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The asymmetric dark matter (ADM) paradigm is motivated by the apparent coincidence between the
cosmological mass densities of visible and dark matter, ΩDM ≃ 5ΩVM. However, most ADM models only
relate the number densities of visible and dark matter, and do not motivate the similarity in their particle
masses. One exception is a framework introduced by Bai and Schwaller, where the dark matter is a confined
state of a dark QCD-like gauge group, and the confinement scales of visible and dark QCD are related by a
dynamical mechanism utilizing infrared fixed points of the two gauge couplings. We build upon this
framework by properly implementing the dependence of the results on the initial conditions for the gauge
couplings in the UV. We then reassess the ability of this framework to naturally explain the cosmological
mass density coincidence, and find a reduced number of viable models. We identify features of the viable
models that allow them to naturally relate the masses of the dark baryon and the proton while also avoiding
collider constraints on the new particle content introduced.
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I. INTRODUCTION

Determining the particle nature of dark matter (DM) is
one of the deepest tasks facing particle physics today. This
goal is hampered by the purely gravitational nature of the
observational evidence for DM, which has allowed for a
cornucopia of DM candidates to be proposed over a wide
range of mass scales [1]. To focus our model-building
pursuits, it is instructive to see what clues may lie in the
existing astrophysical observations.
One such result is the similarity between the present-day

cosmologicalmass densities of dark andvisiblematter (VM),
which we refer to as the cosmological coincidence [2]:

ΩDM ≃ 5ΩVM; ð1Þ

where ΩX is the mass density ρX for species X divided by
the critical density ρc.
We take the cosmological coincidence to be a hint

towards an underlying link between the origins of the
abundances of VM and DM. Such a connection is not

present in the majority of prominent DM candidates.
Consider, for example, the weakly interacting massive
particle: it is a GeV–TeV scale thermal relic species with
an abundance generated through thermal freeze-out. This
stands in contrast to VM, whose number density is due to
the baryon asymmetry of the Universe and whose mass
arises from the confinement energy of QCD. With such
distinct generation mechanisms, there is no a priori reason
why the cosmological mass densities of these species
should be of the same order of magnitude.
The main model-building paradigm that seeks to explain

the cosmological coincidence problem is that of asymmet-
ric dark matter (ADM) [3,4]. In this framework, the dark
matter candidate is charged with a dark particle number that
develops an asymmetry related to the visible baryon
asymmetry. Models of ADM thus naturally generate similar
number densities for VM and DM, nVM ∼ nDM. However,
as a mass density is given by ΩX ¼ nXmX=ρc, to satisfac-
torily explain the cosmological coincidence problem we
must also motivate the similarity in the particle masses of
VM and DM, mVM ∼mDM. This problem is not addressed
in the majority of the ADM literature, which mostly treats
the DM mass as a free parameter and thus merely shifts the
cosmological mass-density coincidence to a particle mass
coincidence.
Our goal then is to construct a theory where DM and VM

naturally have similar particle masses. By analogy with the
proton, this leads us to consider DM candidates that are
confined states of a dark, QCD-like gauge group [5–25],
where some mechanism is present to relate the confinement
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scale ΛdQCD of this gauge group to that of visible QCD,
ΛQCD.
Previous efforts to relate the visible and dark confine-

ments scales have followed one of two general directions:
(1) Introduce a symmetry between the gauge groups.

This generally leads to models of mirror matter,
where the mirror symmetry is either exact [5–9] or
judiciously broken [10–22]. (For other models of
mirror matter, see Refs. [26–35].)

(2) Introduce new field content so that the running
gauge couplings αs and αd approach infrared fixed
points with similar magnitudes. This has not been
widely discussed in the literature, with the original
idea introduced by Bai and Schwaller [24] and
expanded upon by Newstead and TerBeek [25].

In this paper we focus on the latter approach, developing
upon the framework introduced by Bai and Schwaller by
properly implementing the dependence of the confinement
scale ΛdQCD on the initial values of the running gauge
couplings in the UV, αUVs and αUVd . We then ask how readily
this approach generates confinement scales of the same
order of magnitude, and so reassess the validity of this
framework as a natural explanation of the cosmological
coincidence.
Compared to the work of Bai and Schwaller, we find that

in our analysis there are a smaller number of models that
naturally generate similar confinement scales for visible
and dark QCD (dQCD), where models in this framework
are defined by the new field content we introduce. This
reduced set of models is due to our definition of “natural-
ness” now being more stringent, as it must take into account
the dependence of the dark confinement scale on the initial
gauge coupling values in the UV.
In general, we find that models whose infrared fixed

points have small values for the gauge couplings are better
at generically generating similar visible and dark confine-
ment scales. However, we also find that these models
generally require the mass scale of the new particle content
to be sub-TeV for most selections of the initial couplings in
the UV, and thus are subject to strong collider constraints.
Looking for models where the new physics mass scale is

on the order of a few TeV, we do find a number of such
models that can fairly generically generate related visible
and dark confinement scales. We identify these models as
the most promising candidates within this framework for
naturally explaining the cosmological coincidence problem.
The paper is organized at follows. In Sec. II we describe

the dark QCD framework of Bai and Schwaller. In Sec. III
we describe the threshold corrections to the running of the
gauge couplings as implemented by Newstead and
TerBeek. In Sec. IV we analyze the effect of the values
of the gauge couplings in the UV on ΛdQCD. In Sec. V we
discuss the ability of this framework to explain the
cosmological coincidence, before presenting our results
in Sec. VI and concluding in Sec. VII.

II. BAI-SCHWALLER FRAMEWORK

The scheme of Bai and Schwaller [24] utilizes a
dark QCD-like gauge group SUðNdÞdQCD, along with
a selection of new particle content charged under
SUð3ÞQCD × SUðNdÞdQCD. As in the original paper, we only
considerNd ¼ 3, and limit the new field content to fermions
and scalars in the fundamental representations of either one
or both of the QCD gauge groups.1 The multiplicities of the
new particles are given in Table I, along with their masses. In
addition to the given multiplicities, we also define nfd ¼
nfd;h þ nfd;l as the total number of dark fermion species that
are fundamentals of SUð3ÞdQCD, and nfc ¼ nfc;h þ 6 as the
multiplicity of visible fermions that are fundamentals of
SUð3ÞQCD [including the six Standard Model (SM) quarks].
The majority of the new field content is, for simplicity,

taken to exist at a common heavy mass scale M, except for
the nfd;l light dark fermions. These latter particles, which
we refer to as “dark quarks,” have masses much lighter than
the dark confinement scale ΛdQCD and are confined into the
dark baryons that serve as the DM candidate.
At the two-loop level, the β functions for gc and gd are

coupled, thanks to the presence of the “joint” fields charged
under both SUð3ÞQCD and SUð3ÞdQCD. The two-loop β

function for gc, βcðgc; gdÞ ¼ dgc
dðlogðμÞÞ, is given by

βc ¼
g3c

16π2

�
2

3
ðnfc þ 3nfjÞ þ

1

6
ðnsc þ 3nsjÞ − 11

�

þ g5c
ð16π2Þ2

�
38

3
ðnfc þ 3nfjÞ þ

11

3
ðnsc þ 3nsjÞ − 102

�

þ g3cg2d
ð16π2Þ2 ½8nfj þ 8nsj �; ð2Þ

TABLE I. New particle content in a model. The given multi-
plicities are for Dirac fermions and complex scalars. A subscript
containing l (h) indicates a multiplicity for light (heavy) particles
in cases where this is a relevant distinction to make.

Field SUð3ÞQCD × SUð3ÞdQCD Mass Multiplicity

Fermion

(3; 1) M nfc;h

(1; 3)
<ΛdQCD nfd;l

M nfd;h
(3; 3) M nfj

Scalar
(3; 1) M nsc
(1; 3) M nsd
(3; 3) M nsj

1While we do not address the possibility here, one could also
consider models with Nd ≠ 3. We would anticipate qualitatively
different results, as changing Nd alters a number of aspects of the
framework; the selections of field content that result in an infrared
fixed point would differ, as would the running of the dark gauge
coupling after the new physics has decoupled.
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and the β function for gd, βdðgc; gdÞ≡ dgd
dðlogðμÞÞ, is obtained

by exchanging the indices c ↔ d [36]. Note that these β
functions are given for Nc ¼ Nd ¼ 3; the β functions for
general Nc and Nd can be found in Ref. [24].
Depending on the particle content, there may be non-

trivial couplings α�s and α�d for which both β functions are
zero, where αs ¼ g2c=4π, αd ¼ g2d=4π, and

βcðg�c; g�dÞ ¼ βdðg�c; g�dÞ ¼ 0: ð3Þ

The couplings α�s and α�d denote an infrared fixed point
(IRFP) of the renormalization group running similar to a
Banks-Zaks fixed point for a single gauge coupling [37].
The couplings at the IRFP only depend on the multiplicities
of the new particle content, ðnfc;h ; nfd;l ; nfd;h ; nfj ; nsc ;
nsd ; nsjÞ; we refer to a given selection of multiplicities as
a “model.”
So, for a given model, if there exists a nontrivial

perturbative IRFP, the coupled gauge couplings evolve
toward α�s and α�d regardless of the initial values for the
gauge couplings in the UV. This fixed-point feature is
broken when the new heavy fields decouple at the mass
scale M; below this scale, the gauge couplings run
independently until they become nonperturbative at the
confinement scales ΛQCD and ΛdQCD.
The process to calculate ΛdQCD for a given model is then,

ideally, as follows:
(1) Calculate the IRFP gauge couplings α�s and α�d.
(2) Determine M by running the visible coupling up

from the measured value αsðMZÞ ¼ 0.11729 [38]
to αsðMÞ ¼ α�s .

(3) Evolve the dark coupling down from αdðMÞ ¼ α�d
until the scale ΛdQCD at which it becomes large
enough to trigger confinement. As a rough perturba-
tive condition, the Cornwall-Jackiw-Tomboulis
bound αs > π=4 for Nd ¼ 3 [39] is used to define
the dark confinement scale throughαdðΛdQCDÞ¼π=4.

So, for a given model with a nontrivial IRFP, the dark
confinement scale ΛdQCD can be uniquely determined. The
argument is then that a model with related IRFP values α�s
and α�d could lead to compatible confinement scales for
visible and dark QCD of similar orders of magnitude.
However, this framework relies upon a number of

simplifying assumptions that should be investigated in
greater detail. The first is that the heavy fields decouple
at the mass scale M without any threshold corrections,
which was addressed in Ref. [25]; we summarize their
approach in the next section. The second key assumption is
that the couplings run all the way to their IRFP values by
the decoupling scale M regardless of the initial coupling
values in the UV. However, this is not true in general, and in
a later section we analyze how the value of ΛdQCD depends
on the UV coupling values αUVs and αUVd .

III. THRESHOLD CORRECTIONS

In minimal subtraction like mass-independent renorm-
alization schemes, the Appelquist-Carazzone decoupling
theorem [40] does not apply in its naive form; heavy fields
can continue to influence coupling constants and β func-
tions at energy scales below their masses. In these schemes
there also arises the related issue of large logarithms when
working at energy scales much smaller than the mass M of
the heavy fields.
To properly account for these problems, the decoupling

is treated explicitly by constructing an effective field theory
(EFT) in which the heavy fields have been integrated out.
Consistency is ensured by matching the full theory onto the
effective field theory at a matching scale μ0, where μ0 ∼M
to avoid large logarithms. This procedure leads to a
“consistency condition” relating the coupling constants
in the full theory with the coupling constants in the effective
field theory [41,42],

αEFTs ðμ0Þ ¼ ζ2cðμ0; αsðμ0ÞÞαsðμ0Þ; ð4Þ

αEFTd ðμ0Þ ¼ ζ2dðμ0;αdðμ0ÞÞαdðμ0Þ: ð5Þ

The decoupling functions ζ2c and ζ2d have been deter-
mined to three- and four-loop order in Refs. [43,44] for the
case of integrating out one heavy quark from QCD with nf
flavors. Since we are working with two-loop β functions,
we only require the one-loop decoupling functions; in
Ref. [25], the results of Ref. [43] were adapted for
integrating out the full selection of heavy field content
at massM, with the one-loop decoupling functions given by

ζ2cðμ; αsðμÞÞ ¼ 1 −
αsðμÞ
6π

ñc log

�
μ2

M2

�
; ð6Þ

ζ2dðμ;αdðμÞÞ ¼ 1 −
αdðμÞ
6π

ñd log

�
μ2

M2

�
; ð7Þ

where the coefficients ñc and ñd account for the degrees of
freedom of the relevant heavy fields,

ñc ¼ nfc;h þ 3nfj þ
1

4
ðnsc þ 3nsjÞ; ð8Þ

ñd ¼ nfd;h þ 3nfj þ
1

4
ðnsd þ 3nsjÞ: ð9Þ

We note that, for a givenM, the values of the couplings at
low energies now depend on the choice of decoupling scale
μ0; this renormalization scale dependence is a nonphysical
artifact of our perturbative analysis being truncated at finite
loop order. As a result, the procedure of Bai and Schwaller
[matching αsðMZÞ to its experimental value] no longer
uniquely determines the value of M when we incorporate
the threshold corrections to the coupling constants. Instead,
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we obtain a relationship between M and μ0, and can solve
for one of these values if we specify the other.
In Ref. [25], values of ΛdQCD were determined for a

given model and value of M. By using the consistency
condition and again matching the strong coupling to its
measured value atMZ, they solved for the decoupling scale
μ0, and then ran the dark coupling until αdðΛdQCDÞ ¼ π=4.
However, this process does not ensure that μ0 is on the
order of M. We take a different approach to implementing
threshold corrections, as is detailed in the following
section.

IV. DEPENDENCE ON INITIAL UV COUPLINGS

As mentioned earlier, the framework in the previous
sections assumes that the couplings run to their IRFP
values by the decoupling scale μ0 regardless of their
initial values in the UV, αUVs and αUVd . However, this is
not the case, as illustrated in Fig. 1 for the model
ðnfc;h ; nfd;l ; nfd;h ; nfj ; nsc ; nsd ; nsjÞ ¼ ð0; 3; 3; 3; 3; 2; 0Þ with
IRFP ðα�s ; α�dÞ ¼ ð0.045; 0.077Þ, where we show the run-
ning of a grid of couplings ðαs; αdÞ from the UV scale
ΛUV ¼ 1019 GeV down to a typical infrared scale
ΛIR ¼ 1 TeV. While the couplings evolve towards their
fixed-point values, they do not precisely reach them, and so
the low-energy behavior of the theory exhibits some
dependence on the couplings in the UV.
We now account for this dependence in our calculation

of ΛdQCD. Consider the running of the couplings in this
model for a given mass scale M and initial UV couplings
ðαUVs ; αUVd Þ. The couplings evolve with the full coupled
renormalization group equations (RGEs) until the scale μ0
at which we apply the matching conditions of Eqs. (4) and
(5). Unlike the approach of Ref. [25], we explicitly ensure
that μ0 ∼OðMÞ; following the approach of Refs. [44,45],
we vary μ0 between 0.5M and 2M and treat the variance in

the low-energy running of the couplings as a theoretical
uncertainty due to working at finite loop order.2 This then
leads to an uncertainty in the value of ΛdQCD. This
evolution is depicted in Fig. 2, where the blue band shows
the possible range of ΛdQCD values for this given model,
mass scale M and initial UV couplings.
The process for calculating ΛdQCD for a given model is

now as follows:
(1) We first specify the UV couplings ðαUVs ; αUVd Þ; we

then determine the required decoupling scale μ0 by
solving Eq. (4) where αEFTs ðμ0Þ is given by running
the visible coupling up from αEFTs ðMZÞ ¼ 0.11729
and αsðμ0Þ is given by running ðαUVs ; αUVd Þ →
ðαsðμ0Þ;αdðμ0ÞÞ.

(2) However, this does not uniquely specify μ0, as the
decoupling function ζ2c depends on M. Since ζ2c
depends on M through the factor logðμ2=M2Þ, we
can solve for μ0 (and also for M) by specifying a
value for μ0=M.

(3) To account for the uncertainty introduced by thresh-
old corrections, we vary the value of μ0=M between
0.5 and 2. This results in a range of values forM for
the given pair of initial UV couplings.

(4) We then calculate ΛdQCD as usual by running
αEFTd ðμ0Þ to αEFTd ðΛdQCDÞ ¼ π=4. Since there is a
range of possible values forM (and thus μ0), we also
obtain a range of values for ΛdQCD.

We note that this process will not work for all pairs of
UV couplings, as we require the low-energy running of αs
to match with experiment. This matching is performed by
solving for the decoupling scale such that αs reaches its
measured value at MZ, and for some initial UV couplings,
there will be no value of the new physics mass scale M
between MPl and MZ for which this occurs.
With this process specified, we are interested in how

ΛdQCD depends on the initial UV couplings for a given
model. As an example, in Fig. 3 we plot contours of ΛdQCD

on axes of αUVs against αUVd , where we work with pertur-
bative couplings between 0 and 0.3 to ensure that we can
trust our two-loop β-function calculations.3 We see that

FIG. 1. Left: a grid of values for the strong coupling constant αs
and the dark coupling constant αd at an energy scale
ΛUV ¼ 1019 GeV. The pink star shows the infrared fixed point
ðα�s ; α�dÞ ¼ ð0.045; 0.077Þ for the model with field multiplicities
ðnfc;h ;nfd;l ;nfd;h ;nfj ;nsc ;nsd ;nsjÞ¼ ð0;3;3;3;3;2;0Þ. Right: the
grid of values from the left panel is evolved down from
1019 GeV to an energy scale ΛIR ¼ 103 GeV under the RGEs
of the given model. The pink star again indicates the IRFP
of the model.

2References [44,45] applied this approach to the running of αs
across quark thresholds in the SM between mτ and MZ. For a
quark of mass mq, they varied the decoupling scale between
0.7mq and 3mq; however, since this process is intended to
minimize large logarithms, we chose to vary the decoupling
scale between multiplicatively symmetric values around M.
Regardless of the specific choice made, note that this is merely
a simple, arbitrary condition which roughly captures the un-
certainty in the decoupling of the heavy fields. Indeed, other
more sophisticated schemes have been developed to minimize
the effect of unphysical renormalization-scale dependence in
threshold corrections (see for example Refs. [46–48]) but these
are beyond the scope of this analysis.

3We discuss this choice for the range of initial UV couplings in
greater detail in Sec. VA.
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ΛdQCD is larger for small values of αUVs , and is smaller for
small values of αUVd . Note that the contours are in fact
shaded bands to account for the uncertainty in ΛdQCD;
however, the threshold corrections do not have a drastic
effect, as the bands are fairly narrow.
In Fig. 3 we also show contours for the required new

physics mass scaleM, which increases as αUVs decreases. In
the red hatched areas there are no allowed values of M for
which αs has the correct running at low energy.

A. Asymptotic freedom

In Fig. 3 we also include a star and a green hatched
region. The star indicates the coupling values at the IRFP,
and the green hatched region shows the “asymptotically
free” region, that is, the region of the perturbative
ðαUVs ; αUVd Þ parameter space for which SUð3ÞQCD and
SUð3ÞdQCD both exhibit asymptotic freedom.
It is an interesting consequence of the existence of a

nontrivial IRFPwith coupled β functions that the asymptotic
freedom of the theory depends upon the values of the two
gauge couplings. The intuition for this observation is as
follows: as the energy scale approaches the IR, the gauge
couplings approach their IRFP values, which we can also
think of as points in the ðαs; αdÞ parameter space running
toward the IRFP. So, as the energy scale approaches the UV,
all points in the parameter space evolve away from the IRFP.
There is a UV fixed point at the origin, αs ¼ αd ¼ 0; points
that are roughly “closer” to the origin than the IRFP evolve
towards this fixed point and thus both visible and dark QCD
will exhibit asymptotic freedom. Those points “further
away” from the origin than the IRFP instead diverge toward
large couplings and do not exhibit asymptotic freedom.
To see this region more concretely, we treat the β

functions as a vector field describing the flow of the

FIG. 2. Top: the evolution of the QCD and dQCD coupling
constants for the model ðnfc;h ; nfd;l ; nfd;h ; nfj ; nsc ; nsd ; nsjÞ ¼ð0; 3; 3; 3; 3; 2; 0Þ with mass scale M ¼ 635 GeV and initial
UV couplings ðαUVs ; αUVd Þ ¼ ð0.15; 0.25Þ. The mass scale is
chosen so that αs obtains its measured value at MZ, as indicated
by the red square. The decoupling scale μ0 is shown by the grey
shaded band, where we allow it to vary between 0.5M and 2M to
account for the uncertainty introduced by threshold corrections.
Below the decoupling scale, αs and αd are depicted as bands, due
to the variance in the decoupling scale. The vertical blue band
indicates the range of values for the dark confinement scale
ΛdQCD, calculated as the energy scale where αd ¼ π=4. Bottom:
the same evolution, zoomed in to the energy range between 1 and
105 GeV to show the variance in the coupling constants below the
decoupling scale more clearly.

FIG. 3. For the model ðnfc;h ; nfd;l ; nfd;h ; nfj ; nsc ; nsd ; nsjÞ ¼ð0; 3; 3; 3; 3; 2; 0Þ we show contours for the dark confinement
scaleΛdQCD (blue) and for the newphysics scaleM (red) on axes of
the initial UV couplings αUVs and αUVd . Thewidth of these contours
is due to the variance in the decoupling scale μ0 between 0.5M and
2M to account for the uncertainty introduced by threshold
corrections. In the red hatched regions there are no allowed values
ofM for which αs has the correct running at low energy. The pink
star shows the infrared fixed point of thismodel. The green hatched
region is the “asymptotically free” region, where SUð3ÞQCD and
SUð3ÞdQCD both exhibit asymptotic freedom.
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couplings with increasing energy scale and plot its stream-
lines in Fig. 4. We can clearly see the qualitative behavior
described in the previous paragraph, along with the edge of
the asymptotically free region as shown in Fig. 3.
We note that although we have identified the region of

ðαs;αdÞ parameter space for which the gauge groups are not
asymptotically free, we do not discount this region. Since
we work with αUVs and αUVd below 0.3, we only consider
running in which the couplings are perturbative up to the
Planck scale. Thus, dynamics at energies above the Planck
scale may change the running again and regain asymptotic
freedom or create a nonzero UV fixed point as per the
“asymptotic safety” idea [49,50].

V. EXPLAINING THE COSMOLOGICAL
COINCIDENCE PROBLEM

Now that we have accounted for the dependence of
ΛdQCD on the initial UV couplings, in this section we
reassess whether this framework offers a natural solution to
the cosmological coincidence problem.
To “solve” the cosmological coincidence problem, we

mean that we want our theory to naturally generate a mass
densityΩDM on the order ofΩVM. In thisworkwe focus only
on explaining the similarity between the particle masses,
mVM ∼mDM, and do not specify the ADM mechanism
throughwhich the number densities are related.4We assume

that the ADM mechanism generates similar number den-
sities nVM ∼ nDM, and also assume that the relationship
between the baryon mass and confinement scale is the same
for both visible and dark QCD. Then, to satisfy Eq. (1), we
need a dark confinement scale ΛdQCD ∼ 1 GeV. We let this
vary by a factor of 5 to approximately account for different
dynamical completions that would be expected to produce a
range of reasonable values for the nVM=nDM ratio. So, we
define a “valid” value ofΛdQCD to be between 0.2 and 5GeV.
We now need to determine how “natural” this framework

is, that is, how readily it generates valid values for ΛdQCD.
We consider the theory to provide a natural explanation of
the coincidence problem if one obtains a valid ΛdQCD value
for a large proportion of the available parameter space, as
we do not wish for the cosmological coincidence to arise
from any fine-tuning of the parameters.
Of course, an ambiguity arises in the notion of

“available” parameter space. The parameters we vary are
the multiplicities of the field content and the initial values
of the couplings in the UV; clearly, we must place some
restrictions on these parameters when searching for valid
ΛdQCD values, both to provide a finite space in which to
look and to avoid considering unphysical theories. So, the
question we ask of the theory is as follows: given a certain
set of assumptions, is it a surprise that we obtain a valid
value for the dark confinement scale?
In this section we do not argue for a unique set of such

assumptions; rather, we discuss a number of assumptions
one could make, and give freedom to the reader to place
their own set of requirements on the theory when assessing
its validity. We then present a set of results given only a
minimal set of assumptions, and highlight features of the
theory that affect how readily it obtains a valid dark
confinement scale.

A. Assessing the validity of a given model

We start this discussion by considering a given model,
where we fix the multiplicities of the new fields as given in
Table I. This specifies the IRFP and the β functions, but
leaves us free to vary the initial UV couplings αUVs and αUVd .
The question then is what assumptions we place on the
selection of these initial UV couplings; in particular, what
range of values do we select our couplings from, and how
do we randomly select coupling values from this range?
To answer this question requires knowledge of the

inaccessible dynamics above the Planck scale that generate
the values of these parameters at the UV scale. We must
remain agnostic to these dynamics, and so the simplest
assumption we apply is that the gauge couplings are
perturbative at the UV scale, that is, both αUVs and αUVd
lie between 0 and 1.
However, as seen in Figs. 1 and 3, we chose to work with

initial UV couplings that lie between 0 and 0.3. This is done
to ensure the perturbative validity of our two-loop β
function calculations. From Eq. (2), and recalling that

FIG. 4. A streamline plot for the vector field defined by
the coupled β functions for αs and αd for the model
ðnfc;h ; nfd;l ; nfd;h ; nfj ; nsc ; nsd ; nsjÞ ¼ ð0;3;3;3;3;2;0Þ, where the
green arrows indicate the change in the coupling constants with
increasing energy scale μ. The shaded green region is the
“asymptotically free” region, corresponding to the green hatched
region in Fig. 3. Within this region, both coupling constants
approach zero as the energy scale increases. The pink star shows
the infrared fixed point of this model.

4For an example of an ADM mechanism that can be imple-
mented in this framework, see the leptogenesis model of Ref. [24].
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α ¼ g2=4π, we see that the individual one- and two-loop
nongluonic terms that contribute to the β functions—which
we call βð1Þ and βð2Þ, respectively—are of the form

βð1Þ ∼
α2n
2π

; βð2Þ ∼ 20
α3n
8π2

; ð10Þ

where n is a multiplicity, and the factor of ∼20 accounts for
the relative size of the numerical coefficients for the one-
and two-loop terms, due to various group-theoretic factors.
Then, to ensure that the individual two-loop terms are
smaller than the individual one-loop terms implies the
rough condition αs; αd < 0.3. From now on, we refer to
gauge couplings smaller than 0.3 as “perturbative” cou-
plings, in the stricter sense that both the couplings
themselves are perturbative, and that the β functions
governing their RGE running admit a perturbative analysis.
Other restrictions we could place on αUVs and αUVd depend

upon how strongly we require a given model to replicate
our Universe. For example, one could discount points in the
red hatched regions of Fig. 3 where there is no value of the
new physics scale M for which the low-energy running of
αs matches with experiment. However, one could argue that
a given model is equally theoretically valid with any
perturbative values for the initial UV couplings; the fact
that the model fails this phenomenological test for certain
initial UV couplings is just one way in which it is unable to
obtain a valid value for the dark confinement scale. Put
another way, the difference is between asking the following
questions:
(1) “Given that our model has perturbative values for

αUVs and αUVd , how likely is it that we replicate the
low-energy running of αs and also obtain a valid
value for the dark confinement scale?”

(2) “Given that our model has perturbative values for
αUVs and αUVd and replicates the low-energy running
of αs, how likely is it that we obtain a valid value for
the dark confinement scale?”

For the results we present in Sec. VI, we take the first of
these approaches when analyzing a given model.
Another possible assumption of this type is to only

consider UV couplings for which the required value ofM is
on the order of a TeV or greater, as new sub-TeV color-
charged particles would be produced readily at colliders.
For a given model, one could also choose to only work

with UV couplings for which the model is truly asymp-
totically free. However—as discussed in Sec. IVA—given
that we only consider αUVs and αUVd with values smaller than
0.3, there will be no Landau poles below the Planck scale.
Above the Planck scale, unknown physics could cause
these models to regain asymptotic freedom or achieve
asymptotic safety, so it is valid to consider such points.
The last point to consider here is the process by which

we randomly select values for αUVs and αUVd from a
specified range. This again requires knowledge of physics

above the Planck scale; given our lack of knowledge, we
make the simple assumption that the couplings are selected
uniformly randomly between 0 and 0.3 for each coupling.
Given the simplest of these assumptions, we define

the “validity fraction” ϵv to be the fraction of the UV
coupling parameter space—0 < fαUVs ; αUVd g < 0.3—that
lies between the 0.2 and 5 GeV contours for ΛdQCD.
This is roughly the likelihood that a given model will
obtain a valid value of ΛdQCD given a random choice of
perturbative initial UV couplings. As an approximate
condition, we consider models with large values of ϵv to
be those that explain the cosmological coincidence prob-
lem. The definition of a “large” value of ϵv is, of course,
subjective to some extent, and we shall see what constitutes
the largest possible values of ϵv when we present results
in Sec. VI.

B. Assessing the validity of the framework

Now that we have discussed the assumptions one could
make to assess the validity of a given model, we can look at
how readily the overall framework can serve as an
explanation of the coincidence problem. That is, within
the space of all possible models (as defined by the
multiplicities of the new fields we introduce), how many
of them provide viable explanations of the cosmological
coincidence problem? To answer this question, we must
look at the assumptions we choose to restrict this space of
all possible models.
In Ref. [25], the space of all possible models is set by

calculating a “maximum multiplicity” for each new field;
these are determined by the requirement that the one-loop
terms for βc and βd in Eq. (2) remain negative.5 For each
new field, its maximum multiplicity is calculated assuming
that all other new field multiplicities are zero; the resulting
values are given in Table II.
Within this total space of possible models, we can apply

further restrictions on the set of models we consider. The
first, of course, is to consider only those models with a
perturbative infrared fixed point. We could also consider
only those models whose IRFP satisfies α⋆s < αsðMZÞ and
α⋆d < π=4. Before accounting for the dependence of the
dark confinement scale on the initial UV couplings, this
was a necessary condition to apply to a given model to even
obtain a dark confinement scale; since the couplings were
assumed to take their IRFP values at the decoupling scale,
these values must be lower than the values they need to

5In Ref. [25], this condition is chosen to ensure that the gauge
groups are QCD-like. In our work, we often work with gauge
couplings where the models are not asymptotically free, so it is
less obvious that we should also require negative one-loop terms
in our β functions. However, the existence of an IRFP ensures that
there is an asymptotically free region surrounding the origin—as
shown in Fig. 4—and to have asymptotic freedom for αs and αd
close to zero requires that the one-loop terms in the β functions
are negative.
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reach at low energy after decoupling. However, with our
alteration to the framework, there will be initial UV
coupling values for which a dark confinement scale can
be calculated, even for models whose IRFP values α⋆s and
α⋆d are larger than αsðMZÞ and π=4, respectively; thus, we
are not required to apply this restriction to the models we
consider.

VI. RESULTS

In this section we present results using a minimal set of
the assumptions discussed in the previous section. We
focus on finding models that can viably explain the
coincidence problem, and identifying the features of
these models that allow them to do so.6 To identify these
viable models, we use the validity fraction ϵv as defined
in Sec. VA.
The entire space of possible models, as limited by the

maximum field multiplicities of Table II, is too large to
search through efficiently. We begin this section by instead
looking in detail at a limited set of models, i.e., those that
have at most three copies of each new field, as specified by
the field identifications in Table I. We also require that
nfd;l ≥ 1, so that there is at least one light dark quark
species to confine into the dark baryons. The choice of at
most three copies of each field is only to make the set of
models more amenable to study; however, these models
also would present an easier task if one wished to do further
model building and detailed phenomenology with one of
them in particular.

A. Analyzing models with ni ≤ 3

There are 12 288 total models of this type. Of these, 1354
have an infrared fixed point and 155 have an IRFP for
which both couplings are perturbative; recall that we
consider a gauge coupling to be perturbative if it is smaller
than 0.3, as discussed in Sec. VA. The values of ϵv for this
set of 155 models are shown in Fig. 5. There are no models
for which ϵv is greater than 0.4, and there is a tendency
towards smaller values of ϵv.

We consider models with larger values of ϵv to be those
that are best able to explain the cosmological coincidence
problem; we thus are interested in the features of the
models with the largest values of ϵv, and so in Fig. 6 we
show the 12 models for which ϵv > 0.35. Roughly, these
are the models for which there is at least a 1 in 3 chance that
a randomly chosen pair of perturbative initial UV couplings
will generate similar values of the visible and dark confine-
ment scales.
Looking at the ΛdQCD contours for these 12 models, we

can first see why there may be no models for which ϵv is
greater than 0.4. When the initial UV couplings are too
dissimilar, we do not obtain a dark confinement scale
similar to the visible confinement scale; for smaller αUVs and
larger αUVd , ΛdQCD is too large, and for smaller αUVd and
larger αUVs , ΛdQCD is too small. This makes sense: to obtain
similar confinement scales for the two gauge groups, their
couplings must be similar at the decoupling scale, and so
cannot be too different in the UV.
The next observation we make is that all 12 models have

small fixed points, with both α⋆s and α⋆d less than 0.1. This
correlation between smaller IRFP values and larger validity
fractions is clear in Fig. 7, where we plot the IRFPs for the
set of 155 models, sized by the value of ϵv. The 12 models
with ϵv > 0.35 are shown in pink, and cluster in a region
centred on αUVs ; αUVd ∼ 0.05.
We can understand easily why larger ϵv would correlate

with smaller α⋆s . At the decoupling scale, αsðμ0Þ must be
smaller than αsðMZÞ (whose value is indicated in Fig. 7
with a black dashed line) in order to have the correct low-
energy running. So, for this to occur in a decent proportion
of the UV coupling parameter space, the couplings must
evolve towards a fixed point where α⋆s is smaller than
αsðMZÞ. Conversely, when α⋆s is greater than αsðMZÞ, then
for many pairs of initial UV couplings with larger values of
αUVs there is no mass scale M for which αs has the correct
low-energy running. This can be seen in Fig. 6 for the

FIG. 5. A histogram of the validity fractions for the set of 155
models that have at most three of each new field and a
perturbative IRFP.

TABLE II. The maximum multiplicities for each new field.
These are set by the requirement that the one-loop terms for the β
functions are negative, which is necessary for the existence of an
infrared fixed point.

Multiplicity nfc;h nfd nfj nsc nsd nsj
Maximum value 10 16 3 42 66 14

6While this section focuses on identifying viable models
within our expanded framework, in the Appendix we present
results for the seven benchmark models from the original work of
Bai and Schwaller; this serves as a point of comparison between
the new and old analyses.
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models with α⋆s closest to 0.1, and is clearer in Fig. 8, where
we show the models with the four largest values of α⋆s .
Given that small α⋆s correlates with larger ϵv, we can also

understand heuristically why α⋆d should also be small in
these cases. As mentioned earlier, for the visible and dark
confinement scales to be of similar orders of magnitude, αs
and αd should generally have similar values at the decou-
pling scale; to achieve this for a decent proportion of the
UV coupling parameter space, the couplings should thus
be evolving towards a fixed point with similar values for
α⋆s and α⋆d.
The last observation we make here is about the size of the

new physics scale in these models. In Fig. 6, to the right of
the red contour in each plot we have M < 1 TeV. This
would imply a plethora of new, colored sub-TeV particles,
and the model at these parameter points would be ruled out
by collider constraints. So, although within our selection of

155 models we have found 12 with a decent validity
fraction ϵv > 0.35, they would be ruled out by experiment
for the majority of their valid parameter space.
Now that we have identified some features of models that

correlate with larger values of ϵv, we wish to see if we can
find models that have a sufficiently large new physics scale
M to avoid strong collider constraints in addition to having
a large validity fraction.

B. Searching for models with larger M

To find models that have larger scales of new physics, we
need to know how M depends upon the selection of field
multiplicities.
Recall that M is determined by the requirement that we

replicate the low-energy running of αs: using the consis-
tency condition of Eq. (4), we solve for the decoupling

FIG. 6. Each subplot shows the results for a given model on axes of the initial UV couplings, where the plot features are similar to
those in Fig. 3. In blue we show the contours for ΛdQCD ¼ 0.2 GeV (rightmost contour) and 5 GeV (leftmost contour); the validity
fraction ϵv is calculated as the proportion of the parameter space between these two contours. In red we show the contour for
M ¼ 1 TeV, and note that M > 1 TeV to the left of the red contour; we also show the red hatched regions where there are no valid
values forM. The green hatched region indicates the “asymptotically free” region, and the pink star shows the IRFP of the model. The 12
models shown are those with at most three of each new field, a perturbative IRFP, and a validity fraction ϵv > 0.35. The title of each
subplot gives the field multiplicities of the given model: nfc;h ; nfd;l ; nfd;h ; nfj ; nsc ; nsd ; nsj .
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scale μ0 at which αsðμ0Þ running under the β functions of
the full model matches onto αEFTs ðμ0Þ given by its SM
running from αEFTs ðMZÞ ¼ 0.11729. By specifying a value
of μ0=M ∈ ð0.5; 2Þ we can then solve for M.

The low-energy SM running of αEFTs is fixed; so, to
increase the value of M for a given set of initial UV
couplings, we need αs to run more strongly under the β
functions of the full model. In general, increasing the field
multiplicities will produce stronger running, as the coef-
ficients of the terms in the β functions increase. Since we
need the coefficients of the one-loop terms to be negative in
order to have an IRFP, the strongest running will occur
when the coefficient of the one-loop term is negative
with a small magnitude, and the coefficients of the two-
loop terms are positive with a larger magnitude.7 This also
correlates with the IRFP couplings α⋆s and α⋆d having small
values, as the β functions will be zero when, roughly,
the one-loop coefficient × α2 ∼ two-loop coefficient × α3.
From Eq. (2), we see that increasing the multiplicities of

the jointly charged fields—nfj and nsj—increases the
coefficients of all terms in the β functions. Since nfj can
be no larger than 3 in order to keep the one-loop
terms negative, we consider models with larger nsj when
searching for models with a larger new physics scale M.
In particular, we look at all models with nsj ≥ 10, where
the maximum multiplicity for each field is given in
Table II.
We note that in Table II there is only an upper limit on the

total number of dark fermions nfd , and not on the specific
multiplicities of the light and heavy dark fermions, nfd;l and
nfd;h ; this is because the β functions of the full model only
depend on nfd . The new physics scale M and the decou-
pling scale μ0 also only depend on nfd , as they only depend
upon the SM running of αs in addition to the RGE evolution
using the full β functions. So, for the purposes of searching
for models with larger values of M, we only specify the
value of nfd .
Using this definition of a model, there are 10 141 120

models for which nsj > 10, of which 120 015 have a
perturbative fixed point. To have sufficiently strong running
of the gauge couplings, we then look for models whose
one-loop coefficients for the β functions are negative with a
small magnitude, where we take that to mean that the
coefficient is between −0.1 and 0; there are 188 such
models. For all of these models, the scale of new physicsM
is greater than 1 TeV for at least 80% of the αUVs − αUVd
parameter space; that is, the value of M is large enough to
avoid strict collider constraints in the majority of param-
eter space.
So, having found this set of models, we now wish to

check which values of ϵv they can obtain. If we find models
that have a decently large value of ϵv, and also have

FIG. 7. Each star shows the infrared fixed point of a model,
sized by the validity fraction ϵv for that model. The set of models
shown in this plot are the 155 models with at most three of each
new field and a perturbative infrared fixed point. The pink stars
correspond to the 12 models with ϵv > 0.35 that are shown in
Fig. 6. The black dashed line is at αsðMZÞ ¼ 0.11729.

FIG. 8. Results for the four models with the largest values of α⋆s
from the set of models with at most three of each new field and a
perturbative IRFP. The features of each subplot are the same as
those in Fig. 6. Note that a larger value of α⋆s correlates with a
larger proportion of the parameter space that has no valid value
for M (the red hatched regions).

7Note that although the magnitude of the one-loop term will be
smaller than the two-loop terms, this is due to a cancellation
between the matter terms and gluon terms in the one-loop
coefficient. The individual one-loop terms will still be smaller
than the individual two-loop terms for perturbative α < 0.3, as
discussed in Sec. VA.
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sufficiently large new physics scales in the majority of
parameter space, then these models could serve to naturally
explain the cosmological coincidence problem.
For each of the 188 models, we only specify nfd ; so,

for a given model we are free to choose nfd;l ≤ nfd ,
setting nfd;h ¼ nfd − nfd;l . We also ensure that nfd;l > 0

so that there is at least one light dark fermion species to
confine into dark baryons.
The choice of nfd;l will change the value of the dark

confinement scale ΛdQCD for a given pair of initial UV

couplings, as ΛdQCD depends on the low-energy running of
αd below the decoupling scale. TheΛdQCD contours, and thus
the validity fraction ϵv, then also depend on nfd;l . So, for each
of the 188models, we choose nfd;l such that the value of ϵv is
maximized. We show these values of ϵv in Fig. 9.
Most of these models have values for ϵv above 0.3, with

the largest values just over 0.32. We show four models with
ϵv > 0.32 in Fig. 10. While these values of ϵv are not quite
as large as those for the best models in Sec. VI A, a validity
fraction of ∼0.3 still corresponds to a decent proportion of
the initial UV coupling parameter space for which the dark
confinement scale is on the order of the visible confinement
scale. These models also have M > 1 TeV for every point
in the viable region of parameter space, and so manage to
potentially provide an explanation for the cosmological
coincidence problem while avoiding stringent collider
constraints.

VII. CONCLUSIONS

In this paper we reassessed the feasibility of explaining
the cosmological coincidence problem by utilizing infrared
fixed points in a dark QCD framework. In the original work
of Bai and Schwaller, the confinement scales of dark
and visible QCD are related by a dynamical mechanism
depending only on the value of the gauge couplings at the
IRFP and the mass scale of the new particle content
introduced. We extended this framework by incorporating
the dependence of these results on the initial values of the
gauge couplings in the UV.
To assesswhethermodelswithin this framework are able to

explain the cosmological coincidence problem, we needed to
carefully define our notion of how “naturally” a given model
produces visible and dark confinement scales of similar
orders of magnitude. With the dark confinement scale now
depending on the initial UV couplings, we analyzed each
model by looking at the proportion ofUVcoupling parameter
space for which one obtains a valid value for the confinement
scale, denoted as the “validity fraction” ϵv.
We began by looking at a limited set of models where we

introduced at most three of each new field. Of these 12 288
models, 155 have a perturbative IRFP. The maximum
validity fraction for these models is ∼0.4, and there are
12 with ϵv > 0.35. The models with larger validity frac-
tions generally have smaller IRFPs.
While these models have a decently sized proportion of

UV coupling parameter space for which the dark and visible
confinement scales are related, the scale of new physics is
below 1 TeV for most of this parameter space. These new
colored sub-TeV fields face strict collider constraints. To see
if models in this framework can avoid these constraints, we
identified a set of 188 models for which at least 80% of the
UV coupling parameter space has M > 1 TeV; all these
models have 10 or more scalars charged under both visible
and dark QCD. Of these models, most have ϵv ∼ 0.3.

FIG. 10. Results for four models with ϵv > 0.32. These are
some of the models with the largest viability fraction in the set of
188 models shown in Fig. 9. The features of each subplot are the
same as those in Fig. 6. Note that for each model, at least 80% of
the parameter space has M > 1 TeV, where M ¼ 1 TeV is
shown by the red contour.

FIG. 9. A histogram of the validity fractions for the set of 188
models that have ten or more joint scalars, and one-loop
coefficients for the β functions between −0.1 and 0. Each of
these models has a mass scaleM > 1 TeV for at least 80% of the
UV coupling parameter space.
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In conclusion, there do exist models within this frame-
work that can potentially provide a natural explanation for
the cosmological coincidence problem. While many of
these models introduce new sub-TeV colored particles,
there is a well-defined set of models that have a new
physics mass scale high enough to avoid these collider
constraints. In future work, these models could be candi-
dates for more detailed model building, in order to
incorporate a definite baryogenesis mechanism to generate
the asymmetries in visible and dark matter, and to perform a
proper phenomenological analysis.
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APPENDIX: BENCHMARK MODELS
FROM BAI AND SCHWALLER

In Fig. 11 we plot the results for the seven benchmark
models chosen by Bai and Schwaller. Table 2 of the original
paper gives values ofM and mD (the dark baryon mass) for
each model; in our analysis, these correspond to M and
ΛdQCD calculated for initial UV couplings at their IRFP
values, ðαUVs ; αUVd Þ ¼ ðα⋆s ; α⋆dÞ, and with mD ≈ 1.5ΛdQCD.
In Fig. 11, these are the values forM and ΛdQCD at the point
indicated by the pink star. We see that models C, E, and G
have valid values of ΛdQCD for initial UV couplings at their
IRFP values; these correspond to dark baryon masses of
0.32, 3.5, and 1.2 GeV respectively. Most of the models
have ϵv ∼ 0.25, with Model B having the largest validity
fraction of ϵv ¼ 0.300� 0.009. While this is a decently
large validity fraction, as with the results in Sec. VI A, most
of the valid region of parameter space for these models has
a new physics scale below 1 TeV (the initial UV couplings
that lie to the right of the red contour).

FIG. 11. Results for the seven benchmark models identified in the original paper by Bai and Schwaller. The features of each subplot
are the same as those in Fig. 6. The results presented in the original paper correspond to our results when choosing the initial UV
couplings to have their IRFP values (the point in each subplot identified by the pink star).
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