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One may believe that front velocities of waves in a given theory coincide with the UV limit of phase
velocities for any dispersion relations. This implies that IR physics is irrelevant to the discussion of
propagation speed of waves. We first consider a theory that contains higher spatial derivatives in the wave
equation and prove that front velocities coincide with the UV limit of phase velocities, at least, if parity is
conserved. However, we also show that front velocities do not coincide with the UV limit of phase
velocities in general dispersion relations. We explicitly give several examples in which front velocities are
superluminal owing to an IR or intermediate energy scale property of dispersion relations even if the UV
limit of phase velocities is luminal. Our finding conveys the important caution that not only UV physics but
also IR physics can be significant to superluminality.
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I. INTRODUCTION

The superluminal propagation of waves in a given theory
is usually considered to be an unacceptable nature;
nonexistence of the superluminal propagation can be a
guiding principle in constructing a consistent theory.1

Indeed, superluminality can be akin to the illness of a
theory [1,2]. Although we often encounter apparent super-
luminality, that is, group velocities are faster than the speed
of light, in various realistic situations, such as photons
propagating in materials [3] or an axion dark matter
background [4], and lensed gravitational waves [5,6], they
do not mean true superluminal propagation. Actually,
front velocities, which are more suited to quantifying
propagation speed, are inside a light cone in the above
situations [3–6].

As one investigates superluminality with front velocities
in a theory, the relation

vf ¼ lim
k→∞

vpðkÞ; ð1Þ

may be useful. Here, k represents the wave number
(¼ momentum), and vf and vpðkÞ≡ ωk

k are the front
velocity and the phase velocity of a wave obeying the
dispersion relation ω ¼ ωk, respectively. So far, to our best
knowledge, Eq. (1) has been proved only for limited cases
where the dispersion relation has the following form:

ω2
k ¼ k2 þ ðσÞkαM ðα ¼ 0; 1; 2Þ; ð2Þ

where σ takes þ or − and M is a positive constant (M < 1
for α ¼ 2). The case of ðσ ¼ þ; α ¼ 0Þ represents a
standard dispersion relation for a massive particle. On
the other hand, ðσ ¼ −; α ¼ 0Þ represents a particle with a
tachyonic mass. In this case, it was shown, by evaluating a
Green function, that although the group velocity is super-
luminal, the front velocity coincides with the speed of
light [1]. For photons propagating in an axion dark matter
background, the dispersion relation with ðσ ¼ �; α ¼ 1Þ
is realized for timescales that are short compared with
the period of the axion oscillation. Then apparently, the
propagation seems superluminal because the group velocity
is superluminal; however, one can see that the front velocity
is luminal by solving a Green function [4]. Therefore, the
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1It is not obvious how superluminality is related to the
violation of causality when the Lorentz invariance is broken.
We simply stand at the position that we do not allow the existence
of superluminality in a frame for the moment.
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above works [1,4] prove relation (1) when the dispersion
relation is given by Eq. (2). We note that Eq. (1) also holds
for the α ¼ 2 case trivially, where the phase velocity in the
UV limit coincides with that in the IR limit. Furthermore,
more general discussion about partial differential equations
up to the second order shows that Eq. (1) is valid in the case
of Eq. (2) [7,8].
Equation (1) indicates that the UV limit of a phase

velocity determines the front velocity. Actually, this feature
plays an important role when we consider low energy
effective field theories from the viewpoint of UV com-
pletion, as discussed in2 [8,13]. Remarkably, Eq. (1)
indicates that IR physics is irrelevant to the propagation
speed. One might think that this is counterintuitive since it
means that even the propagation speed of waves consisting
of low-frequency modes is specified by only the dispersion
relation for the very high frequency modes rather than by
the dispersion relation for the modes contained by the
waves. This motivates us to investigate whether Eq. (1) is
true not only for the dispersion relation of the form given by
Eq. (2) but also for other functional forms. As we will
demonstrate, Eq. (1) does not always hold true.
In this paper, we first show that relation (1) is true even

when α ¼ 4; 6; 8;… in Eq. (2). This proof extends the
applicable range of relation (1) and supports the discussion
about low energy effective field theories from the viewpoint
of UV completion [8,13]. Furthermore, we also provide
explicit examples that violate Eq. (1). Our analysis reveals
that not only UV physics but also IR or intermediate-scale
physics can be relevant to the discussion of propagation
speed in general.

II. INFINITE FRONT VELOCITIES
FROM UV PHYSICS

To simplify the computation without losing the essential
point, throughout this paper, we assume that the dispersion
relation is obeyed by a free scalar field ϕ. Given that any
wave is given by a superposition of plane waves, it is
sufficient to restrict the dimension of space to one for the
purpose of determining the front velocity. Thus, practically,
our spacetime is two dimensions whose coordinates are
ðt; xÞ. With this premise, the equation of motion for ϕ is
given by

�
−

∂
2

∂t2
þ ω2ð−∂2xÞ

�
ϕðt; xÞ ¼ 0: ð3Þ

Here, ω2ðXÞ, which defines the dispersion relation, is a
function of X. We assume that the wave equation respects
parity. In other words, the wave equation contains only
an even number of the spatial derivatives. Thus, ω2 is a
function of −∂2x.
In this section, we will show that Eq. (1) with dispersion

relation (2) is valid, even when α is larger than 2, by
explicitly evaluating the (retarded) Green function. In this
case, the wave equation contains higher-order derivative
terms in space coordinate x. To construct the Green
function, let us add the local source term in the right-hand
side of the wave equation (3):

�
−

∂
2

∂t2
þ ω2ð−∂2xÞ

�
ϕðt; xÞ ¼ −δðtÞδðxÞ: ð4Þ

To solve this equation, let us Fourier-transform ϕ as

ϕðt; xÞ ¼
Z

dk
2π

eikxϕkðtÞ: ð5Þ

Then, the wave equation is transformed as

�
d2

dt2
þ ω2

k

�
ϕkðtÞ ¼ δðtÞ; ð6Þ

where ω2
k ≡ ω2ðk2Þ. It can be verified that the inhomo-

geneous solution that vanishes for t < 0 is given by

ϕkðtÞ ¼ θðtÞ sinðωktÞ
ωk

; ð7Þ

where θðtÞ is the Heaviside function. It should be under-
stood that ωk is the positive solution of ω2

k ≡ ω2ðk2Þ, i.e.,
ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ðk2Þ

p
. Thus, the desired solution is given by

ϕðt; xÞ ¼ θðtÞ
Z

dk
2π

eikx
sinðωktÞ

ωk
: ð8Þ

For t > 0, which is the domain of our interest, the time
derivative of ϕ becomes

_ϕðt; xÞ ¼
Z

dk
2π

eikx cosðωktÞ

¼ 1

2

Z
dk
2π

eikx−iωkt þ 1

2

Z
dk
2π

eikxþiωkt: ð9Þ

Using the fact that ωk is an even function of k, we have

1

2

Z
dk
2π

eikxþiωkt¼1

2

Z
dk
2π

e−ikxþiωkt¼
�
1

2

Z
dk
2π

eikx−iωkt

��
:

ð10Þ

Thus, _ϕ becomes

2It may be natural to consider a UV cutoff when one considers
low energy effective field theories. Then,mild superluminality (i.e.,
consistent with luminal propagation within the range of the
effective field theory which has limiting resolution) is allowed
[2,9–12] in principle. Even for such a case, in general, one needs to
investigate front velocities (though they now have the uncertainty
corresponding to the cutoff) rather than group or phase velocities to
evaluate the propagation speed, as discussed in [5,6].
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_ϕðt; xÞ ¼ Re
Z

dk
2π

eikx−iωkt: ð11Þ

Until t ¼ 0, ϕ ¼ 0 at any location. After t ¼ 0, the value of
ϕ may change from the initial value because of the source
term −δðtÞδðxÞ. Since the change of ϕ at a fixed point x is
caused by the nonvanishing of _ϕ, we can say that the wave
front at tð> 0Þ is the place where _ϕ has just become
nonzero for the first time at t. Then, the front velocity is
obtained simply by dividing the distance between that place
and the origin by t.
In what follows, we will show that the front velocity is

infinite if ωk grows faster than k as k → ∞. To this end, we
first assume that ωk approaches a power-law form as
k → ∞:

lim
k→∞

ωk

kn
¼ β

n
; ð12Þ

where β is some constant and n > 1.
If we take tð> 0Þ to be sufficiently small, then the phase

ωkt in Eq. (11) remains negligibly small until k becomes
extremely large, at which point we may safely use the
asymptotic form (12) for ωk. Thus,

I ≡
Z

dk
2π

eikx−iωkt ¼
Z

dk
2π

eikx−i
β
nk

nt ð13Þ

holds true for sufficiently small t. For technical conven-
ience, let us write t as t ¼ ϵn−1. Since n > 1, ϵ is a very
small number as well. Plugging t ¼ ϵn−1 into Eq. (13) and
rescaling the integration variable k, we obtain

I ¼ 1

ϵ

Z
dκ
2π

exp
�
i
ϵ
fðκÞ

�
; fðκÞ≡ xκ −

β

n
κn: ð14Þ

Now, when ϵ is sufficiently small, the integrand is a highly
oscillating function except at the point κ0 where the phase
fðκÞ becomes stationary, i.e., f0ðκ0Þ ¼ 0. Then, I is
dominated by the integration around the stationary point.
On the basis of this observation, let us Taylor-expand fðκÞ
around κ ¼ κ0 and truncate it at the leading order:

fðκÞ ¼ fðκ0Þ þ
f00ðκ0Þ

2
ðκ − κ0Þ2: ð15Þ

Using Eq. (15), we can perform the integration analytically
and we end up with

I ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πϵjf00ðκ0Þj

p exp

�
i
ϵ
fðκ0Þ − i

π

4

�
: ð16Þ

Using the explicit form of fðκÞ, we find

fðκ0Þ ¼
�
1−

1

n

��
xn

β

� 1
n−1
; f00ðκ0Þ ¼−ðn− 1Þðβxn−2Þ 1

n−1:

ð17Þ

Obviously, the real part of I does not vanish. This means
that _ϕ is nonzero at any point x infinitesimally after t ¼ 0.
Thus, the front velocity is infinite. This result is consistent
with Eq. (1) because now the phase velocity is also infinite
in the UV limit as expressed by Eq. (12). Therefore,
relation (1) is true even for α ¼ 4; 6; 8;… in Eq. (2).

III. SUPERLUMINAL PROPAGATION FROM IR
OR INTERMEDIATE-SCALE PHYSICS

In the previous section, we showed that front velocities
are infinite if phase velocities increase infinitely in the UV
limit by considering the UV modification of the dispersion
relation as Eq. (3). This can be regarded as a generalization
of relation (1) with dispersion relation (2). One then may
believe that front velocities only depend on UV physics,
and thus, IR or intermediate-scale physics is irrelevant to
propagation speed. However, this naive expectation is not
true in general. Below, we will show several examples that
have infinite front velocities, even though their dispersion
relations are modified only in IR or intermediate scales.

A. Discontinuous dispersion relation

Let us first consider a dispersion relation that has
discontinuities at momenta k1 and k2, as depicted in
Fig. 1. Hereafter, we will assume that parity is conserved,
i.e., ω−k ¼ ωk, as in Sec. II. For k > 0, the dispersion
relation is given by

ωk ¼
�
k for k < k1; k2 < k;

kþ C for k1 < k < k2;
ð18Þ

where C is a constant. This dispersion relation is highly
artificial. Nevertheless, we consider this example first

FIG. 1. Depiction of dispersion relation (18).
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because (i) simple analytic calculation is possible and (ii) it
nicely represents that modification of the dispersion rela-
tion only in the IR regime still leads to infinite front
velocity. To investigate front velocity, as was done in
Sec. II, we consider the point source with the wave equation
that has the above dispersion relation. Then we see that the
time derivative of the solution is given by Eq. (9) by
repeating the previous discussion in Sec. II. From Eqs. (9)
and (18), we obtain

_ϕðt; xÞ ¼
Z

∞

−∞

dk
2π

eikx cosðktÞ

−
Z

k2

k1

dk
π
cosðkxÞ½cosðktÞ− cos½ðkþCÞt��: ð19Þ

The first term yields delta functions that correspond to
propagation with the speed of light. This is consistent with
the case of no discontinuities, i.e., k1 ¼ k2; then, the second

term vanishes. The integration (19) can be carried out
exactly as

_ϕðt; xÞ ¼ 1

2
½δðx − tÞ þ δðxþ tÞ� þ 1

2πðt2 − x2Þ
× ½ðtþ xÞðsinðt − xÞk1 − sinðt − xÞk2 − sin½ðt − xÞk1 þ Ct� þ sin½ðt − xÞk2 þ Ct�Þ
þ ðt − xÞðsinðtþ xÞk1 − sinðtþ xÞk2 − sin½ðtþ xÞk1 þ Ct� þ sin½ðtþ xÞk2 þ Ct�Þ�: ð20Þ

The second term is nonzero even when x > t, so that the
wave propagates space likely. Therefore, it is superluminal.
In particular, the front velocity is infinite.

B. Cuspy modulation and massivelike
linear dispersion relation

Next, we consider modulation of the dispersion relation
of a massless particle, as shown in Fig. 2. In Fig. 2, there is
a cusp with a peak at k0 between arbitrary momenta k1 and
k2. More explicitly, the modulated dispersion relation for
k > 0 is given by

ωk ¼
8<
:

k for 0 < k < k1; k ≥ k2;

akþ ð1 − aÞk1 for k1 ≤ k < k0;

bkþ ð1 − bÞk2 for k0 ≤ k < k2;

ð21Þ

where a is a constant and b ¼ k2−k1−aðk0−k1Þ
k2−k0

. For dispersion
relation (21), Eq. (9) can be evaluated as

_ϕðt; xÞ ¼
Z

∞

−∞

dk
2π

eikx cosðktÞ −
Z

k2

k1

dk
π
cosðkxÞ cosðktÞ

þ
Z

k0

k1

dk
π
cosðkxÞ cos½ðakþ ð1 − aÞk1Þt�

þ
Z

k2

k0

dk
π
cosðkxÞ cos½ðbkþ ð1 − bÞk2Þt�:

The first term gives rise to delta functions that indicate
propagation with the speed of light. The remaining terms
represent the effects of the cusp in the dispersion relation
and they can be integrated exactly as

_ϕðt; xÞ ¼ 1

2
½δðx − tÞ þ δðxþ tÞ�

þ ðtþ xÞfsin ½k1ðt − xÞ� − sin ½k2ðt − xÞ�g þ ðx → −xÞ
2πðt2 − x2Þ

þ ðatþ xÞfsin ½k0ðat − xÞ þ k1ð1 − aÞt� − sin ½k1ðt − xÞ�g þ ðx → −xÞ
2πða2t2 − x2Þ

−
ðbtþ xÞfsin ½k0ðbt − xÞ þ k2ð1 − bÞt� − sin ½k2ðt − xÞ�g þ ðx → −xÞ

2πðb2t2 − x2Þ : ð22Þ

FIG. 2. Schematic shape of dispersion relation (21).
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From Eq. (22), we find that _ϕ is nonzero (when a ≠ 1) even
in spacelike region x > t. Therefore, the front velocity is
infinite and the propagation is superluminal. We mention
that the above illustration includes a special case
(k0 ¼ k1 ¼ 0) where the dispersion relation represented
by Fig. 3 resembles the one for the massive particle in the
sense that ω near k ¼ 0 approaches a positive constant. The
example in this subsection also explicitly shows that IR
physics can be relevant to the discussion of the propagation
speed.

C. Bumpy modulation

Finally, we consider a more general modulation of the
standard dispersion relation of a massless particle:

ω2
k ¼ k2 þ δω̃2ðkÞ: ð23Þ

Assuming that the modulation is small for arbitrary k, i.e.,
δω̃ðkÞ ≪ k, one can obtain

ωk ≃ kþ δωðkÞ; ð24Þ

for k > 0. We have defined δωðkÞ≡ δω̃2ðkÞ=2k ≪ k and
postulated parity conservation, so that δωð−kÞ ¼ δωðkÞ. In
this convention,ωk ¼ −kþ δωð−kÞ for k < 0. For the above
dispersion relation (24), Eq. (9) can be approximated as

_ϕðt;xÞ¼
Z

∞

−∞

dk
2π

eikx cosððkþδωðkÞÞtÞ

≃
Z

∞

−∞

dk
2π

eikx cosðktÞ−
Z

∞

0

dk
π
cosðkxÞsinðktÞδωðkÞt:

ð25Þ

Now as an illustrative example, we consider a Gaussian-like
function for the modulation δωðkÞ:

δωðkÞ ¼ A exp

�
−
ðk − k0Þ2

2σ2

�
; ð26Þ

where A is a constant. k0 and σ specify a peak position and
width of the distribution in momentum space, respectively.
For technical convenience, we assume k0 ≫ σ. An example
of the dispersion relation is depicted in Fig. 4. Note that
althoughA is taken to be positive in Fig. 4, the signature does
not change our conclusion. The first term in Eq. (25) gives
rise to the delta functions that indicate propagation with the
speed of light. For the Gaussian-like function (26), the
integration range of the second term in Eq. (25) can be
extended from−∞ to∞ approximately. Then the integration
(25) can be evaluated as

_ϕðt; xÞ ¼ 1

2
½δðx − tÞ þ δðxþ tÞ� − σAtffiffiffiffiffiffi

2π
p ðe−σ2ðtþxÞ2=2 sin½ðtþ xÞk0� þ e−σ

2ðt−xÞ2=2 sin½ðt − xÞk0�Þ: ð27Þ

We see that _ϕ is nonzero even in the spacelike region x > t,
and thus, it means superluminal.
From the above examples A, B, and C, we find that

front velocities can be superluminal even if a dispersion
relation is modulated only in the IR regime, namely, phase

velocities are luminal in the UV limit. In fact, this
conclusion is quite general since the second term in
Eq. (25) indicates that special cancellation of the effects
of IR modification in a dispersion relation is needed to
avoid superluminal propagation.

FIG. 3. Dispersion relation (21) for k0 ¼ k1 ¼ 0. FIG. 4. Dispersion relation (24) with modulation (26).
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IV. CONCLUSION

Requiring nonsuperluminal propagation is a key cri-
terion in constructing a consistent theory. Then it is useful
to investigate front velocities that may be related to phase
velocities by Eq. (1) to quantify the propagation speed.
Equation (1) implies a remarkable intuition that the
propagation speed of a particle is only determined by
the UV limit of a dispersion relation, and thus, IR physics is
irrelevant to it. However, to our best knowledge, Eq. (1)
was proved only for the dispersion relation given by
Eq. (2). In this paper, we investigated whether Eq. (1) is
true for not only the dispersion relation of the form given by
Eq. (2) but also other functional forms.
In Sec. II, we showed that Eq. (1) is satisfied even for

α ¼ 4; 6; 8;…. This proof extends the applicable range of
Eq. (1) to dispersion relations that have higher spatial
derivatives. Therefore, the result would be beneficial to
constructing low energy effective theories from the view-
point of UV completion where Eq. (1) plays an important
role [8,13].

In Sec. III, we demonstrated several examples that
violate Eq. (1) by evaluating Green functions. They are
counterexamples to Eq. (1) and explicitly show that IR
physics can be relevant to the discussion of propagation
speed. Our finding conveys the important caution that not
only UV physics but also IR physics can be significant
when one considers a consistent theory in light of
causality.
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