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The use of experimental data to constrain the values of the Wilson coefficients of an effective field theory
involves minimizing a χ2 function that may contain local minima. Classical optimization algorithms
can become trapped in these minima, preventing the determination of the global minimum. The quantum
annealing framework has the potential to overcome this limitation and reliably find the global minimum of
nonconvex functions. We present QFitter, a quantum annealing method to perform effective field theory
fits. Using a state-of-the-art quantum annealer, we show with concrete examples that QFitter can be used
to fit sets of at least eight coefficients, including their quadratic contributions. An arbitrary number of
observables can be included without changing the required number of qubits. We provide an example in
which χ2 is nonconvex and show that QFitter can find the global minimum more accurately than its
classical alternatives.
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I. INTRODUCTION

Determining model parameters by adjusting a theoretical
hypothesis until it best fits experimental data is commonly
referred to as fitting. Fitting algorithms use optimization
methods that aim to find the model’s parameters that result
in the smallest value of a characteristic function, like the
negative log-likelihood function, χ2, which incorporates all
experimental observables of interest simultaneously. As
such procedure allows an interpretation of experimental
data in terms of a given theoretical model, fitting algorithms
are at the core of phenomenological studies of new physics.
Effective field theories (EFTs) provide a model-

independent framework to tension experimental data with
the imprints of new physics scenarios, assuming that any
new particles are significantly heavier than the Standard
Model particles. The free parameters of an EFT are
the coefficients of the local operators that appear in its
Lagrangian. They are known as the Wilson coefficients.
The EFT formulation ensures that the Wilson coefficients

can capture any effects of the heavy particles at low
energies compared to their masses.
Because of this, EFT fits have become an essential tool

in interpreting experimental data in the current context,
in which no resonant new physics has been observed at
the LHC. Subsets of the coefficients of the EFT for the
nonlinear realization of the electroweak symmetry have
been fitted to the relevant experimental data in Refs. [1,2].
Similarly, fits for the linear realization have been performed
in Refs. [3–10], for example.
If nonlinear contributions of the Wilson coefficients are

considered in the fit, then the χ2 function to be minimized
may develop local minima which differ from the global
one. Furthermore, local minima can also occur when
nuisance parameters are included, encoding the depend-
ence of the χ2 function on systematic uncertainties. This
may prevent classical optimization algorithms from reach-
ing the values of the Wilson coefficients that fit the
observed experimental values optimally. Indeed, such
algorithms usually obtain the solution by incrementally
improving a given point in parameter space, which can lead
to them becoming trapped in a local minimum.
Quantum annealing provides an optimization frame-

work with the potential to perform better than
classical algorithms in minimizing nonconvex functions
[11–15]. The availability of physical quantum annealing
devices with thousands of qubits has made it possible
to apply this approach to real-world problems in recent
years [16–28].
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In this work, we construct a formulation for implement-
ing the problem of fitting the Wilson coefficients of an EFT
on these devices. An arbitrary number of observables can
be included in the fit without changing the required number
of qubits. Furthermore, general polynomial dependence
of the theoretical predictions on the Wilson coefficients can
be implemented in this formulation, with nonlinear terms
encoded by auxiliary qubits. In practice, we find that
current quantum annealing devices can be used to perform
fits with at least eight Wilson coefficients, including a
quadratic dependence of observables in these coefficients.
Using practical examples, we show that the quantum
approach generates the best-fit estimator for the coefficients
accurately and more consistently than classical methods in
a nonconvex problem.
The rest of this paper is organized as follows. In Sec. II,

we present the QFitter method as one solution to a general
fitting problem, and we describe a new formalism needed
to apply quantum annealing to the problem of fitting EFT
coefficients. In Sec. III, we provide the results of applying
QFitter to three different problems, including a fit in which
the χ2 function to be minimized is nonconvex. We compare
QFitter to several classical approaches. We give our
conclusions in Sec. IV.

II. METHOD

A. Quantum annealing

Quantum annealing is a method for finding the ground
state of a given Hamiltonian H1. The Hamiltonian of a
quantum annealing device takes the form

H ¼ AðsÞH0 þ BðsÞH1; ð1Þ

where s is a free parameter that can be controlled
externally; AðsÞ and BðsÞ are continuous functions such
that Að0Þ > 0 ¼ Bð0Þ and Að1Þ ¼ 0 < Bð1Þ; and H0 is a
Hamiltonian whose ground state is known in advance.
The solution to the problem is obtained by preparing the

system in the ground state of H0 and changing s contin-
uously from s ¼ 0 at an initial time ti to s ¼ 1 at a final
time tf. The function sðtÞ described by the time evolution
of s is known as the schedule. The adiabatic theorem
ensures that, if the change in s is sufficiently slow, the
system is likely to end in the ground state of the target
Hamiltonian H1.
A concrete realization of this method is transverse-field

quantum annealing, which has been implemented in real-
world devices. In this realization, the system can be
viewed effectively as a collection of qubits (that is,
quantum systems with two independent states), with the
Hamiltonians H0 and H1 given by

H0 ¼
X
i

σ̂ix; H1 ¼
X
i

hiσ̂iz þ
X
ij

Jijσ̂iz ⊗ σ̂jz; ð2Þ

where hi and Jij are adjustable parameters, and σ̂ix;z are the
x, z Pauli matrices acting on the ith qubit. To perform a
computation using transverse-field quantum annealing, one
needs to encode its result as the ground state of the Ising
Hamiltonian H1.
The D-wave devices provide a physical implementation

of this setup, in which not all Jij couplings can be set to a
nonvanishing value. In the state-of-the-art ADVANTAGE_

SYSTEM architecture, there are more than 5000 available
qubits, but each one is coupled only to 15 others. To find
the ground state of Ising models with a higher degree
of connectivity, several qubits are chained together with
large coupling to act as a single qubit with more con-
nections. The mapping between the abstract Ising model
Hamiltonian to be minimized and the one implemented in
the physical device is known as an embedding.
Once an embedding has been found, and the schedule

sðtÞ and hi, Jij parameters are set, the annealer is typically
run several times to reduce the effects of external noise.
Then, the final state with the least energy obtained from the
different runs is selected. The number of runs is referred to
in the context as the number of reads.

B. Quadratic unconstrained binary
optimization formulation

The eigenstates of the quantum Ising Hamiltonian H1

correspond to the states of its classical analog, whose
Hamiltonian is

Hclassical ¼
X
i

hiσi þ
X
ij

Jijσiσj; ð3Þ

with the σi being classical variables taking the values
σi ¼ �1. Thus, the problem solved by the transverse-field
quantum annealers can be viewed equivalently as finding
the set of values for the σi such that Hclassical is minimized:
This problem can be solved both using quantum annealing

and classical algorithms, such as simulated annealing.
Quantum annealing has been shown to be more consistent
in finding the ground state of some nonconvex functions
[14]. In Sec. III, we will compare the performance of
quantum annealing to several classical methods for EFT fits.
A useful reformulation of the classical Ising Hamiltonian

minimization problem is obtained by making use of the
binary variables τi ¼ ðσi þ 1Þ=2, whose possible values are
0 or 1. In terms of them, the problem can be expressed as
the minimization of a homogeneous quadratic polynomial:

min
τi¼0;1

τiQijτj: ð4Þ

This is known as a quadratic unconstrained binary opti-
mization (QUBO) problem. We will refer to the function
L ¼ τiQijτj to be minimized in such a problem as the
loss function.
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C. Log-likelihood as a QUBO

We now tackle the task of finding a QUBO formulation
for fits of EFT Wilson coefficients to observables. Let

OðexpÞ
i be the experimentally measured values of the

observables under consideration, and OðthÞ
i ðcÞ the corre-

sponding theoretical predictions, as functions of the col-
lection of Wilson coefficients c ¼ ðc1;…; cMÞ. We assume
a Gaussian likelihood L ∝ e−χ

2=2, with

χ2 ¼
X
ab

VaC−1
abVb; Va ¼ OðexpÞ

a −OðthÞ
a ðcÞ; ð5Þ

where C−1 is the inverse covariance matrix. The maximum-
likelihood estimator for the coefficients can be obtained by
minimizing χ2.

In any EFT, the theoretical predictions OðthÞ
a ðcÞ are

computed as a series in inverse powers of the cutoff scale
Λ, which is cut at a fixed power, depending on the target
precision of the calculation. Each Wilson coefficient is

associated with an inverse power of Λ. The OðthÞ
a ðcÞ will

thus be polynomials in c. For simplicity, we restrict
ourselves here to quadratic polynomials

OðthÞ
a ðcÞ ¼ Aa þ

X
i

Baici þ
X
ij

Caijcicj; ð6Þ

although the method that we present can be straightfor-
wardly extended to higher degrees. Nevertheless, quadratic
polynomials are sufficient for most current EFT applica-
tions. In particular, dimension-eight and dimension-six
squared contributions in the Standard Model EFT can be
dealt with in this setting.
We thus have a χ2 function to be minimized that is a

quartic polynomial in real variables ci. To turn this into a
QUBO, we need to reformulate it as a quadratic polynomial
in binary variables. Binarization can be achieved by means
of a binary encoding [15,29]:

ci ¼ Li þ
Ui − Li

1 − 2−n−1

XN
n¼1

cðnÞi

2nþ1
; ð7Þ

with Li, Ui, and N being fixed parameters, and the cðnÞi
taking binary values 0 or 1. The coefficients ci can take 2N

different values, uniformly distributed in the ½Li; Ui�
interval. Substituting this in Eq. (6) turns OðthÞ

a ðcÞ into a
quadratic function of the binary variables, which means that
χ2 is a quartic polynomial in them.
The reduction from a fourth-degree polynomial to a

second-degree one can be made by means of auxiliary

binary variables cðm;nÞ
ij , representing the products cðmÞ

i cðnÞj .
In this way, the cicj factor that appears in the last term
of Eq. (6), can be written as a linear function in the
binary variables

cicj ¼ LiLj þ
�
Lj

Ui − Li

1 − 2−n−1

XN
n¼1

cðnÞi

2nþ1
þ ði ↔ jÞ

�

þ ðUi − LiÞðUj − LjÞ
ð1 − 2−n−1Þ2

XN
m;n¼1

cðm;nÞ
ij

2mþnþ2
: ð8Þ

Replacing Eq. (7) in the linear term of Eq. (6), and Eq. (8)

in the quadratic one, OðthÞ
a ðcÞ and χ2 become linear and

quadratic in the binary variables, respectively.
In order for this procedure to work, the constraints

cðm;nÞ
ij ¼ cðmÞ

i cðnÞj need to be enforced somehow. This can
be done by means of a constraint Hamiltonian: a quadratic
function Pðx; y; zÞ of binary variables x, y, z that achieves
its minimum P ¼ 0 if and only if xy ¼ z. In particular,
we use the function

Pðx; y; zÞ ¼ xy − 2zðxþ yÞ þ 3z: ð9Þ

Now, to construct the loss function, we add together χ2,
viewed as a quadratic function of the binary variables, as
described above, and the constraint Hamiltonians for all the
relations between them:

L ¼ χ2 þ λ
X
ijmn

PðcðmÞ
i ; cðnÞj ; cðm;nÞ

ij Þ: ð10Þ

When the coefficient λ is large enough, the minimum of L
will correspond to the minimum of χ2 over the set of values
of the binary variables that satisfy the constraints. This
concludes the reformulation of the problem as QUBO: the
maximum likelihood estimator for the Wilson coefficients
can be obtained by minimizing a function quadratic
function of binary variables L.
The QUBO problem we have obtained can be solved

by the usual methods, including quantum and simulated
annealing. We will show in Sec. III that, in practice,
quantum annealing is the most effective of the two for
this purpose, especially when χ2 is a nonconvex function of
the coefficients ci. The result of any of these methods will

be a set of values of the binary variables cðnÞi and cðm;nÞ
ij

representing the ground state of L. The fitted values of the
ci can be recovered using Eqs. (7) and (8).
The number nbin of binary variables employed in this

formulation is highly relevant for the practical applications
using quantum annealing devices since, together with the
connectivity of the QUBO, it will control the number of
qubits in the final embedding. nbin is controlled by the
numberM of Wilson coefficients involved in the fit and the
number N of binary variables used in the encoding for each
of them. In general, one has

nbin ≤ NM þ 1

2
ðN þ 1ÞNM2: ð11Þ
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The first term is the number of binary variables required to
encode the coefficients. The second one is for their products:
there are NðN þ 1Þ=2 different combinations of the form
cicj, and at most M2 different choices for m and n given
ði; jÞ. In many situations, only certain combinations of
coefficients appear in the quadratic terms in Eq. (6). In
the examples of Sec. III, only the squares of some individual
coefficients appear. Then, the number of products of binary
variables to encode is NMðM − 1Þ=2, and

nbin ≤ NMðM þ 1Þ=2: ð12Þ

Concerning the connections, an entry of the Q matrix of the
QUBO is nonvanishing if and only if there is one observable
to which the corresponding coefficients (or product of
coefficients) contribute simultaneously. Since there are
observables to which many coefficients may contribute,
the degree of connectivity is typically high.
Finally, notice here that the number of observables does

not play any role in determining nbin. That means that the
number of observables that can be included in the fit is not
limited by the available number of qubits when the QUBO
is embedded in physical annealing devices.

D. Zooming

As discussed in Sec. II A, the total number of available
qubits in state-of-the-art devices is in the order of several
thousand. However, for problems with a high degree of
connectivity that require embedding several physical qubits
per abstract qubit in the original problem, the effective
number of available qubits is much lower, reaching around
100 for fully connected QUBOs. In an EFT fit, the number
M of coefficients is fixed, so the only way to reduce
the number of qubits, according to Eq. (11) is to reduce the
number N of binary variables per coefficient. Thus, the
bound in the number of qubits translates into a bound in N,
which limits the precision that can be achieved for the
best-fit values of the coefficients.
We overcome this limitation using a zooming process,

similar to the one presented in Ref. [30]. The idea is to
perform the fit in several steps, which we call epochs. Each
epoch consists of a quantum annealing run for a refined
version of the QUBO problem of the previous run, in which
the range ½Li; Ui� for each coefficient ci is updated. Given a
parameter 0 < f < 1, the zoom factor, the update rule for
the lower and upper limits of the range is

Li → ci −
f
2
ðUi − LiÞ; Ui → ci þ

f
2
ðUi − LiÞ; ð13Þ

where ci denotes the value of the corresponding coefficient
obtained from the previous epoch. The effect of this
transformation is to reduce the length of the ½Li; Ui� range
by a factor f, while centering it around ci.

The zooming process thus allows us to achieve any
desired precision at the price of introducing a classical
update step between quantum annealing runs. We stress that
its use is necessary for embedding in current quantum
annealing devices because of the limited amount of available
qubits. In future devices with a larger quantity of qubits,
it might be possible to use a larger number N of binary
variables per coefficient, thus making it possible to reach the
relevant precision in a single quantum annealing run.

III. RESULTS AND DISCUSSION

A. EWPO fit

As a first test of the QFitter method, we perform a fit of
the S and T oblique parameters to the electroweak precision
observables. This serves as a validation that the minimi-
zation of a convex χ2 function through quantum annealing
can reproduce the results of traditional methods, relying
on deterministic approaches. We use the set of observables
defined Ref. [31], with the values, uncertainties and
correlations given in Refs. [32–36]. The S and T parameters
can be defined in this context as

S ¼ 16πv2

gg0
cϕWB; T ¼ 2πðg2 þ ðg0Þ2Þv2

g2ðg0Þ2 cϕD; ð14Þ

where v is the Higgs vacuum expectation value, g and g0 are
the gauge coupling constants for the SUð2Þ and Uð1Þ
factors of the electroweak symmetry, and cϕWB and cϕD are
the Wilson coefficients for the following dimension-six
operators in the Standard Model EFT:

OϕWB ¼ ðϕ†σaϕÞWa
μνBμν; OϕD ¼ jϕ†Dμϕj2: ð15Þ

Here, ϕ is the Higgs doublet, Wa
μν and Bμν are the SUð2Þ

and Uð1Þ field-strength tensors, Dμ is the corresponding
covariant derivative and σa are the Pauli matrices.
We choose the following hyperparameters for the fit:

N ¼ 5 binary variables per coefficient, ranges for them
given by cϕWB∈ ½−0.005;0.005�TeV−2 and cϕD ∈ ½−0.03;
0.03� TeV−2, no zooming, 100 reads and a linear anneal
schedule sðtÞ, with annealing time tf − ti ¼ 50 μs. Avisual
representation of theQ matrix of the corresponding QUBO
problem is shown in Fig. 1. We implement this in the
D-wave ADVANTAGE_SYSTEM4.1 quantum annealer. The
total computing time spent in the quantum annealer for
the fit is thus 5 ms. Since there is no zooming procedure
involved, the fit is performed purely quantum mechanically
in this case, with no classical updating steps. As the result,
we obtain the central values S ¼ 0.05 and T ¼ 0.09, close
to the values obtained in similar fits in the literature [37].
As the next step, we generate the profile of the

minimal Δχ2 ¼ χ2 − χ2min as a function of the parameter S.
To do so, we perform the fit while keeping the value
of S fixed. The ranges of for the coefficients are taken
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in this case to be cϕWB ∈ ½−0.03; 0.03� TeV−2 and cϕD ∈
½−0.1; 0.04� TeV−2, while the rest of hyperparameters are
kept the same as in the fit for the central values. We repeat
this for 20 different values of S, equally spaced in a range
around its central value. We use the same procedure to
produce the profile for Δχ2 as a function of T. The results
are shown in Fig. 2. From these profiles, we can derive the
following 1σ intervals for the parameters:

S ¼ 0.05� 0.09; T ¼ 0.09� 0.08; ð16Þ

which are again close to those obtained in Ref. [37]. The
total quantum annealing time employed in generating the
profiles is 0.2 s.

B. Higgs fit

We now use our method to perform a larger fit,
including eight Wilson coefficients and quadratic terms
in the theoretical predictions for observables. While this
fit can be performed efficiently with classical methods, it
serves as a test of the quantum annealing setup to fit more
than two parameters simultaneously. The limitations of
the current state-of-the-art quantum annealing devices
lead to a limited number of parameters that can be
determined with QFitter at present. We find that the fit
works reliably for up to eight Wilson coefficients. We
employ the Higgs fit setup also to verify that the method
for reducing quartic polynomials in binary variables to
quadratic ones works correctly, and can be used in future
fits using quantum annealing. The Lagrangian we con-
sider is a subset of the dimension-six Standard Model
EFT Lagrangian, given by

L ¼ cu3yt
v2

ðϕ†ϕÞðq̄Lϕ̃uRÞ þ
cd3yb
v2

ðϕ†ϕÞðq̄LϕdRÞ

þ icWg
2m2

W
ðϕ†σaDμϕÞDνWa

μν þ
cH
4v2

ð∂μðϕ†ϕÞÞ2

þ cγðg0Þ2
2m2

W
ðϕ†ϕÞBμνBμν þ cgg2S

2m2
W
ðϕ†ϕÞGa

μνGaμν

þ icHWg
4m2

W
ðϕ†σaDμϕÞDνWa

μν

þ icHBg0

4m2
W

ðϕ†DμϕÞDνBμν þ H:c:; ð17Þ

FIG. 1. Qubo matrices Q for the first zooming epoch of the EWPO (left), Higgs (center) and nonconvex (right) fits. The color code
shows the value of tanhðQij=SÞ, where S ¼ 10; 102; 104 for the EWPO, Higgs and nonconvex fits, respectively. The lowest value of the
matrix is shown in white, while the highest is represented in dark blue.

FIG. 2. Δχ2 ¼ χ2 − χ2min profiles for the EWPO fit. For each
point in the graphs, χ2 is minimized while the parameter in the
x axis is kept fixed.
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where yt and yb are the top and bottom Yukawa cou-
plings,mW is the mass of theW boson and gS is the strong
coupling constant.
We use the set of observables described in Ref. [6]. They

correspond to projections of Higgs production and decay
processes at the high-luminosity LHC. We consider only
inclusive measurements in gluon fusion, vector boson
fusion, and the production associated with an electroweak
gauge boson, two top quarks or a jet. The decays are into
the following final states: γγ, WþW−, ZZ, μþμ−, τþτ−

and bb̄.
We compute the theoretical predictions for the observ-

ables, up to quadratic order in the coefficients. We find that
cH, cW , cHB and cHW have quadratic contributions to some
observables. We only consider contributions of the form c2i
for observables where a linear parametrization results in a
poor description of the parameter dependence.1 The only
coefficients that have non-negligible contributions at the
quadratic level are cW , cHB and cHW . We assume that the
measured values of the coefficients are the same as their
(dimension-four) Standard Model values. We use the
QUBO formulation of the fit to generate the individual
Δχ2 profiles for the coefficients.
There are several choices of hyperparameters that give

rise to similar results. However, we find a greater con-
sistency among different trial runs with the following set of
values: N ¼ 2 binary variables per coefficient, 20 zooming
epochs, a zoom factor of f ¼ 80%, 200 reads in each epoch
and tf − ti ¼ 100 μs of annealing time for each read, with a
linear anneal schedule sðtÞ ∝ t − ti. The ranges we use for
the coefficients are centered around the origin (Li ¼ −Ui),
with the following upper limits:

Uu3 ¼ 2Ud3 ¼ 104Ug ¼ 105Uγ

¼ UH ¼ 10UW ¼ 5UHB ¼ 5UHW ¼ 0.1; ð18Þ

The matrix Q for the corresponding QUBO problem is
shown in Fig. 1. Again, we use the D-wave ADVANTAGE_

SYSTEM4.1 quantum annealer to perform the fits. The total
quantum annealing time per fit is 0.4 s.
We show our results in Fig. 3. For the coefficients cg, cγ ,

cH, cu3 and cd3, we obtain a Δχ2 profile with quadratic
shape, which is symmetric under ci → −ci, as only have
linear contributions to the observables. For cW, cHB and
cHW , we observe an asymmetry under ci → −ci, generated
by the corresponding quadratic terms. Again, we observe
good agreement with the results obtained with classical
methods [6]. To our knowledge, this is the first time a
quantum annealing device has been used to fit eight

parameters simultaneously, with some parameters featuring
a quadratic dependence in the observables.

C. Nonconvex Higgs fit

Finally, we consider a modified scenario in which the χ2

function has a local minimum close to ci ¼ 0 and a (much
lower) global one away from it. We thus have to minimize
nonconvex loss functions, a problem in which the quantum
approach might provide an advantage over its classical
counterparts [14]. We construct an example in which
classical algorithms become trapped in a local minimum
and test if the QFitter method can find the global minimum
with the same starting values.
To generate this setup, we consider a scenario in which

several observables have been measured to be away from
their Standard Model values. The observable that plays
the most important role in generating the nonconvexity is
μpp→WH→WZγ , which we set to −0.3, with total uncertainty
to be Δμpp→WH→WZγ ¼ 0.01. For the rest of the introduced
deviations from the Standard Model values, we keep the
projected experimental uncertainties while setting the
measured values as follows:

(i) For gluon fusion, vector-boson function, ttH and jH
processes with WW or ZZ in the final state, we
take μi ¼ 0.8.

(ii) For any process with Zγ is in the final state, we
set μi ¼ −6.

(iii) For all the processes with Higgs production in
association with a vector boson, we choose μi ¼ 0.2.

We keep the remaining observables in the fit at their
Standard Model values. Concerning the coefficients, we
only allow cHW, cW , cg and cγ to vary, while fixing the rest
of the coefficients to zero. This simplified scenario leads to
a nonconvex negative log-likelihood function. More com-
plex setups are conceivable, but these would need further
modifications of the projected observables. We stress that
we make these arbitrary choices only to test the perfor-
mance of QFitter for a nonconvex χ2 function. The example
we have constructed in this way is thus only a toy example
which nevertheless contains the crucial property of more
realistic examples: the existence of both local and global
minima in a multidimensional parameter space. We will
use it to show the reliability of QFitter in finding the
global minimum in this situation, which we take as a strong
indication of its potential to solve more complex optimi-
zation problems when larger annealing devices with more
qubits become available.
For the fits in this section, we use the QUBO formulation

with N ¼ 4 binary variables per coefficient. The hyper-
parameters are chosen the same as in Sec. III B: 20 zooming
epochs, a zooming factor f ¼ 80%, 200 reads per epoch,
and tf − ti ¼ 100 μs annealing time, with a linear schedule
sðtÞ. The ranges of values for the coefficients that we
choose are cg; cγ ∈ ½−2; 2� × 10−5, cHW; cH ∈ ½−0.1; 0�.

1We parametrize the ci dependence of each observable by a
fit to points generated on a grid and demand χ2 < 0.03 for a
linear parametrization. If χ2 > 0.03, then we use a quadratic
parametrization in ci.
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FIG. 3. Minimal Δχ2 ¼ χ2 − χ2min as a function of the each of the Wilson coefficients in the Higgs fit.
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The Q for the QUBO problem corresponding to the first
zooming epoch is shown in Fig. 1.
We embed this QUBO in the D-wave ADVANTAGE_

SYSTEM4.1 quantum annealer, fixing cHW at 20 equally
spaced values in its range to generate the Δχ2 function
when profiling over the other parameters. The results
are given in Fig. 4. This suggests that χ2 indeed has two
local minima, one at cHW ≃ −0.01 and a lower one at
cHW ≃ −0.05. We check that the gradients are small at these
two points and that the Hessian is definite positive. As a
quantitative measure of the smallness of the gradients, we
find that the following equation is satisfied:

X
i

ci
10

∂ciχ
2

χ2
< 10%: ð19Þ

We conclude that we have found an good approximation to
two of the local minima of χ2. As shown in the Appendix,
the form of the χ2 function that we consider here implies
that we can have at most two local minima, so we have
identified all of them. With χ2 ≥ 0, this implies that the
minimum at cHW ≃ −0.05 is the global one.
We now compare different methods for finding the

maximum-likelihood estimations of the four coefficients.
This corresponds to a search for the global minimum of χ2.
The classical methods that we consider are

(i) The MIGRAD algorithm provided by the MINUIT code
[38]. This type of variable-metric algorithm works
by incrementally improving an approximation of the
error matrix and the best-fit point.

(ii) Simulated annealing. This method also proceeds by
iteratively improving a point in parameter space. In
each step, the algorithm moves to a random nearby
point if the new point has a lower χ2. If the new point
has a higher χ2, then it moves to it with probability
e−Δχ

2=T , where Δχ2 is the difference in χ2 between
the new and the old points, and T is a parameter that
decreases along the run, known as the temperature.
The algorithm explores the vicinity of local minima

while changing T depending on the number of
failures to find a better minimum in the previous
steps. This may allow the algorithm to escape local
minima in some cases. We chose the initial value
of T to be 106 with a minimum value of 10−6, an
adaptive speed of 1 and a step size of 0.01. The
maximum number of steps is chosen to be 105.

(iii) Finally, we also consider the same algorithm as for
the quantum annealing approach, with the QUBO
formulation and a zooming process, replacing the
quantum annealing runs with simulated annealing.
In this case, the parameter points to be updated by
the algorithm are the sets of 0 or 1 values of the
binary variables. The random nearby point is ob-
tained by flipping a random variable. The number of
steps is usually measured here in terms of sweeps,
which correspond to as many updating steps as
binary variables are present in the problem.

We refer to the methods not using the QUBO formulation
as standard-formulation methods. We show a comparison
of the best-fit values of the coefficients and χ2 obtained
from all the methods in Table I. The classical methods are
initialized to a point with cH ¼ cg ¼ cγ ¼ 0.
Inspecting the χ2 values given in the Table I, one can see

that classical algorithms that start at the point ci ¼ 0
typically get trapped in the local minimum nearby. The
MIGRAD algorithm always finds the local minimum at
cHW ≃ −0.009, when the starting value of cHW is 0.
Even the standard simulated annealing algorithm, which
should perform better in rejecting local minima, gets
trapped in this minimum. We have observed this to be
the case despite setting the initial value of cHW to −0.05.
We observe that the other three free parameters have a
large impact on the behavior of the fit and impair
the ability of the algorithm to find the global minimum.
This problem is not present in the quantum annealing
approach. The minimum with χ2 ¼ 135 obtained by
MINUIT for initial point cHW ¼ −0.05 corresponds to
the one from the quantum annealer. The small differences
in the minimum value of χ2 and the best-fit parameters are
because we have neglected some quadratic contributions
in the formulation of the QUBO problem, which has no
consequences on the general shape of the χ2 function,
with a global minimum around cHW ¼ −0.05 and a local
one close to cHW ¼ 0.
The QUBO-formulation simulated annealing results

depend strongly on the schedule for the temperature.
For large starting temperatures, there is no dependence
on the starting point. The results also vary considerably
for fixed annealing parameters from run to run. We find
the most consistent results with a schedule that exponen-
tially increases the inverse-temperature parameter β from
1 × 10−5 to 10 in 1 × 106 steps, performing one sweep per
step. The results fall into three classes: (A) those on the
“wrong” side of the barrier, with χ2 ≃ 4000; (B) those on

FIG. 4. Δχ2¼ χ2−χ2min as a function of cHW , displaying a local
minimum close to cHW ¼ 0 and a global one near cHW ¼ −0.05.
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the correct side, with χ2 < 1000; and (C) those for which
the zooming gets stuck at χ2 > 107. We perform 40 runs
and find that 13% of the runs belong to class A, 82% to
class B and 5% to class C. The results in class (B) also
present a considerable variation. We show an arbitrary
example in Table I.
In order to test the performance of QFitter in finding the

global minimum, we perform 10 independent runs, keeping
cHW free. The fitted value of cHW is consistently ≃ −0.05
in all the runs, implying that QFitter does not get trapped
close to cHW ≃ −0.01. We find some variation in the
minimum χ2 values across the runs: five fall in the interval
[68, 70], four in the interval [70, 72], and one lies at a value
of 78. These variations originate from the finite time spent
by the algorithm on the quantum annealing device. The
exact ground state is only guaranteed to be reached for an
infinite amount of time. However, the algorithm always
results in a point in parameter space close to the global
minimum. In practice, one could run the MIGRAD algorithm
after the QFitter method to obtain the exact minimum.
In Table I, we also provide the total time spent perform-

ing the optimization for each method. Again, we run
MINUIT, the standard-formulation simulated annealing
and the QUBO simulated annealing in an Apple M1
processor. Since quantum annealing is performed on a
dedicated device, the numbers cannot be compared directly.
However, we note that quantum annealing requires orders
of magnitude less time to perform this task.

IV. CONCLUSIONS

We have presented QFitter, a quantum annealing-
based method for fitting EFT coefficients to experimental
measurements. The χ2 is encoded as a QUBO problem
which can be directly embedded in the currently available
quantum annealers. The required number of qubits depends
on the number of coefficients to be fitted, the nonlinear
terms in their contributions to observables (which require
auxiliary qubits), and the precision to which they are to

be determined. The number of observables included does
not affect this.
Since physical annealers only provide a limited amount

of qubits, the practical implementation of QFitter can only
be done for a limited number of coefficients, precision
and nonlinearities. We have used a zooming algorithm, in
which the precision is increased iteratively through several
annealing runs, to overcome this limitation partially. With
this setup, we have found that fitting problems involving at
least eight coefficients and their quadratic dependencies can
be embedded in current quantum annealing devices.
Finally, we have tested the performance of QFitter with

three examples. The first two, the EWPO and the Higgs fit,
involve a convex χ2 function. The quantum approach gives
comparable results to the classical ones here. We have then
modified the χ2 for the Higgs fit to make it nonconvex. By
comparing with several classical algorithms, we have found
that the quantum one is the one that ends in the global
minimum most consistently with a considerable gain in
processing time.

APPENDIX: NUMBER OF LOCAL MINIMA
IN THE NONCONVEX HIGGS FIT

We prove here that the χ2 function defined in Sec. III C
has two local minima at the most. Neglecting constant
terms, χ2 can be written as

χ2 ¼ Rijxixj þ Sijyiyj þ Tijxiyj; ðA1Þ
where the Rij ¼ Rji, Sij ¼ Sji and Tij are constant param-
eters, and x ¼ ðcW; cg; cγÞ, y ¼ ðcHW; c2HWÞ. It can be
checked that the matrix R is invertible. At a local minimum
we must have ∇χ2 ¼ 0. In particular, ∂xiχ

2 ¼ 0 must be
satisfied. That is,

2Rijxj ¼ −Tijyj: ðA2Þ
This is a system of linear equations in xj with a unique
solution x̄iðyÞ ¼ − 1

2
R−1
ik Tkjyj. Since Eq. (A2) is a necessary

TABLE I. Best fit values of the Wilson coefficients from different fitting methods, for the nonconvex χ2 Higgs fit. The QUBO-
formulation simulated annealing generates radically different results for different runs with the same parameters, which fall into three
classes: (A) χ2 ≃ 4000, (B) χ2 < 1000 and (C) χ2 > 107, occurring 13%, 82% and 5% of the time, respectively. We present here an
example of class-A and an example class-B results. The quantum annealing results shown correspond to the smallest value of χ2 across
10 runs. We find an average minimum χ2 value of 70.8 with a standard deviation of 2.4.

Method Fit time (s) cHW cH cg cγ χ2

Standard MINUIT (initial cHW ¼ 0) 2.0 −0.009 0.100 1.4 × 10−5 3.2 × 10−6 4110
MINUIT (initial cHW ¼ −0.05) 2.4 −0.050 0.039 −9.7 × 10−6 −1.0 × 10−4 135
Simulated annealing (initial cHW ¼ 0) 642 −0.009 0.100 1.4 × 10−5 3.7 × 10−6 4110
Simulated annealing (initial cHW ¼ −0.05) 644 −0.009 0.100 1.4 × 10−5 3.7 × 10−6 4110

QUBO Simulated annealing (Class A) 6.4 −0.012 −0.054 −3.0 × 10−5 3.9 × 10−5 3910
Simulated annealing (Class B) 6.4 −0.045 −0.175 −3.7 × 10−5 1.8 × 10−4 228
Quantum annealing 0.2 −0.047 −0.050 1.9 × 10−5 7.5 × 10−7 68
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condition for a point ðx; yÞ to be a local minimum, all the
local minima of χ2 must lie on the curve described by
ðx̄ðyÞ; yÞ. We can thus look for the local minima of

χ2jxi¼x̄iðyÞ ¼ Rijx̄iðyÞx̄jðyÞ þ Sijyiyj þ Tijx̄iðyÞyj: ðA3Þ

The fact that x̄iðyÞ is linear in y implies that it is quadratic
in cHW . It follows that χ2jxi¼x̄iðyÞ is a quartic polynomial
in cHW . This concludes the proof, since a quartic polynomial
can only have up to two local minima.
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