weighted center to the origin, and
flip the image vertically or horizontally to make the upper-
right quadrant more energetic than all the other quadrants.
Finally, the detector responses are pixelated into images
with 40 × 40 pixels for each of the six channels, which
includes the same four channels used in the jet-CNN and
two additional ones recording the hits and ET of the
isolated photons.
An example of single event images is shown in Fig. 3.

The left plot shows the isolated photon ET and Tower ET
combined with Track pT of an event before the preprocess-
ing, while the right plot is after the preprocessing.
We employ a toy ResNet model [117] in our event-CNN.

Two convolution layers form a residual block in ResNet.
There are shortcuts connecting the residual blocks, ena-
bling us to deepen our model without suffering from the
degradation problem. The sizes of filters in the convolution
layers and pools in the pooling layers are all 3 × 3. The
detailed model structure of the event-CNN is shown in
Fig. 11. The hyperparameters are the same as those in
Table IV.
In order to extract information from both the local jet-

level and global event-level features, Ref. [13] adopts a
two-stream CNN architecture, where one stream processes
an image of the highest pT non-Higgs jet in the event, and
the other stream processes the full-event image. Motivated
by this, we further study the performance of an extension
of our full-event CNN in Appendix B, using a similar

TABLE IV. Hyperparameters for the jet-CNN tagger.

Optimizer Adam
Loss function Categorical cross entropy
Early stopping 20 epochs
Batch size 1024

FIG. 2. Distributions of the jet-CNN scores (left) and the ROC curve of the jet-CNN (right). All histograms on the left are normalized
so that each area under the curve is one.
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structure containing three streams of CNN, dealing with
event images and leading two jet images respectively.
However, we find no improvement from our original
single-stream event-CNN. This does not contradict the
works of Ref. [13] since they did not compare the
performance of their two-stream CNN against a single-
stream CNN consisting of just the full-event classifier.

D. Self-attention

For comparison, we also consider another whole-event
low-level-feature classifier based on the technique of self-
attention [20], which is used in the famous transformer
model [21] dealing with sequence-to-sequence tasks. The
original motivation of this model is to use the multihead
attention layers to capture the correlation among elements
in the input sequence. Inspired by this idea, instead of
representing an event as an image, we view the event as a
sequence, where the elements of the sequence are the pT , η,
ϕ, and electric charge of the 100 highest-pT reconstructed
particles in the event (with zero padding for events with
fewer than 100 particles). In principle, the self-attention
network could be advantageous over event-level images,
because it is not subject to the information loss induced
by pixelation. Also, a nice property of the self-attention
mechanism is that it preserves permutation invariance of
the inputs (as does a CNN).
The implementation of the self-attention model is based

on TensorFlow 2.5.0 and KERAS. The model structure of the
self-attention model is shown in Fig. 12. There are three
five-head attention layers at the beginning, followed by a
global average pooling (GAP) layer, which converts the
sequence of detector responses into a single vector by

taking the element-wise average. Dense layers are not
implemented before the GAP layer to keep permutation
invariance of the input sequence. Then the model is passed
into seven dense layers. The hyperparameters are listed
in Table V.

IV. RESULTS

A. Comparison of methods

The performance of the event-level classifiers defined
in the previous section is shown in Fig. 4. As an explicit
example, Table VI lists both FPRs and AUCs at the
working point where the TPR is fixed at 0.3. From
Fig. 4 and Table VI, we can easily compare the different
event-level classifiers.
First of all, “BDT: baseline” has the lowest AUC since

it only considers the high-level kinematic features in an
event. Indeed, including additional information on the jet
shape variables can improve a little, but not as much as
using the jet-CNN score as an input. Notably, our jet-CNN
scores serve as a better feature than the jet shape variables,

FIG. 3. The isolated photon ET and Tower ET combined with Track pT of an event without preprocessing (left) and after preprocessing
(right). The color of each pixel indicates the energy in units of GeV.

TABLE V. Hyperparameters of the self-attention model.

Optimizer Adam
Loss function Categorical crossentropy
Early stopping 50 epochs
Batch size 1024

FIG. 4. ROC curves of several event-level classifiers.
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with the former reducing the FPR from the baseline by a
factor of 1.6 while the latter only by a factor of 1.3.
Therefore, despite a low AUC of the jet-CNN as shown in
Fig. 2, its score still provides valuable information. We
have also checked that combining jet shape variables and
jet-CNN scores in the input features together did not
provide extra improvement in the AUC, indicating that
the jet-CNN has learned all the information contained in the
human-engineered jet shape variables.
Second, we see that our self-attention model and

event-CNN both perform better than the BDTs. This is
understandable because the BDTs only take into account
high-level variables or features of the two leading jets and
photons only,while the self-attention and event-CNN taggers
take in the entire event and catch more features therein.
Finally, the event-CNN is the most powerful classifier

among all considered taggers. Its inverse FPR is roughly a
factor of 2.5 better than the self-attention model for most of
the TPR. Its AUC reaches 0.940 and the FPR is reduced by
a factor of 11.7 from the baseline at the assumed working
point in Table VI.

B. Saliency maps of event-CNN

To further investigate what the event-CNN has learned,
we examine its saliency maps [118]. Let the input pixel x be

identified as xc;h;w, where c is the channel index, h is the
height index, and w is the width index. The saliency is
defined by the gradient of the i-th class score Pi with
respect to the input pixel xc;h;w,

wi
c;h;w ≡ ∂Pi

∂xc;h;w
; ð1Þ

where the gradient is calculated by back-propagation. In
our case, we only deal with binary classifiers, so it suffices
to only consider the VBF class score P. Putting wc;h;w

together according to the indices, one can obtain the
saliency maps. However, what we are actually interested
in is the saliency according to the standardized pixels yc;h;w
which have no scale difference across channels,

xc;h;w → yc;h;w ¼ xc;h;w − μc
σc

; ð2Þ

where σc2 and μc are the variance and mean of the channel
c in the whole sample, including the training, validation,
and testing sets. Hence, we will consider the following
gradient,

w̃c;h;w ≡ ∂P
∂yc;h;w

¼ wc;h;w × σc: ð3Þ

Finally, we arrange w̃ according the c, h, w indices and then
plot its absolute value jw̃c;h;wj to get the saliency maps as
the lower row in Figs. 5 and 6.
We utilize the visualization toolkit TF-KERAS-VIS 0.8.0

[119] to implement the saliency maps of our event-CNN
tagger. In the following, we pick as examples a VBF event
(Fig. 5) with a high CNN score (i.e., more VBF-like) and a
GGF event (Fig. 6) with a low CNN score (i.e., more

TABLE VI. Performance comparison at TPR ¼ 0.3.

FPR AUC

BDT: baseline 0.035 0.820
BDT: baseline þ shape 0.027 0.850
BDT: baseline þ jet-CNN 0.022 0.870
Self-attention 0.010 0.900
Event-CNN 0.003 0.940

FIG. 5. A VBF event with a high event-CNN score. The upper six plots show the raw inputs of the model, while the lower
counterparts are the saliency maps calculated by the corresponding normalized channels. The black circles show the locations of the
clustered jets, with the circle size indicating the ordering in pT . The color maps of the upper row indicate the actual input. The unit is
GeV for Tower ET, Track pT , and isolated photon ET , and counts for Tower hits, Track hits, and isolated photon hits. The color maps of
the lower row indicate the relative saliency.
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GGF-like). In the plots, the clustered jets are marked by
black circles, with their sizes indicating the jet’s ordering
in pT . The color maps of the upper row indicate the actual
value of the input, with the unit being GeV for Tower ET,
Track pT , and isolated photon ET and counts for Tower
hits, Track hits, and isolated photon hits. In contrast, the
color maps of the lower row indicate the relative saliency,
i.e., the most salient pixel is scaled to one in plotting,

jw̃c;h;wj →
jw̃c;h;wj

maxc;h;wfjw̃c;h;wjg
: ð4Þ

From the saliency maps, we observe that the CNNmodel
generally focuses on the locations with more hadronic
activities, as anticipated, because the jets contain crucial
information for the classification of VBF and GGF events.
In addition, the CNN is also seen to make use of lower pT
jets and hadronic activity that falls below the jet pT
threshold (set to 30 GeV in this work). This explains
why the event-CNN performs better than the BDT. In our
setup of the BDTs, we do not feed the information of the
third jet into the model. Moreover, the input of the BDTs
relies on our knowledge about what kind of high-level
features is beneficial and hence cannot make use of
unclustered energy in an event. Finally, we can observe
that the event-CNN is much more focused on where jets are
than the locations of photons, which indicates that the
photon information is not crucial in the classification. This
sheds light on the possibility of the Higgs-decay-mode-
agnostic classifier which solely relies on the jet informa-
tion. Details will be described in Sec. V.

C. Improvements of BDTs

In this subsection, we investigate more about how the
BDTs, which rely on high-level kinematic variables as
the features for training, can be further improved. Based on
the study of the saliency maps in the previous subsection,
we are motivated to consider information about additional
hadronic activity in the event beyond the leading two jets.

So we will study the benefits of including the 4-vector
momentum of the third hardest jet, as well as inclusive
kinematic variables that take all jets into account.

(i) 4-vector momentum of the third jet in pT ordering,
which is denoted as “j3vec;”

(ii) HT ¼ P
j∈jets p

j
T , which characterizes the pT dis-

tribution of the jets;
(iii) η̃ ¼ P

j∈jets jηjj, which characterizes the positional
distribution of the jets; and

(iv) number of jets.
We will call the set of features including HT, η̃, and the

number of jets as a “jet-profile.” The normalized distribu-
tions of HT, η̃, and the number of jets are already shown in
the last row of Fig. 1.
We are interested in how the additional information

improves the best BDTwe have so far, so we will add these
extra variables to “BDT: baseline + jet-CNN.” The ROC
curves of the BDTs trained with further inputs of these
additional variables are plotted in Fig. 7. From the AUCs,

FIG. 6. Same as Fig. 5, but for a GGF event with a low event-CNN score.

FIG. 7. ROC curves of BDT trained on additional high-level
features.
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we can see both the additional 4-vector momentum of the
third jet and the jet-profile can improve the performance
of classification. Their improvements are comparable to
each other, as seen from the ROC curves as well as the
similar AUCs. We have also checked that adding
the additional 4-vector momentum and the jet-profile
together into the BDT does not further improve the AUC,
which is a piece of direct evidence that these two sets of
variables provide equivalent information to the BDTs.
The reason is that the crucial information contained in
both sets is the existence of the third jet. A characteristic
of GGF events is that they tend to have more than two
jets, which can be seen in the distribution of the number
of jets in Fig. 1. By examining the actual trees in the
BDTs trained by the 4-vector momentum of the third jet
and the jet-profile, respectively, we indeed find that the
existence of the third jet provides a clear separation
between VBF and GGF events and therefore plays an
important role in both cases.
Finally, in “BDT: all variables”, we consider all the high-

level features, including event-related characteristics (i.e.,
mjj, Δηjj, ϕ�, pγγ

Tt, ΔRmin
γj , η�, HT, η̃, and the number of

jets), and jet-related information of the three leading jets
(i.e., 4-vector momenta, jet-CNN scores, and the girth,
central/sided integrated jet shape of each jet without taking
summation or average). This BDT achieves the best AUC,
0.905, among all the other BDTs and improve the baseline
significantly. However, despite this sizable improvement
from the baseline, the event-CNN still outperforms “BDT:
all variables” with an even larger AUC.

V. A HIGGS-DECAY-AGNOSTIC
VBF VS GGF CLASSIFIER

In the Introduction, we noted that event-level classifiers
trained on low-level inputs could potentially be agnostic to
the Higgs decay mode, due to the scalar nature of the Higgs
and the pT-balance of the whole event. Here we will
explore this idea further, by seeing to what extent pT

balance allows the Higgs momentum to be predicted from
the hadronic activity in the event, and then to what extent
our classifiers suffer when the Higgs decay products are
removed from the event.
Shown in the left plot of Fig. 8 are histograms of the pT

balance of the whole event, jPi∈reconstructed particles p⃗Tij,
normalized by the pT of the Higgs. We see that the pT

is well-balanced among the low-level features, so the Higgs
transverse momentum can be well-reconstructed from the
nonphoton reconstructed particles. Meanwhile, the right
plot of Fig. 8 depicts the pT balance between the photons
and the leading three jets, again normalized by the pT of the
Higgs. Here we see that while the leading three jets can
capture the pT information of the photons to some extent, it
is not as informative as the responses and, therefore, the
balance is not as complete.
Figure 9 shows the impact of removing the Higgs decay

products (in our case, the two photons) from the event
before training the VBF vs GGF classifiers. We see that
removing photon information from the event-CNN hardly
changes the AUC. On the other hand, removing photon
information from the high-level features for the BDT

FIG. 8. The fractional pT -balance of the leading diphoton and other objects, nonphoton responses on the left and up to leading three
jets on the right. To calculate the balance, we first vector-sum the momenta of the diphoton and other objects, and then take its transverse
momentum. Finally, the balanced pT is divided by the pT of the diphoton.
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reduces the AUC from 0.905 to 0.893.3 The degradation in
performance in the BDT is still not very large, but it is
larger than that of the event-CNN. This is completely in line
with the histograms shown in Fig. 8.
All in all, we confirm here that due to thepT balance of the

events, the performance of VBF vs GGF classification does
not dependmuch on theHiggs decay products, especially for
thewhole-event CNN that is based on low-level inputs. This
raises the intriguing possibility that one could train a single
VBF vs GGF classifier that is agnostic to the Higgs decay
mode, and could be applied equally optimally to a variety of
Higgs decay channels in a uniform way. This could have
benefits for data-driven calibration and reducing systematic
uncertainties associated with VBF tagging.

VI. CONCLUSIONS

In this paper, we have studied machine learning
approaches to event-level classification of Higgs produc-
tion modes, focusing on the important problem of VBF vs
GGF discrimination. Building on previous studies [12,13],
we have shown that full-event deep learning classifiers that
utilize low-level inputs (full-event images, sequences of
particle 4-vectors) significantly outperform classifiers
based on high-level physics features (kinematics, jet
shapes). We have explored both CNNs trained on full-
event images, and permutation-invariant self-attention net-
works trained on sequences of particle 4-vectors. Although
the full-event CNN achieved the best performance in our
studies—improving beyond the baseline shallow network
by more than a factor of 4–15 in background rejection
across a wide range of signal efficiencies—perhaps our

work provides a useful starting point for further optimiza-
tion of the attention-based approach.
We also studied why the event-level CNNs perform so

much better than the shallow networks based on high-level
features. Using saliency maps we saw how additional jets
in the event beyond the first two contribute to the CNN
classification, as well as unclustered hadronic activity (jets
below the pT threshold). By adding high-level features
derived from these additional jets, we have confirmed that
the performance of the shallow networks can indeed be
improved and be brought somewhat closer to the event-
level CNN.
Finally, in this work we have gone beyond previous

approaches and explored the possibility of a VBF vs GGF
classifier that is agnostic to the Higgs decay mode. A
classifier trained on the low-level information of the full
event should be able to reconstruct the Higgs transverse
momentum from pT balance and, since the Higgs is a
scalar, its decay products (at least when it decays to
electroweak states) should be well-factorized from the rest
of the event. Therefore, a full-event, low-level classifier
should be largely independent of the Higgs decay channel.
We have taken the first steps toward verifying that in this
work, by showing how the performance of the full-event
CNN is virtually unchanged when trained on the events
with and without the diphotons from the Higgs decay.
Some future directions of our work include: generalizing

ourwork tomoreHiggs productionmodes (e.g.,ZH,WH and
ttH) using amulticlass classifier; further fleshing out our idea
of a decay-agnostic classifier by studying other Higgs decay
modes besides H → γγ; studying even more recent deep
learning classifiers such as graph networks; adding particle
interaction information into the event-level self-attention
model (as was inspired by Ref. [86]); and incorporating
symmetries such as Lorentz invariance into the architecture
of the neural network to achieve even better performance
(as was done recently for top-tagging in Ref. [84]).
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APPENDIX A: ARCHITECTURES OF VARIOUS
NEURAL NETWORKS

In this appendix, we show explicitly the architectures of
the neural networks constructed in this work. The shape

FIG. 9. ROC curves of event-level classifiers with and without
the photon information.

3In more detail, in Fig. 9, “all variables with photons” refers to
the feature set used in “BDT: all variables” in Fig. 7, while “all
variables without photons” refers to the same feature set but with
the photon-related variables (i.e., ϕ�, pγγ

Tt,ΔRmin
γj , η�) all excluded.
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of the input and output tensors are shown as numbers inside
the parentheses. The first argument “None” represents the
batch size, which is a separate hyperparameter independent
of the model architecture.

FIG. 10. The model structure of the jet-CNN. FIG. 11. The model structure of the event-CNN.
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APPENDIX B: MULTISTREAM CNN

In this section, we examine an extension of CNN.
In Ref. [13], an architecture called 2CNN extracts event-
level and jet-level features simultaneously with two
streams. One stream applies filters on event images, and
the other deals with the leading non-Higgs jet images. Then

the two streams are connected together and combined to
form a single model. Inspired by this study, we want to
investigate the possible improvement using this multi-
stream architecture.
We adopt a three-stream CNN where one stream applies

filters on the event images, and the other two process the
images of the two leading jets respectively. Each stream is a
toy ResNet model used in Sec. III C. We will call this
architecture “eventþ 2jet-CNN.” The model structure is
shown in Fig. 13. All of the event images and jet images are
pixelated into 40 × 40 pixels. The images are preprocessed
as in Sec. III B and III C. The hyperparameters are the same
as those in Table IV.
The ROC curves of our original event-CNN and this

eventþ 2jet-CNN are plotted in Fig. 14. The curves
almost overlap with each other and the AUCs are very
similar, indicating that the event-CNN has already captured
useful information for classification. The additional high-
resolution jet images do not provide significant extra help
to the performance.

APPENDIX C: DIPOLE SHOWER IN PYTHIA

In this section, we present the impact of different PYTHIA
shower schemes applying to the VBF process. In contrast to
the local dipole recoil scheme [103], which is the shower
scheme we adopt in our study, we also show the kinematic
distributions and training results based on samples show-
ered by the default shower scheme in PYTHIA. As inves-
tigated in previous works [104–106], the default PYTHIA

shower depicts the emission of additional jets in VBF
poorly in the central region. This can be seen in Fig. 15,
which shows an apparent discrepancy on the pseudo-
rapidity distribution of the third jet.
Moreover, the classification performance is severely

affected by the choice of the shower scheme. In Fig. 16,
the performance of each classifier is improved when
changing from the default shower to the local dipole
shower. The reason of the lower AUC of the default shower
is that it produces an incorrect pattern of the emission of the
additional jets, which leads to the similarity between VBF
and GGF. However, as Fig. 15 shows, the emission issue is
solved by the local dipole recoil shower, and hence the
performance becomes improved in the local dipole recoil
scheme.

FIG. 12. The model structure of the self-attention model.
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FIG. 13. The model structure of the multistream CNN model.
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FIG. 14. ROC curves of the event-CNN and eventþ 2jet-CNN.

FIG. 15. Distributions of the transverse momentum and pseudorapidity of the third jet coming from the VBF events passing the VBF
preselection. All histograms are normalized so that each area under the curve is one.

FIG. 16. ROC curves of several event-level classifiers in different shower schemes for VBF.
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