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We study quantum fluctuations in the light-cone metric of the 4D Einstein-Hilbert action via dimensional
reduction to Jackiw-Teitelboim (JT) gravity. In particular, we show that, in Einstein gravity, the causal
development of a region in flat Minkowski spacetime, near a horizon defined by light sheets, can be
described by an effective two-dimensional dilaton theory. This enables us to make use of known solutions
of the JT action, where the spacetime position of a horizon has quantum uncertainty due to metric
fluctuations. This quantum uncertainty can be then directly related to the original 4D light-cone
coordinates, allowing us to compute the uncertainty in the time of a photon to travel from tip-to-tip of
a causal diamond in flat 4D Minkowski space. We find that both Planck and infrared scales (with the latter
set by the size of the causal diamond) enter the uncertainty in photon travel time, such that the quantum
fluctuation in the arrival time may be observably large.
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I. INTRODUCTION

Dimensional reduction has long played an important role
in understanding the behavior of higher-dimensional gravi-
tational theories, in particular in the study of black hole
horizons. When a higher-dimensional theory is reduced to a
two-dimensional system associated with the light-cone
directions, the area of the transverse directions becomes
the dilaton field. In the near-horizon limit the dilaton is
conformal (see e.g. Ref. [1]), and by studying the con-
formal states of the action and using Cardy’s formula the
correct expression for the black hole entropy can be
derived.
While the conformal description of near-horizon states

has been widely applied to black hole horizons, there is
reason to think that a similar formalism may apply to light
sheet horizons more generally [2]. The interior of a causal
diamond in many generic spacetimes can be represented by
a topological black hole metric:

ds2 ¼ −fðRÞdT2 þ dR2

fðRÞ þ ρðT; RÞ2dΣ2
d−2: ð1Þ

For example, for boundary anchored diamonds in AdS,
fðRÞ ¼ R2=L2 − 1, with L the AdS curvature, while in

emptyMinkowski,fðRÞ ¼ 1 − R=Rh, whereRh is the radius
of the bifurcate horizon. The representation of the causal
diamond has an associated modular Hamiltonian, K, that
characterizes the density matrix of the diamond, ρdiamond ¼
e−K=trðe−KÞ. If one conjectures that the near-horizon states
of a light-sheet horizon are described by a conformal field
theory, one is able to immediately write down the form of the
partition function (see discussion in [2]),

log Z ¼ log

�Z
dE eB

ffiffiffi
E

p
−βE

�
; ð2Þ

from which one can derive both the expectation value
of K, hKi ¼ −β∂β logZ þ logZ ¼ βhEi þ logZ ¼ S, and
its fluctuations, hΔK2i ¼ β2∂2β logZ ¼ β2hΔE2i, finding
hΔK2i ¼ hKi. This result agrees with previous calculations
for Ryu-Takayanagi diamonds in AdS=CFT [3,4]. These
modular fluctuations generatemetric fluctuations, inducing a
quantum uncertainty in the horizon of the causal diamond.
The authors of previous works [2,4,5] suggested that these
fluctuations might be observably large.
Here, we put a new twist on these ideas by showing that

Einstein gravity on a causal diamond in flat 4D spacetime,
at least in the near-horizon limit, exactly dimensionally
reduces to Jackiw-Teitelboim (JT) gravity [6,7] in two
dimensions. In particular, the parent 4D theory can be Weyl
rescaled to a dilaton theory on AdS2 × S2, as shown in
Fig. 1. The dynamics of the dilaton (shown by a dashed
line) controls both the size of the S2 and the relative
position of the horizon with respect to the boundary. As has
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also been noted by others, the dilaton is expected to have an
effective hydrodynamic description [8].
This implies that, if we are interested only in observables

defined on a light sheet horizon, we can make use of a vast
literature studying the JT theory. In turn, this allows us to
potentially draw connection between experimental observ-
ables and theoretical calculations in the vast field of
quantum gravity. We will make use, in particular, of the
solutions presented in Ref. [8], which features a two-sided
AdS2 spacetime. These authors computed the quantum
uncertainty in a geodesic distance controlled by the dilaton.
We will show that the quantum uncertainty in this geodesic
distance computed in the two-sided 2D JT theory is directly
related to the uncertainty in the travel time for a photon to
be fired from a boundary to the bulk, reflected by a mirror,
and returned to the boundary. The relation is illustrated in
Fig. 1, which will be described in more detail in the main
text. The original 4D spacetime has a flat metric

ds2Mink ¼ −dt2 þ dr2 þ r2dΩ2
2; ð3Þ

which is conformally equivalent to the product metric on
AdS2 × S2:

ds2Mink ¼
ρ2

L2

�
L2

−dt2 þ dr2

r2
þ L2dΩ2

2

�
; ð4Þ

where we treat ρ ¼ r as a scalar field, and L is a positive
constant which we identify with the AdS2 radius (as well as
the radius of the sphere S2). This closely resembles the
near-horizon limit of a 4D near-extremal Reissner-
Nordström black hole. In the limit lp → 0, such that the
magnetic charge and temperature are kept fixed, this

near-horizon geometry becomes AdS2 × S2, while the
Einstein-Maxwell action reduces to the JT action [9] after
integrating over the angular coordinates. Moreover, Eq. (4)
demonstrates that the Minkowski spacetime variables, t
and r, naturally become the AdS spacetime variables in
Poincaré coordinates, t and z. Motivated by this well-
known result, in later sections we demonstrate that the
Einstein gravity reduces to the JT gravity by a similar
procedure and compute the relevant observables.
The causal diamond can be observationally defined by

an interferometer setup, also shown in Fig. 1. We align our
interferometer arm along the radial direction and denote its
length by L. The photon is fired from r ¼ 0 at t ¼ −L. At
time t ¼ 0, the photon hits the mirror at the interferometer
end (r ¼ L) and bounces back. Finally, the photon arrives
to its starting position r ¼ 0 at t ¼ L. The photon trajectory
is hence described by t − r ¼ −L and tþ r ¼ L for its first
and second trip respectively. The spacetime region bounded
by the photon trajectory and r ¼ 0 is commonly referred
to as the causal diamond, where the photon trajectory itself
is known as the horizon since no particles can cross the
boundary and escape to infinity, similar to a black hole
horizon. Spacetime fluctuations lead to uncertainty in the
photon travel time.
At first sight, it seems surprising that JT gravity in

two-sided AdS, such as that solved explicitly in Ref. [8],
would have anything to do with photon trajectories in
Minkowski space. After all, the JT setup is in AdS space
and has curvature, while Minkowski does not. It is also not
immediately clear what a two-sided geometry has to do
with a one-sided causal diamond. It is important to high-
light two subtle, but important points that allow us to utilize
the computational tools of JT gravity. First, while AdS

FIG. 1. The metric on Mink4 is conformally equivalent to that on AdS2 × S2. Inserts illustrate spacetime diagrams of the causal
diamonds in both geometries.
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clearly has curvature that the parent Minkowski theory does
not, in the near horizon limit of the causal diamond relevant
for photon trajectories, we will show that these terms in the
action which contribute to the curvature are subdominant.
Second, while the formal solution to JT gravity that we
utilize is in two-sided AdS, we will see that the length of the
causal diamond horizon in one-sidedMinkowski is identical
to that of the two-sided AdS horizon connecting the two
boundaries. Hence, one can compute the physical photon
round-trip time by calculating the time for a photon to travel
from one AdS boundary to the boundary on the other side of
AdS along the horizon. We will see that the other side of
AdS serves as a convenient tool for us to compute quantum
fluctuations in the physical observable by computing how
one side of AdS fluctuates with respect to the other side.
The outline of the paper is as follows. In Sec. II, we

discuss how the JTaction can be obtained by dimensionally
reducing the familiar gravitational action and dropping a
subdominant kinetic term in the near-horizon limit. In
Sec. III, we study the AdS geometry and introduce various
useful coordinate systems. In Sec. IV, we define our
observable in the context of JT gravity and compute its
fluctuations. Finally, in Sec. VI, we discuss implications of
our results and mention a few future directions.

II. DIMENSIONAL REDUCTION TO THE
JT ACTION

We begin by dimensionally reducing the familiar gravi-
tational action in 4D Minkowski spacetime, in the near-
horizon limit, to the 2D JT action. As advertised above, this
calculation is similar to the previous work by one of the
authors [2] on small empty diamonds. There are, however, a
couple of important differences with these earlier works.
First, in line with theories of JT gravity, our dimensionally-
reduced manifold has a boundary. We thus must include the
boundary contributions during the dimensional reduction
process, which will ultimately lead to the boundary action
in JT gravity. This is crucial for our later analysis since the
bulk action vanishes on shell for JT gravity, and thus the
boundary term gives rise to the sole degree of freedom.
Second, we perform a (different) Weyl rescaling to bring
the two-dimensional metric into the AdS2 form to align
with the exact JT gravity setup studied in the literature.
On a 4-manifoldM4, the total action, I ¼ IEH þ IGHY, is

the sum of the bulk Einstein-Hilbert (EH) action and the
boundary Gibbons-Hawking-York (GHY) action:

IEH ¼ 1

16πGN

Z
M4

d4x
ffiffiffiffiffiffiffiffi
−g4

p
R4;

IGHY ¼ 1

8πGN

Z
∂M4

d3x
ffiffiffiffiffiffiffiffi
−γ3

p
K3; ð5Þ

whereGN is the 4D gravitational constant, γ3 is the induced
metric on the boundary, g4 is the metric with the Ricci

scalar R4, and the extrinsic curvature K3 on ∂M4. The GHY
action is needed in gravitational theories with a boundary to
make the variational problem well posed. In particular, the
extra boundary term that arises from varying the EH action
cancels against the variation of the GHY term.Wewill see a
similar mechanism in action shortly.
We consider spherically symmetric metrics in the general

form

ds2 ¼ gabðx0; x1Þdxadxb þ ρ2ðx0; x1ÞdΩ2
2; ð6Þ

where x0 and x1 will be referred to as the light-cone
coordinates,1 the radius ρ is a scalar function of x0 and x1,
and dΩ2

2 is the line element of a two-dimensional unit
sphere. Geometrically speaking, ρ sets the radius of the
horizon. As wewill see below, ρ2 plays the role of a dilaton,
which corresponds to the horizon area (and hence the
entropy).
A generalization of the conformal equivalence Mink4 ≅

AdS2 × S2 noted in Eqs. (3) and (4) is a similar relation
between a spherically symmetric metric (6) and the space of
the form M̃2 × S2:

ds2 ¼ ρ2

L2

�
L2

ρ2
gabdxadxb þ L2dΩ2

2

�
: ð7Þ

Ultimately we would like to work with an AdS2 metric,
which motivates us to denote the metric in the parenthesis
as g̃μν ¼ ðL2=ρ2Þgμν, and compute the action in terms
of g̃μν.
A few remarks are in order:
(i) Since Einstein gravity is not conformally invariant,

g̃μν does not satisfy the usual vacuum Einstein
equation. However, it still satisfies the equation of
motion that follows from action Eq. (5) after the
contribution of the conformal factor is properly
accounted for.

(ii) The conformal relation between gμν and g̃μν in
Eq. (4) works for any choice of positive L. We find
it most convenient to choose L that coincides with
the interferometer arm length.

(iii) Weyl transformations do not alter the causal struc-
ture of a metric. A null geodesic in gμν is still a null
geodesic in g̃μν.

A. Einstein-Hilbert action

We first consider the EH action. The curvatures of gμν
and g̃μν are related by [10]

R4 ¼ L2ðρ−2R̃4 − 6ρ−3□̃ρÞ; ð8Þ

1We use Greek letters for bulk coordinates in four dimensions
and Latin letters from the early part of the alphabet for the light-
cone coordinates.
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while the curvature of the product manifold g̃μν in Eq. (7) is
a simple sum of individual curvatures

R̃4 ¼ R̃2 þ
2

L2
; ð9Þ

where R̃2 is the Ricci scalar of g̃ab. This allows us to
evaluate the action in Eq. (5)2

IEH ¼ 1

16πGN

1

L2

Z
M̃4

d4x
ffiffiffiffiffiffiffiffi
−g̃4

p �
ρ2R̃2 − 6ρ□̃ρþ 2

L2
ρ2
�

¼ 1

16πGN

1

L2

Z
M̃4

d4x
ffiffiffiffiffiffiffiffi
−g̃4

p �
ρ2R̃2 þ 6ð∇̃ρÞ2 þ 2

L2
ρ2
�

−
1

16πGN

3

L2

Z
∂M̃4

d3x
ffiffiffiffiffiffiffiffi
−γ̃3

p
g̃μνñμ∇̃νρ

2: ð10Þ

The boundary term here comes from the Stokes’ theorem3

that relates a total derivative to a boundary term.
To perform the dimensional reduction, we integrate over

the angular directions while keeping in mind that ρ as well
as R̃2 only depend on the light-cone variables. Hence, the
EH action becomes

IEH ¼ 1

4GN

Z
M̃2

d2x
ffiffiffiffiffiffiffiffi
−g̃2

p �
ρ2R̃2 þ 6ð∇̃ρÞ2 þ 2

L2
ρ2
�

−
3

4GN

Z
∂M̃2

dx0
ffiffiffiffiffiffiffiffi
−γ̃1

p
g̃abña∇̃bρ

2; ð11Þ

where x0 is the boundary time.

B. Gibbons-Hawking-York action

We now turn our attention to the GHY action. The
normal vector of the boundary transforms as ñμ ¼ ðρ=LÞnμ,
hence the extrinsic curvature transforms as

K3 ¼ ∇μnμ

¼ 1ffiffiffiffiffiffiffiffi−g4
p ∂μð

ffiffiffiffiffiffiffiffi
−g4

p
nμÞ

¼
�
L
ρ

�
4 1ffiffiffiffiffiffiffiffi

−g̃4
p ∂μ

��
ρ

L

�
3 ffiffiffiffiffiffiffiffi

−g̃4
p

ñμ
�

¼ L
ρ
K̃3 þ 3

L2

ρ2
ñμ∇̃μ

ρ

L
: ð12Þ

Putting this into the GHY action in Eq. (5) gives

IGHY ¼ 1

8πGN

1

L2

Z
∂M̃4

d3x
ffiffiffiffiffiffiffiffi
−γ̃3

p �
ρ2K̃3 þ

3

2
g̃μνñμ∇̃νρ

2

�
:

ð13Þ

Since the boundary ∂M4 is taken to be spherically sym-
metric, only the light-cone component of the normal vector
nμ is nonzero, which then coincides with na, the normal
vector to ∂M2. On the other hand, projection to M̃2 gives a
simple relation K̃3 ¼ K̃1, where K̃1 is the extrinsic curva-
ture of g̃ab on ∂M̃2. This allows us to perform the dimen-
sional reduction

IGHY ¼ 1

2GN

Z
∂M̃2

dx0
ffiffiffiffiffiffiffiffi
−γ̃1

p
ρ2K̃1

þ 3

4GN

Z
∂M̃2

dx0
ffiffiffiffiffiffiffiffi
−γ̃1

p
g̃abña∇̃bρ

2: ð14Þ

We see that the extra boundary term from the EH action
precisely cancels the second term in the GHY action. The
total action then becomes

I ¼ 1

4GN

Z
M̃2

d2x
ffiffiffiffiffiffiffiffi
−g̃2

p �
ρ2R̃2 þ 6ð∇̃ρÞ2 þ 2

L2
ρ2
�

þ 1

2GN

Z
∂M̃2

dx0
ffiffiffiffiffiffiffiffi
−γ̃1

p
ρ2K̃1: ð15Þ

Similar cancellations have been noted in Ref. [11] while
models with actions similar to Eq. (15) have been exten-
sively studied in Ref. [12].

C. Near-horizon limit

We now examine the metric and the action near the
horizon of a Minkowski causal diamond of size L. The
metric in the interior of a causal diamond is obtained from
Eq. (3) via the transformation [5]

t ¼ 2L sinh

�
T
2L

� ffiffiffiffiffiffiffiffiffiffiffi
1 −

R
L

r
;

r ¼ L − 2L cosh

�
T
2L

� ffiffiffiffiffiffiffiffiffiffiffi
1 −

R
L

r
; ð16Þ

and the metric can be written in the form of Eq. (1),

ds2Mink ¼ −
�
1−

R
L

�
dT2 þ dR2

1−R=L
þ ρ2ðT;RÞdΩ2

2; ð17Þ

where we again identify ρ ¼ r. The transformed light-cone
variables are T and R. Observe that

2We use the shorthand□ρ ¼ gμν∇μ∇νρ, ð∇ρÞ2 ¼ gμν∇μρ∇νρ,
□̃ρ ¼ g̃μν∇̃μ∇̃νρ, and ð∇̃ρÞ2 ¼ g̃μν∇̃μρ∇̃νρ. Since ρ does not
depend on the angular variables, we can also replace the four-
dimensional contractions in the above derivatives by just two-
dimensional contractions.

3We define the normal vector nμ to the boundary to be pointing
outward/inward if it is spacelike/timelike. In this convention, the
Stokes’ theorem reads

R
M4

d4x
ffiffiffiffiffiffiffiffi−g4

p ∇μVμ ¼ R
∂M4

d3x
ffiffiffiffiffiffiffiffi−γ3

p
nμVμ

for any vector Vμ regardless of the signature of the boundary. The
analogous formula also holds in two dimensions.
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ðtþ r − LÞðt − rþ LÞ ¼ −4L2

�
1 −

R
L

�
; ð18Þ

hence the horizon of the causal diamond described at the
end of Sec. I is located at R ¼ L. In the near-horizon limit,
R → L, the dilaton is approximately a large positive
constant. We can thus expand the dilaton as a small
perturbation

ρ2 ¼ ϕ0 þ ϕ; ð19Þ

where ϕ0 ¼ L2 and ϕ ≪ ϕ0. It is also clear in this
coordinate that the classical area of the causal diamond
is A ¼ 4πL2.
The action we obtained in Eq. (15) is almost the action of

JT gravity except for the kinetic term ð∇̃ρÞ2. It has been
argued in Ref. [13] that the kinetic term is a subdominant
contribution in the context of a near-extremal Reissner-
Nordström black hole. We briefly review the argument and
apply it to our setup. Expanding the kinetic term using
Eq. (19) gives

Z
M̃2

d2x
ffiffiffiffiffiffiffiffi
−g̃2

p
ð∇̃ρÞ2 ¼ 1

4

Z
M̃2

d2x
ffiffiffiffiffiffiffiffi
−g̃2

p ð∇̃ϕÞ2
ϕ0 þ ϕ

: ð20Þ

Suppose the system is perturbed by coupling to some matter
field via I → I þ Imatter. Then, the equation of motion
associated with the action in Eq. (15) can bewritten asTab ¼
Tmatter
ab with Tab ¼ −∇̃a∇̃bρ

2, where we have absorbed the
dilaton kinetic term into the definition of Tmatter

ab . In the
conformal gauge, ds̃2¼−expð2ωðuþ;u−ÞÞduþdu−, the ++
component of the equation of motion turns out to be

−e2ω∂þðe−2ω∂þρ2Þ ¼ Tmatterþþ > 0: ð21Þ

Integrating this expression along a line u− ¼ 0 from uþ ¼ 0
to uþ ¼ π then gives

Z
π

0

duþe−2ωTmatterþþ ¼ ½e−2ω∂þρ2�juþ→0 − ½e−2ω∂þρ2�juþ→π:

ð22Þ

In AdS2, the conformal gauge is given by expð−2ωÞ ∼
sin2 uþ with the boundaries located at uþ ¼ 0 and uþ ¼ π.
Requiring the expression in Eq. (22) be positive then implies
that ρ2 diverges near at least one of the boundaries [9]

ρ2juþ→0 ∼ constantþ 1

uþ

ρ2juþ→π ∼ constantþ 1

uþ − π
: ð23Þ

With this information in hand, we can consider the dilaton
kinetic term in Eq. (20) using the Poincaré coordinates4

ds̃2 ¼ L2
−dt2 þ dz2

z2
; ð24Þ

where the boundary is located at z ¼ 0. Since the dilaton
diverges as ϕ ∼ 1=z near z ¼ 0 and has the dimension of
½length�2, by dimensional analysis, one finds ϕ ∼ l2pL2E=z
where E is the energy associated with the causal diamond.
The derivatives evaluate to ð∇̃ϕÞ2 ¼ gzz∂zϕ∂zϕ ¼ ϕ2=L2∼
ϕ2=ϕ0. Hence we can evaluate Eq. (20)

ð∇̃ϕÞ2
ϕ0 þ ϕ

≈
1

ϕ0

1

1þ ϕ=ϕ0

ϕ2

ϕ0

¼ ϕ2

ϕ2
0

þO
�
ϕ3

ϕ3
0

�
; ð25Þ

which is quadratic in ϕ=ϕ0 at the leading order, and thus
can be omitted in Eq. (15). This leaves us with the JT
action

I ¼
Z
M̃2

d2x
ffiffiffiffiffiffiffiffi
−g̃2

p
Φ
�
R̃2 þ

2

L2

�
þ 2

Z
∂M̃2

dx0
ffiffiffiffiffiffiffiffi
−γ̃1

p
ΦK̃1;

ð26Þ

where we have defined the dimensionless dilaton field

Φ ¼ ρ2

4GN
; ð27Þ

which controls the size of the S2. We will also show that this
field controls how long it takes for a photon to traverse from
the bottom to the top of the causal diamond.
We emphasize that the procedure of dropping the dilaton

kinetic term (and hence the correspondence with JT
gravity) is only valid near the causal diamond horizon.
The classical equations of motion for the metric and dilaton
are later derived in Eq. (33) using the truncated action
Eq. (26). If one attempts to directly compute the classical
Ricci scalar of the four-dimensional metric in Eqs. (6) and
(27), one finds a nonvanishing curvature for r > 0. On the
other hand, if one retains the kinetic term, than the metric
equation of motion would remain the same as Eq. (33), but
the dilaton solution would simply be ρ ¼ z ¼ r, which
would completely reproduce the original four dimensional
Minkowski metric in Eq. (6) with zero curvature.

4We use the symbol t for both the Minkowski time and the AdS
time in Poincaré coordinates since they can be identified with
each other via the Weyl rescaling of Eq. (4), while different
notations are used for the spatial coordinates, z and r.
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For our purposes, we are interested in the dilaton equation of
motion near a null trajectory, where the dilaton kinetic term is
subdominant.Dropping the kinetic term, however, comes at a
price of introducing a (unphysical) curvature in the parent
Minkowski theory. According to our argument above,
however, this curvature is irrelevant for the dilaton equations
ofmotion in the near-horizon limit.We thus proceedwith the
JT theory, in the near-horizon limit, as a good approximation
to near-horizon Minkowski spacetime fluctuations.

III. THE TWO-SIDED AdS GEOMETRY AND
CLASSICAL DILATON SOLUTION

Before considering the quantum fluctuations, we discuss
the classical equations of motion for both the metric field
and the dilaton. This will allow us to determine how the
dilaton is related to fluctuations in geodesic distances, that
we can in turn relate to photon travel times in the original
4D Minkowski space. The equations of motion read

R̃2 þ
2

L2
¼ 0;

ðL2∇̃a∇̃b − g̃abÞΦ ¼ 0: ð28Þ

The first equation shows that the bulk geometry is a slice of
AdS while the second equation specifies the classical
behavior of the dilaton. To ensure that the variational
problem is well defined, we fix the dilaton value at the
boundary to be

Φjboundary ¼
Φbrc
L

; ð29Þ

and the induced metric to be γ00j∂M̃2
¼ r2c=L2, where rc →

∞ is the regularized location of the AdS boundary.
The AdS2 space can be described as a hypersurface

T2
1 þ T2

2 − X2 ¼ L2 in the Minkowski spacetime with
signature (2,1):

ds2 ¼ −dT2
1 − dT2

2 þ dX2: ð30Þ

As shown in Fig. 2, this hypersurface is a hyperboloid
with one connected component and a reflection symmetry
around X ¼ 0. The two AdS boundaries are located at
X → �∞. We see that the boundaries are disjoint and each
associated to a coordinate patch. The most general solution
to Eq. (28) has the dilaton profile Φ ¼ AT1 þ BT2 þ CX,
with some constants A, B, and C. Following Ref. [8], by
invoking the SO(2,1) symmetry of the ambient Minkowski
spacetime, we can rotate our coordinates such that
B ¼ C ¼ 0. Hence we can write

Φ ¼ ΦhT1

L
; ð31Þ

where Φh will later be identified as the dilaton value at the
horizon.
As shown in Fig. 3, we will use multiple coordinates

to describe the causal diamond in AdS geometry, as we
discuss in detail next. We cast the embedding coordinates
first in the standard Poincaré coordinates. Then we discuss
Schwarzschild coordinates, which have the advantage of
making the position of the Rindler horizon explicit, which
in turn will be directly related to the value of the dilaton;
these coordinates cover only the interior of the causal
diamond shown in Fig. 3. Finally, we transform to global
coordinates, which cover the entire spacetime and will be
the coordinate system of choice for computing the Hartle-
Hawking wave function and partition function. Wewill also
explain how each of these coordinate systems relates to the
coordinates in the original Minkowski metric, where actual
measurements are supposed to take place.

A. Poincaré coordinates

The most commonly used coordinate system in the AdS
spacetime is the aforementioned Poincaré coordinate sys-
tem, related to the embedding coordinates by

T1 ¼
L2 − t2 þ z2

2z
;

T2 ¼ L
t
z
;

X ¼ L2 þ t2 − z2

2z
; ð32Þ

FIG. 2. Embedding of the AdS2 in Minkowski space of
signature (2,1). The explicit relation between the coordinate is
summarized in Eq. (32). In these coordinates, the two AdS2
boundaries (related by the reflection symmetry) are at X → �∞.
In Poincaré coordinates, these boundaries correspond to z ¼ 0�
shown in Fig. 3.
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with the metric and dilaton

ds̃2 ¼ L2
−dt2 þ dz2

z2
;

Φ ¼ Φh
L2 − t2 þ z2

2Lz
: ð33Þ

The AdS boundaries are located at z ¼ 0�, shown in the
left-hand panel of Fig. 3; they correspond to X → �∞ in
the embedding coordinates, shown in Fig. 2.
From Eq. (4), the ðt; zÞ coordinates in AdS directly

translate to ðt; rÞ in Minkowski spacetime, such that the
horizon in the original Minkowski spacetime is now at
jtj þ z ¼ L. The shaded regions in Fig. 3 thus correspond
to the interior of the causal diamond also in the original
Minkowski spacetime.

B. Schwarzschild coordinates

Since we are interested in the behavior near the horizon,
a convenient coordinate system is the so-called “topologi-
cal black hole,” or Schwarzschild system of coordinate
ðt; rÞ, given by

T1 ¼ L
r
rs
;

T2 ¼ L sinh
�
rst
L2

� ffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2s
− 1

s
;

X ¼ �L cosh

�
rst
L2

� ffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2s
− 1

s
; ð34Þ

where

ds̃2 ¼ −
r2 − r2s
L2

dt2 þ L2

r2 − r2s
dr2;

Φ ¼ Φb
r
L
; ð35Þ

and rs is some constant and the coordinate is only defined
for r ≥ rs. The � sign in Eq. (34) corresponds to the right
and left patches of the AdS spacetime. This coordinate
system was used in Refs. [4,14] to study the behavior of
light sheet horizons utilizing black hole thermodynamics in
the bulk. The relation between Poincaré and Schwarzschild
coordinates is

�ðLþ tÞ2 − z2

2z

��ðL − tÞ2 − z2

2z

�
¼ L2

�
r2

r2s
− 1

�
;

2Lt
L2 þ t2 − z2

¼ � tanh
rst
L2

: ð36Þ

It is clear from Eq. (36) that r ¼ rs is the position of the
Rindler (bifurcate) horizon, where X ¼ T2 ¼ 0 corre-
sponds to t ¼ 0, z ¼ L in Poincaré coordinates. The
AdS boundary is located at r → ∞, hence the region
r ≥ rs describes the entirety of the causal diamond
interior.
Note that Eq. (35) explicitly states that the dilaton

controls the position of the Rindler horizon, and evaluating
it at the horizon reveals that

rs ¼ L
Φh

Φb
: ð37Þ

We thus expect dilaton quantum fluctuations to be respon-
sible for the quantum uncertainty in the photon travel time
in the original Minkowski theory.

FIG. 3. Causal diamonds in different AdS coordinates. In all three panels, the shaded region corresponds to a causal diamond in one-
half of the entire AdS space, which in embedding coordinates is X → þ∞ shown in Fig. 2. It is also the shaded region that corresponds
to the interior of the causal diamond in the original Minkowski spacetime, which will be the focus of our attention. The causal diamond
horizon inherited from the 4D Minkowski spacetime is indicated as a solid red curve, while the same horizon but on the other side of
AdS is indicated as a dashed red curve.
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C. Global coordinates

Finally, we define a global coordinate system ðτ; xÞ by

T1 ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

L2

r
cos

τ

L
;

T2 ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

L2

r
sin

τ

L
;

X ¼ x; ð38Þ

such that

ds̃2 ¼ −
�
1þ x2

L2

�
dτ2 þ dx2

1þ x2=L2
;

Φ ¼ Φh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

L2

r
cos

τ

L
; ð39Þ

Following Ref. [8], this is the basis of choice for computing
the Hartle-Hawking wave functions and the partition
function. An important observation is that the global
coordinates cover the entire AdS spacetime, while the
Poincaré and (right) Schwarzschild coordinates only cover
the region x ≥ 0, i.e. the right exterior region. This can be
easily verified by noting the relation with the Poincaré
coordinates

tan
τ

L
¼ 2Lt

L2 − t2 þ z2
;

x ¼ L2 þ t2 − z2

2z
: ð40Þ

Moreover, one could check that the horizon is located at
x ¼ �L tan ðτ=LÞ, while the AdS boundary is at x → �∞.
Hence, the causal diamond is a subset of the right
coordinate patch, while the global coordinates effectively
provide the maximal extension of the patch. An analogous
coordinate system can be set up to describe the left exterior
region, thus effectively factorizing the system.
With the groundwork laid on the relation between the

dilaton and coordinate systems, we can now compute the
quantum fluctuations.

IV. SPACETIME FLUCTUATIONS IN JT GRAVITY

Our analysis mostly follows Ref. [8], which was origi-
nally motivated by the factorization problem [15,16].
Instead of applications to the factorization problem, we
use this framework for constructing the action and its
solutions beyond the classical saddle point approximation.
One important feature of the JT gravity is that it can be

reduced to a 1D quantum mechanics on the boundary. The
Hamiltonian of the QM problem is obtained by evaluating
the stress-energy tensor on each boundary, left and right,
using the action in Eq. (26):

HL ¼ HR ¼ Φ2
h

LΦb
: ð41Þ

The Hamiltonian on the left (right) boundary is conjugate to
the time variable tL (tR), denoting the Schwarschild time on
the respective AdS boundary. Alternatively, on can define
conjugate momentum P and length (which we denote Lg to
distinguish it from the AdS radius). In these variables, the
symplectic form Ω looks like [8]

Ω ¼ dδ ∧ dH ¼ dLg ∧ dP; ð42Þ

where H ¼ HL þHR is the total Hamiltonian. The two
canonical conjugate pairs are ðδ; HÞ and ðLg; PÞ.

A. Canonical variables

Since Eq. (41) implies that HL −HR ¼ 0, the only time
variable is generated by HL þHR, and is defined to be

δ ¼ tL þ tR
2

: ð43Þ

It is noted in Ref. [8] that δ can be interpreted as a time-shift
operator of the Hilbert space spanned by normalized states
jEi, with δ ¼ i∂=∂E. Physically, δ is the time difference
between the two boundaries, which is a quantity that can
be measured by an interferometer system. According to
Ref. [8], one way to define δ is to examine a geodesic
connecting the two boundaries which is orthogonal to
surfaces of constant Φ. The fluctuation of the arrival time
relative to the starting time is characterized by 2δ [8]. A
suitable candidate for such geodesic is simply the horizon
of the two-sided AdS, defined by firing a photon from a
point at the left boundary, ð−πL=2;−∞Þ, and eventually
arriving at the right boundary, ðπL=2;∞Þ. The horizon is
indicated as a red line in the right panel of Fig. 3 (ignoring
the mirror in the figure for now), combining the dashed
and the solid lines in the left and right AdS patch
respectively. The equation for this trajectory can be solved
by setting ds̃ ¼ 0 in Eq. (40), which turns out to be
τ ¼ L tan−1ðx=LÞ.5 The dilaton field along this trajectory
can be found by putting this equation into Eq. (40), which
turns out to be a constant, Φ ¼ Φh, as expected. Since null
geodesics are orthogonal to themselves, the horizon (which
connects the two boundaries) satisfies the condition quoted
from Ref. [8], i.e. a geodesic that is orthogonal to curves of
constant Φ. Hence we can interpret δ as the relative time

5Usually it is not possible to shoot a photon from one boundary
to the other in a two-sided black hole system, since the two
boundaries are causally disconnected. However, in our setup, the
photon trajectory defines the horizon, which is a (and the only)
null geodesic that connects the two boundaries, as apparent when
the Penrose diagram of the spacetime is inspected. AdS geom-
etries with horizons defined by photon paths are also noted and
used in Refs. [4,14].
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between the two boundaries measured by this particular
photon path. Note that δ ¼ 0 corresponds to the classical
(unperturbed) light trajectory, since the clock on the left and
right boundaries runs oppositely, and the time for a photon
to traverse from x ¼ 0 to either boundary is the same in the
unperturbed spacetime, i.e. the clocks on each boundary
tick at the same pace (but with opposite arrows of time) on
either boundary in the absence of quantum fluctuations.
Thus δ ≠ 0 indicates a quantum fluctuation in the light
trajectory, or equivalently, a quantum fluctuation in rate at
which the boundary clocks tick.
Further, δ is related to the quantum fluctuation in the time

of arrival of a photon in theMinkowski interferometer. First,
we note that while the two-sided AdS system is a natural
solution to the JT theory, the original Minkowski causal
diamond only covers a Poincaré patch as indicated by the
shaded regions in Fig. 3. However, by putting a mirror at
x ¼ 0 (i.e. the interface between the two AdS sides), one can
construct a geodesic that was fired from the right boundary at
ð−πL=2;∞Þ, reflected by themirror at (0,0), and arrives back
at the right boundary at ðπL=2;∞Þ, as indicated by the solid
red line at the right panel of Fig. 3. This is simply the horizon
of the Minkowski causal diamond. Then, using reflection
symmetry around x ¼ 0 as discussed in the previous para-
graph, the distance traveled by this photon must be identical,
in the absence of quantum fluctuations, to the distance
traveled by a photon fired from the left boundary and
eventually arrives at the right boundary, i.e. the two-sided
AdShorizon. Then, 2δ is precisely the time shift,with respect
to a classical unperturbed trajectory, for a photon that is fired
from the right boundary and reflected back to its starting
position. This is illustrated in Fig. 4.
In this sense, the two-sided AdS serves as a mathematical

trick (philosophically akin to the method of images in
electrostatics) for us to compute the physical photon travel
time, by allowing us to compute the relative photon travel
time in one copy of AdS with respect to the other. Since the
photon travel time must be the same on both sides in the
absence of quantum fluctuations, δ thus quantifies quantum
fluctuations in the time of arrival of the photon in one copy
of AdS relative to the reference copy.
We further work with the assumption that the mirror is a

probe and hence does not substantially affect the spacetime
geometry. This is analogous to calculations of the inter-
ferometer response in gravitational wave experiments,
which also neglect the backreaction of the geometry to
the mirrors. This treatment can be justified by considering
the Schwarzschild radius of the mirror. For a mirror
with mass ∼10 kg, its Schwarzschild radius is Rmirror¼
2GNMmirror∼10−26m, which is much shorter than both the
interferometer arm length and the photon wavelength, and
hence its backreaction to the geometry can be ignored. On
the other hand, since Rmirror is much longer than lp, we can
also ignore the quantum effect of the mirror. We believe that
the effect of the mirror could be included more explicitly by

incorporating the additional degrees of freedom associated
with the reflecting boundary conditions (a la “end-of-the-
world brane”), but we leave this implementation to
future work.
Now we turn to the other pair of canonically conjugate

variables ðLg; PÞ. The renormalized geodesic distance Lg
between the twoboundaries canbe evaluated using the global
coordinates in Eq. (39), where the boundaries are now
regulated by bringing them from x → �∞ to some cutoff
at x ¼ �xc. The expression for xc can be found by equating
the second lines of Eqs. (35) and (39) at the boundary

Φj
∂M̃2

¼ Φb
rc
L

¼ Φh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2c

L2

r
cos

τ

L

⇒ xc ≈
Lrc
rs

1

cosðτ=LÞ ; ð44Þ

where we used Eq. (37) and also assumed xc ≫ L. This
allows us to define a “renormalized geodesic distance” [8]

Lg ¼
Z

xc

−xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gττ

dτ
dx

dτ
dx

r
dx − 2L logð2Φj

∂M̃2
Þ

¼
Z

xc

−xc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=L2

p dx − 2L log
�
2Φbrc
L

�

¼ 2L sinh−1
�
xc
L

�
− 2L log

�
2Φbrc
L

�

≈ 2L log

�
xc

Φbrc

�

¼ 2L log

�
L coshðrsδ=L2Þ

Φbrs

�
; ð45Þ

FIG. 4. The quantum uncertainty in the light trajectory, here
depicted by fuzzing of the horizon, is what we seek to compute
via the quantum uncertainty in the geodesic distances para-
metrized by Lg and δ defined in the text. In particular 2δ is the
time shift, with respect to a classical unperturbed trajectory, for a
photon that is fired from the right boundary and reflected back to
its starting position.
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where we used cosðτ=LÞ ¼ 1= coshðrsδ=L2Þ in the third
line [8], which can be found by equating Eqs. (34) and (38)
and taking the rc ≫ rs limit. We are interested in comput-
ing the Euclidean path integral in terms of Lg, and because
we are interested in perturbations about the classical
spacetime (where δ ¼ 0), we will expand Lg to its first
correction in δ:

Lg ≈ 2L

�
log

L
Φbrs

þ r2sδ2

2L4

�
: ð46Þ

That Lg depends (at first order) quadratically on δwill have
important consequences for fluctuations in the photon
travel time.

B. Euclidean path integral

We now turn to the solution to the QM path integral
from a saddle point expansion of the Euclidean path
integral, which gives the thermodynamic fluctuations of
the system. The saddle-point geometry in Euclidean
signature is given by performing a Wick rotation on
Eq. (35)

ds̃2E ¼ r2 − r2s
L2

dt2E þ L2

r2 − r2s
dr2: ð47Þ

Consider the AdS geometry with one asymptotic boun-
dary. To avoid a conical singularity at r ¼ rs, we require

rs ¼
2πL2

β
: ð48Þ

We compute the JT action in Eq. (26) on an AdS manifold
with a disk topology and β as the periodicity of tE,

−IE ¼ 2
Φbrc
L

Z
β

0

dtE
ffiffiffiffiffi
γ̃1

p
K̃1; ð49Þ

where we have used the bulk equation of motion and the
dilaton value at the boundary. The Euclidan version of
the boundary condition outlined below Eq. (28) is

ffiffiffĩ
γ

p ¼ffiffiffiffiffiffiffiffiffi
γ̃tEtE

p ¼ rc=L. The unit vector normal to the boundary

r ¼ rc is ñμ ¼ ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2s

p
=LÞ. Hence, the extrinsic

curvature in Eq. (47) is given by

K̃1 ¼ ∇̃μñμjr¼rc

¼ ∂μñμjr¼rc

¼ 1

L
rcffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − r2s

p
¼ 1

L

�
1þ 1

2

r2s
r2c

�
; ð50Þ

where we used
ffiffiffĩ
g

p ¼ 1 in the second line. Finally, putting
Eqs. (50) and (48) into Eq. (49), the action becomes6

−IE ¼ 4π2L
Φb

β
: ð51Þ

The thermal partition function evaluated at the saddle
point is given by

Z½β� ¼ e−IE

¼ e4π
2LΦb=β: ð52Þ

This allows us to compute the energy and the entropy

hEi ¼ −∂β logZ½β� ¼
1

L
Φ2

h

Φb
;

S ¼ logZ½β� þ βhEi ¼ 4πΦh: ð53Þ

Here we see the direct connection between the entropy and
the value of the dilaton at the horizon.
We can get the leading correction to the saddle point via

Z½β�≈
Z

∞

0

dELeSðELÞ−βEL ≈
Z

∞

0

dELe4π
ffiffiffiffiffiffiffiffiffiffiffi
LΦbEL

p
−βEL: ð54Þ

This is the famous “square-root E” behavior of the density
of states that appears in many systems. It was shown in
Ref. [2] that this density of states gives rise to the relation
β2∂2β logZ½β� ¼−β∂β logZ½β�þ logZ½β�, which corresponds
to hΔK2i ¼ hKi [3,4] in the language of AdS=CFT. This
also directly follows from the relation logZ ∼ β−1 at the
saddle point as indicated in Eq. (52).
We will later identify the entropy of the system to be the

black hole entropy associated with the causal diamond
horizon, i.e.

S ¼ A
4GN

¼ 8π2L2

l2p
: ð55Þ

In order to understand the fluctuation in δ, we now turn
our attention to the calculation in the ðLg; PÞ basis with two
asymptotic boundaries in global coordinates. Following
Ref. [8], this can be achieved by studying the Hartle-
Hawking wave function, which can be interpreted as a
wormhole connecting the two boundaries. Operationally,
this amounts to computing the action in Eq. (26) with the

6To obtain a finite result in Eq. (49), we need to add a holo-
graphic renormalization counterterm −ð2=LÞ R

∂M̃2
dx0

ffiffiffiffiffiffiffiffi
−γ̃1

p
Φ,

similar to the one in Ref. [17] where the Schwarzian action is
derived from the JT action, but with a different boundary
condition.
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metric in Eq. (47), where the boundaries of the manifold are
now the AdS conformal boundary with length rcβ=2 and a
bulk boundary Σ. The action in Eq. (26) also has to be
modified to include contributions from the two corners of
the geometry. The result is

−IE ¼ 8LΦb

β

�
y2 þ 2y

tan y

�
; ð56Þ

where β is the periodicity of the Euclidean time and

y ¼ rsβ
4L2

¼ 1

4

βΦh

LΦb
;

a ¼ sin y
y

¼ 4LΦbeLg=2Lβ−1; ð57Þ

and a ≤ 1. We observe that IE is minimized at y ¼ π=2,
which corresponds to δ ¼ 0 according to Eq. (45).
Expanding near the peak, one finds [8]

−IE ¼ constant −
8LΦb

β

�
y −

π

2

�
2

¼ constant −
π2

2

Φb

βL
ðLg − Lg;peakÞ2

¼ constant −
S

16L2
ðLg − Lg;peakÞ2; ð58Þ

where in addition to Eq. (53), we used Eq. (48) in the last
line, which is expected to hold at the peak of the wave
function as required by smoothness at r ¼ rs in Eq. (35).
This suggests that the uncertainty of Lg is

ΔLg ¼
2

ffiffiffi
2

p
Lffiffiffi
S

p : ð59Þ

Using Eq. (46), this translates to the variance in δ

Δδ2 ¼ 2
ffiffiffi
2

p
L4

r2s
ffiffiffi
S

p : ð60Þ

We note that the precise numerical factor here depends on
the details of the path integral measure, which we mostly
ignored so far in our leading-order analysis. Moreover, at
this level of approximation, we can use semiclassical
relations between different variables, in particular, between
Lg and δ. A more careful treatment would require a
Jacobian factor in the path integral, which also can be
considered as a part of the integration measure. We expect
that all such factors do not considerably change the results
of the leading-order saddle point analysis.

V. PHOTON TRAVEL TIME

The uncertainty relation in Eq. (58) allows us to compute
the uncertainty in photon travel time in the interferometer
system. Recall that δ measures the time shift between
the two AdS boundaries shown in the right-hand panel of
Fig. 3. When regulated, the boundaries are brought in
from r → ∞ to a finite value r ¼ rc in their respective
Schwarzschild patch. To allow for a nonzero value of δ, we
must allow the two boundaries to fluctuate independently
while keeping Φb fixed. Since the experiment is only
probing the right exterior region (i.e. z > 0), we would like
to trace out the degrees of freedom in the left patch. This
can be achieved by taking the limit where rc in the left is
much greater than its right-hand side counterpart.
Operationally, we take rc → ∞ at the left while keeping
rc at the right finite (but still large). In Poincaré coordinates,
this perturbs the boundary from z ¼ 0þ to some small
curve z ¼ zboundaryðtÞ. Putting r ¼ rs in the first line of
Eq. (36), one finds

zboudnaryðtÞ ¼
L −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − ðL2 − t2Þðr2s=r2cÞ

p
rs=rc

¼ L2 − t2

2L
rs
rc

þO
�
r3s
r3c

�
: ð61Þ

As expected, if rc → ∞, the boundary would be located at
z ¼ 0. The regularized boundary z ¼ zboundaryðtÞ turns out
to be a parabola, which we plot in Fig. 5. Noting that the left
boundary is still at z ¼ 0, the boundary times are given by
the second line of Eq. (36)

FIG. 5. Spacetime diagram showing the regularized boundary
z ¼ zboundaryðtÞ, the flat brane z ¼ zc and the photon trajectories.
We have chosen rs=rc ¼ 0.2 for illustration purpose.
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tR ¼ L2

rs
tanh−1

2Lt
L2 þ t2 − z2boundaryðtÞ

;

tL ¼ −
L2

rs
tanh−1

2Lt
L2 þ t2

: ð62Þ

We emphasize that t is the Poincaré time, related to the
Minkowski time by a conformal rescaling [as already noted
below Eq. (4)], while t is Schwarzschild time. Hence, we
use Eq. (61) to evaluate δ ¼ ðtL þ tRÞ=2 and obtain

δ ¼ Lrs
4r2c

tþO
�
r3s
r3c

�
: ð63Þ

We see that δ is linear in the Poincaré time.
The interferometer is now placed on a flat brane z ¼ zc

for some constant zc ≪ L such that the brane is barely
touching zboundaryðtÞ. This ensures that the brane is as close
to the boundary as possible without leaving the domain of
the system, which sets the value of zc to be

zc ¼
L
2

rs
rc

: ð64Þ

The location of the brane is also indicated in Fig. 5. The
photon round-trip time Tr:t: is 2ðL − zcÞ multiplied by a
conformal factor in front of the metric L=zc, which is
approximately

Tr:t: ¼
2L2

zc

¼ 4L
rc
rs
: ð65Þ

Note that the photon travel time diverges if the boundary
was not regularized, as noted in Ref. [4]. The fluctuation in
photon round-trip timescales linearly with fluctuations in δ.
The ratio ΔTr:t:=Tr:t: should be independent of the metric
prefactor. Using Eqs. (63), (60), and (65), we find

ΔT2
r:t:

T2
r:t:

¼ ð4r2c=LrsÞ2Δδ2
4L2

¼ 8
ffiffiffi
2

p �
rc
rs

�
4 1ffiffiffi

S
p

¼ 1ffiffiffi
2

p
�
Tr:t:

2L

�
4 1ffiffiffi

S
p : ð66Þ

Since the experiment is carried out in Minkowski space-
time, the photon measured travel time does not have any
conformal factors in it, which allow us to identify
Tr:t: ¼ 2L. Combined with the entropy relation in
Eq. (55), we find

ΔT2
r:t:

T2
r:t:

¼ 1ffiffiffiffiffiffi
2S

p

¼ lp
4πL

: ð67Þ

This scaling relation agrees with the previous work of one
of the present authors in Refs. [2,4,5,18], which demon-
strated that the two-point correlation function of arm length
fluctuations in an interferometer system are proportional to
lp=L. While a small fluctuation, it is measurable with a
laboratory scale interferometer.

VI. CONCLUSION

The dimensional reduction of Einstein gravity in a causal
diamond of the four-dimensional flat Minkowski spacetime
can be described by two-dimensional JT gravity with the
dilaton field playing the role of the diamond area. By
analyzing the Hartle-Hawking wave function in JT gravity,
we find that the uncertainty in an interferometer arm length
scales with the Newton’s constant as ΔL ∼

ffiffiffiffiffiffiffi
lpL

p
. This

agrees with the previous works [2,4,5,18], where the same
scaling was obtained by other methods.
Our result in Sec. IV may appear surprising since it

naively violates well-known effective field theory lore,
which states that the two-point function of an observable
should scale with an integer power of the coupling constant.
Our result, however, is not in contradiction with this fact for
two reasons. First, our analysis is not based on perturbation
theory involving a single graviton. Instead, this is a
collective effect that comes from all quantum gravity
effects within a causal diamond. This is analogous to a
hydrodynamic description of diffusion, where the UV scale
is the average separation of fluid particles. In hydrody-
namics, it is well known that a particle in the system admits
a random walk description, with variance growing linearly
in time and with the diffusion coefficient that scales as the
square root of the UV scale. Following Refs. [19,20],
relations between JT gravity and hydrodynamics have
been noted, e.g. in Ref. [8]. Establishing a more precise
connection between quantum gravity in flat spacetime
and hydrodynamics is a possible future development of
this work.
The second reason our result is consistent with the

effective field theory lore is that the quantity with a
traditional EFT scaling hLgLgi ∼ S−1 ∼GN does not cor-
respond to the observable δ relevant for a photon travel time
measurement. Rather δ scales as Lg ∼ δ2, implying that it is
the four-point of δ with linear scaling in GN . This behavior
is familiar from the study of time-ordered/out-of-time-
ordered-correlators, and it is not surprising that such
correlators are relevant for systems that display chaotic
and hydrodynamic behavior. We leave study of the con-
nection between the observable of interest and hydro-
dynamic and chaotic behavior for future work.
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