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Recently, it has been found that introducing a triplet Higgs to the standard model could provide a feasible
leptogenesis to generate the baryon asymmetry of our Universe, providing that the inflation is driven by the
mixing state of the triplet Higgs and standard model Higgs. In this work, we survey the viable parameter
space satisfying the vacuum stability and perturbativity in this model. We find that the introduction of the
triplet Higgs would also ameliorate the problem of the Higgs vacuum instability. We present two
representative parameter regions where the origin of neutrino masses, baryon asymmetry of the Universe,
and inflation can be explained while keeping consistent with the condition of vacuum stability and
perturbativity.
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I. INTRODUCTION

The standard model (SM), a theory for strong and
electroweak interactions, is regarded as a landmark of
modern particle physics. However, there remain several
unsolved problems in particle physics and cosmology, such
as the origin of the cosmic inflation [1–5], neutrino masses,
and baryon asymmetry of our Universe. Numerous models
have been proposed to solve one or two of the above pro-
blems, and there have also been some attempts to solve all
of them at once [6–15]. Interestingly, recently, the authors
found that the minimal type II seesaw model [16–19] could
provide a simple framework to address the above three
problems simultaneously [20,21] by introducing only one
triplet Higgs to the standard model. The idea is that the
neutrino masses are generated by the traditional type II
seesaw mechanism where the neutrino masses are provided
by the vacuum value of the neutral part of the triplet Higgs,
and the inflation is driven by the mixing state of the triplet
Higgs and SM Higgs doublet in the early universes, and
the baryon asymmetry is generated by the Affleck-Dine
mechanism [22,23] during the inflation.
However, since the model contains many additional

scalars, it is important to examine whether such a model
satisfies various theoretical constraints, particularly, the

stability of the vacuum and the perturbativity of the
parameters. Actually, the standard model Higgs itself
already suffers from the instability problem due to the
second minimum of the potential at the high-energy
scale [24,25]. It would be interesting to study whether this
problem can be addressed by the introduction of the triplet
Higgs. Although there is already a lot of work concerning
the vacuum stability and perturbativity in the framework of
type II seesaw [26–31], many of it focuses on these
problems around the electroweak scale. However, in the
model of type II seesaw triplet leptogenesis [20,21], the
triplet Higgs also plays a role of inflaton. If a second
vacuum develops at a higher-energy scale, we could
possibly either worry about the transition of our vacuum
into the second vacuum or that we keep staying in the
second vacuum from the beginning. The reason for the latter
statement is that after the inflation there exists an oscillation
stage of the triplet Higgs and SMHiggs doublet [20,21], and
then there is a high chance that the oscillation would end
at the second vacuum. One may wonder whether the
thermal effect during the radiation stage following reheating
could save this situation. However, it is believed that the
reheating temperature could not be much higher than
∼1014 GeV [20,32]. If the second minimum develops at
a higher scale, we would still keep staying in the second
vacuum. In this paper, to simplify our analysis, we require
the electroweak vacuum to be absolutely stable, and no
second vacuum develops at any intermediate scale between
the electroweak scale and Planck scale.
In addition, to generate the baryon asymmetry, the

inflation should be driven by a mixing state of the triplet
Higgs and the SM Higgs doublet, providing additional con-
ditions on the viable parameter space. Therefore, it would
be intriguing to give a full analysis of the parameter space
satisfying the vacuum stability and perturbativity, keeping
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the above three problems being resolved. The paper is
organized as follows. In Sec. II, we overview the idea of the
leptogenesis from Higgs inflation. In Sec. III, we summa-
rize the theoretical requirement of vacuum stability as well
as the necessary condition for Higgs inflation with suc-
cessful leptogenesis. We show our numerical result in
Sec. IV, and we draw the conclusion in Sec. VI.

II. LEPTOGENESIS FROM HIGGS INFLATION

In this section, we give a brief overview of how lepto-
genesis could occur if the inflation were provided by a
mixture of triplet Higgs and SM Higgs doublet. We will
first show the condition of such a mixture to drive the
inflation and then present the Affleck-Dine mechanism to
generate the baryon asymmetry during the inflation stage.

A. Inflation from Higgs

The type II seesaw mechanism introduces a triplet scalar
Δ to SM, which transforms as (1, 3, 2) under the SUð3Þc ×
SUð2ÞL ×Uð1ÞY gauge group and carries a lepton number
lΔ ¼ −2. Under tensor representation of SUð2ÞL, the triplet
Δ and SM Higgs field can be written as

Δ ¼
�
Δþ=

ffiffiffi
2

p
Δþþ

Δ0 −Δþ=
ffiffiffi
2

p
�

H ¼
�
hþ

h

�
: ð2:1Þ

The potential of the Higgs fields is given by

VðH;ΔÞ ¼ −m2
HH

†H þm2
ΔTrðΔ†ΔÞ þ λHðH†HÞ2 þ λ1ðH†HÞTrðΔ†ΔÞ

þ λ2ðTrðΔ†ΔÞÞ2 þ λ3TrðΔ†ΔÞ2 þ λ4H†ΔΔ†H þ
�
μðHTiσ2Δ†HÞ

þ λ5
Mp

ðHTiσ2Δ†HÞðH†HÞ þ λ05
Mp

ðHTiσ2Δ†HÞðΔ†ΔÞ þ H:c:

�
; ð2:2Þ

where the terms in the brackets break theUð1ÞL symmetry and we also include the Planck suppressed operators. Even if the
high-dimension operators have no effect on the low-energy physics, they could dominate the Uð1ÞL breaking terms during
inflation. The Yukawa term becomes

LYukawa ¼ LSM
Yukawa −

1

2
YνjkL̄c

j iσ
2ΔLk þ H:c:: ð2:3Þ

However, the recent cosmic microwave background (CMB) observation already excludes the possibility of the potential
being a simple polynomial function. The reason is that the limit of the tensor-to-scalar ratio around 0.056 indicates that the
potential of the inflaton should be flat enough during inflation. Fortunately, it is known that in Higgs inflation a nonminimal
coupling of Higgs field to gravity can flatten the potential and result in a Starobinsky type model [33–39]. Therefore, we
extend the model with both H and Δ taking the nonminimal coupling to gravity, and then the Lagrangian is as follows:

Lffiffiffiffiffiffi−gp ¼ −
1

2
M2

PR − ξHH†HR − ξΔTrðΔ†ΔÞR

− gμνðDμHÞ†ðDνHÞ − gμνTrðDμΔÞ†ðDνΔÞ − VðH;ΔÞ þ LYukawa: ð2:4Þ

To simplify our analysis, we only focus on the neutral components of Δ and H. The relevant Lagrangian becomes

Lffiffiffiffiffiffi−gp ¼ −
1

2
M2

PR − ξHjhj2R − ξΔjΔ0j2R − ð∂μhÞ2 − ð∂μΔ0Þ2

− Vðh;Δ0Þ −
�
1

2
Yνijν̄

c
i νjΔ0 þ H:c:

�
þ � � � ; ð2:5Þ

where Vðh;Δ0Þ is defined as

Vðh;Δ0Þ ¼ −m2
Hjhj2 þm2

ΔjΔ0j2 þ λHjhj4 þ λΔjΔ0j4 þ λHΔjhj2jΔ0j2

−
�
μh2Δ0� þ λ5

Mp
jhj2h2Δ0� þ λ05

Mp
jΔ0j2h2Δ0� þ H:c:

�
þ � � � ; ð2:6Þ
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where λΔ ¼ λ2 þ λ3, λHΔ ¼ λ1 þ λ4. The Yukawa term of lepton andΔ0 provides a Majorana mass term for neutrino onceΔ
obtains a nonvanishing vacuum expectation value.
We parametrize the h and Δ0 by the polar coordinates: h≡ 1ffiffi

2
p ρHeiη and Δ0 ≡ 1ffiffi

2
p ρΔeiθ. Then, the Lagrangian can be

written as

Lffiffiffiffiffiffi−gp ¼ −
1

2
ðM2

P þ ξHρ
2
H þ ξΔρ

2
ΔÞR −

1

2
ð∂μρHÞ2 −

1

2
ð∂μρΔÞ2 − Vðh;Δ0Þ þ � � � : ð2:7Þ

Considering ξHρ
2
H þ ξΔρ

2
Δ ≫ 1 during inflation, we can perform a Weyl transformation:

gEμν ¼ Ω2gμν; Ω2 ¼ 1þ ξHρ
2
H

M2
P

þ ξΔρ
2
Δ

M2
P
: ð2:8Þ

Then, the Lagrangian is translated from the Jordan frame into the Einstein frame:

Lffiffiffiffiffiffiffiffi−gE
p ¼ −

1

2
M2

PRE −
1

2Ω2
ðð∂μρHÞ2 þ ð∂μρΔÞ2Þ − 3M2

Pð∂μ logΩÞ2 −
Vðh;Δ0Þ

Ω4
þ � � � : ð2:9Þ

Subsequent derivations in this section mainly follow Ref. [40]. Here, we use the natural unitMp ¼ 1. Then, from Eqs. (2.8)
and (2.9), we get

Lkin ¼ −
3

4
ð∂μ logðξHρ2H þ ξΔρ

2
ΔÞÞ2 −

1

2ðξHρ2H þ ξΔρ
2
ΔÞ

ðð∂μρHÞ2 þ ð∂μρΔÞ2Þ: ð2:10Þ

We can redefine the fields

χ ¼
ffiffiffi
3

2

r
logðξHρ2H þ ξΔρ

2
ΔÞ; κ ¼ ρH

ρΔ
: ð2:11Þ

Plugging Eq. (2.11) into Eq. (2.10) and requiring a large nonminimal coupling ξH; ξΔ ≫ 1, we get

Lkin ¼ −
1

2
ð∂μχÞ2 −

1

2

ξ2Hκ
2 þ ξ2Δ

ðξHκ2 þ ξΔÞ3
ð∂μκÞ2: ð2:12Þ

For large field value, the quartic terms dominate the potential; thus, the μ term in Vðh;Δ0Þ can be ignored. Considering a
large χ, the potential of the scalar fields can be written as

UðρH; ρΔÞ ¼
V
Ω4

¼ λHκ
4 þ λHΔκ

2 þ λΔ
4ðξHκ2 þ ξΔÞ2

; ð2:13Þ

with the following minima:

ð1Þ 2λHξΔ − λHΔξH > 0; 2λΔξH − λHΔξΔ > 0; κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λΔξH − λHΔξΔ
2λHξΔ − λHΔξH

s
; ð2:14Þ

ð2Þ 2λHξΔ − λHΔξH > 0; 2λΔξH − λHΔξΔ < 0; κ ¼ 0; ð2:15Þ

ð3Þ 2λHξΔ − λHΔξH < 0; 2λΔξH − λHΔξΔ > 0; κ ¼ ∞; ð2:16Þ

ð4Þ 2λHξΔ − λHΔξH < 0; 2λΔξH − λHΔξΔ < 0; κ ¼ 0;∞: ð2:17Þ

In scenario 1, the inflation is dominated byΔ0 andH, which is just the casewe are interested in. Thus,weget our first constraint
on the parameters to ensure the inflation is driven by a mixing state of the triplet Higgs and SM doublet Higgs, i.e.,

x ¼ ξH
ξΔ

; 2λH − xλHΔ > 0; 2xλΔ − λHΔ > 0: ð2:18Þ
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Note that a necessary condition for vacuum stability is that
λΔ > 0; λH > 0. However, λHΔ could be either positive or
negative. Obviously, if λHΔ < 0, the above condition can be
automatically satisfied, while for the case of λHΔ > 0, a
dedicated study should be preformed, and we leave the
details of discussion in Sec. IV. In addition, a large ξ may
cause unitary problem during the preheating stage, while this
problem can be resolved by adding a singlet scalar [41,42] or
a R2 term in the action [43–46]. In this article, since we
mainly focus on the inflation stage, we ignore the discussion
of how to solve the unitary problem.

B. Leptogensis from Higgs inflation

We can simplify our analysis by defining the inflaton as
φ, through the following relations to the polar coordinate
fields:

ρH ¼ φ sin α; ρΔ ¼ φ cos α;

ξ≡ ξHsin2αþ ξΔcos2α: ð2:19Þ

The Lagrangian in Eq. (2.7) is now given by

Lffiffiffiffiffiffi−gp ¼ −
M2

p

2
R −

ξ

2
φ2R −

1

2
gμν∂μφ∂νφ

−
1

2
φ2 cos2 αgμν∂μθ∂νθ − Vðφ; θÞ; ð2:20Þ

where

Vðφ; θÞ ¼ 1

2
m2φ2 þ λ

4
φ4 þ 2φ3

�
μ̃þ λ̃5

Mp
φ2

�
cos θ;

ð2:21Þ

and

m2 ¼ m2
Δcos

2α −m2
Hsin

2α;

λ ¼ λHsin4αþ λHΔsin2αcos2αþ λΔcos4α;

μ̃ ¼ −
1

2
ffiffiffi
2

p μsin2α cos α;

λ̃5 ¼ −
1

4
ffiffiffi
2

p ðλ5sin4α cos αþ λ05sin
2αcos3αÞ: ð2:22Þ

To fit the current CMB observation, we need roughly
ξffiffi
λ

p ≈ 5 × 104. The Affleck-Dine mechanism will be realized

in our scenario through the motion of the dynamical field θ.
The size of the generated lepton asymmetry will be
determined by the size of the nontrivial motion induced
in θ sourced by inflation. During inflation, m ≪ φ, which
means that the quartic term in the Jordan frame potential
dominates the inflationary dynamics. The lepton asymme-
try is generated by the motion of the triplet Higgs phase θ
during inflation,

nLend ¼ QLφ
2
end

_θendcos2α

≃ −QLλ̃5φ
3
end sin θend=

ffiffiffiffiffi
3λ

p
: ð2:23Þ

After inflation, the lepton number density is roughly
redshifted by a3. To generate the correct baryon asymmetry
of our Universe, we need nLend ∼ 10−16. For λ ∼Oð0.1Þ,
φend ∼ 1 in Planck units, we just need λ̃5 ∼ 10−15.

III. VACUUM STABILITY
FROM TYPE II SEESAW

In spite of the intriguing motivation, this mechanism
suffers from constraints of theoretical consistency includ-
ing vacuum stability, perturbativity, and the condition of
inflation. The vacuum stability condition requires that the
potential of Eq. (2.2) does not develop a second vacuum
between the TeV scale and Planck scale; otherwise, our
electroweak vacuum would be metastable and may transit
to another vacuum. In the large field limit, we only need to
focus on the quartic term of the potential. These conditions
can be summarized as Eq. (3.1), with detailed derivation
in Appendix A,

C1; C2; C3; C4; C5 > 0 and ½C6 > 0 or C0
6 > 0�;

ð3:1Þ

where

C1 ¼ λH; ð3:2Þ

C2 ¼ λ2 þ λ3; ð3:3Þ

C3 ¼ λ2 þ
1

2
λ3; ð3:4Þ

C4 ¼ λ1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3Þ

p
; ð3:5Þ

C5 ¼ λ1 þ λ4 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3Þ

p
; ð3:6Þ

C6 ¼ jλ4j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ λ3

p
− 2λ3

ffiffiffiffiffiffi
λH

p
; ð3:7Þ

C0
6 ¼ 2λ1 þ λ4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8λHλ3 − λ24Þð2λ2=λ3 þ 1Þ

q
: ð3:8Þ

Note that the above conditions are should be satisfied at
any energy scale between TeV and Mp. The perturbativity
condition requires that all couplings should be not much
beyond Oð1Þ. Here, we require all the couplings smaller
than

ffiffiffiffiffiffi
4π

p
.

Since inflation in our context requires a flat direction along
the mixing of h and Δ0, the condition in scenario 1 of
Eq. (2.14) should also be satisfied, which can be rewritten as

C7 > 0; C8 > 0; ð3:9Þ
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where

C7 ¼ 2λH − xλHΔ; ð3:10Þ

C8 ¼ 2xλΔ − λHΔ; ð3:11Þ

x ¼ ξH
ξΔ

: ð3:12Þ

We stress that the conditions ofC7 > 0 andC8 > 0 should be
satisfied only at around the Planck scale.
In our calculation, we utilize SARAH [47] to derive the

two-loop renormalization group equations for the relevant
couplings. The one-loop result is extracted in Appendix C,
and we find it consistent with the result from Ref. [29].

IV. NUMERICAL RESULTS

In our calculation, the free parameters include three
gauge coupling parameters g1, g2, g3; five quartic coupling
parameters λH; λ1; λ2; λ3; λ4; and Yukawa coupling of top
quark and leptons with the triplet Higgs. The threshold
effect of the μ parameter can be ignored because it should
be much smaller than GeV to avoid the wash-out of the
lepton asymmetry [20,21]. Here, we set the triplet Higgs
mass to be 1 TeV; then, all the SM parameters first have to
run from the top mass scale to the TeV scale; then, all the
couplings run into the Planck scale. During the intermedi-
ate scale, the vacuum stability condition is checked, and the
inflation conditions C7 and C8 are only imposed at the
Planck scale. Since all the couplings, particularly the Higgs
self-coupling, are sensitive to the top mass, here we set the
top mass to be 172 GeVand the Higgs mass to be 125 GeV.
All the SM couplings at the top mass scale are derived
following the formulas from Ref. [24].
Before going to the numerical results, we give some

analysis on the preference of parameter space. First of all,

to realize the mixing of the triplet Higgs and SM Higgs
doublet, we have the following relation:

x¼ ξH
ξΔ

; 2λH−xλHΔ > 0; 2xλΔ−λHΔ> 0: ð4:1Þ

Since the vacuum stability requires λH > 0; λΔ > 0, if
λHΔ < 0, the above relation can be satisfied automati-
cally. If λHΔ > 0, we need both 2λH − xλHΔ > 0 and
2xλΔ − λHΔ > 0, imposing an additional requirement for
the parameter space.
In addition, it is known that the SM Higgs develops a

second vacuum at the scale around 1010−11 GeV. However,
because of the introduction of the new scalars, it is possible
to remove the second vacuum by changing renormalization
group equation (RGE) running of SM Higgs self-coupling.
From the RGE of λH,

ð4πÞ2 dλH
d log μ

¼ 27

200
g41 þ

9

20
g21g

2
2 þ

9

8
g42 þ 3λ21

þ 3λ1λ4 þ
5

4
λ24 −

9

5
g21λH − 9g22λH

þ 24λ2H þ 12λHy2t − 6y4t ; ð4:2Þ

we find that there are additional contributions from the term
of 3λ21 þ 3λ1λ4 þ 5

4
λ24. Note that this term is always positive

and it is possible to lift the λH away from negative at a high-
energy scale if λ1, λ4 are large enough. We find that there
are two typical scenarios: one is that the couplings of λ1, λ4
are small and λH can be lift to be positive but remains small
at the Planck scale [Oð0.01Þ], and the other case is that λ1,
λ4 are relatively large and final λH is significantly lifted and
becomes rather large at the Planck scale [Oð1Þ]. In the
following, we will present the parameter space for these
two typical scenarios.

(a) (b)

FIG. 1. Regions surviving the conditions in the parameter space for λ2 ¼ 0.15, λ3 ¼ 0.1, yν ¼ 0 at the TeV scale.
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In Fig. 1, we show the parameter region of a small
λH predicted at the Mp scale. Here, we fixed λ2 ¼ 0.15,
λ3 ¼ 0.1 at the 1 TeV scale. For the Yukawa coupling from
the triplet Higgs and leptons, we assume that it is small
enough and has no effect on the RGE running of other
parameters, and we will discuss its effect later. From left to
right, x is fixed to be 1; 1=3, respectively. Note that the
conditions C2 > 0 and C3 > 0 can be easily satisfied by the
setup. The constraints from other conditions are also shown
in combination. Each of the combined conditions divides
the parameter region into two parts, and only one of them is
allowed, as indicated by the allowed region (red). Different
choices of x have a small effect, and it slightly affects
condition C7 > 0. The reason is that λH is small at the high-
energy scale and at the boundary of the C7 > 0 the 2λH −
xλHΔ approaches 0; therefore, varying the x value will
slightly change the boundary due to the smallness of λH. We
note here that if the initial value of λ2 becomes smaller the
parameter space would fast vanish. The reason is that if we
change λ2 into a smaller value both λ1 and λ4 would become
larger and the condition C7 > 0 would be easily violated.
Here, we give one benchmark in this parameter space. At

the TeV scale, the input parameters are fixed as follows:
λ1 ¼ −0.2, λ2 ¼ 0.15, λ3 ¼ 0.1, λ4 ¼ −0.05. At the Mp

scale, the parameters become λ1 ¼ −0.14, λ2 ¼ 0.97,
λ3 ¼ 0.33, λ4 ¼ 0.093. Now, we find λH ¼ 0.011,
λΔ ¼ 1.3, λHΔ ¼ −0.046. For the case x ¼ 1, the mixing
angle of the Higgs and triplet Higgs during inflation and the
effective λ can be found to be

tan ¼ α ¼ 6.27; λ ¼ 9.95 × 10−3: ð4:3Þ
To check the consistency of the vacuum stability, in Fig. 2,
we show the RGE running of the vacuum stability con-
ditions for this benchmark point. It is easy to find all the
conditions are satisfied. Even if C0

6 is negative at a certain
scale, C6 is always keeping positive.
In Fig. 3, we show the parameter region with λH is Oð1Þ

at theMp scale. Now, we fixed λ2 ¼ 0, λ3 ¼ 0.1 at the TeV
scale. Again, here we assume that the Yukawa coupling is
small enough and x is fixed to be 1; 1=3, respectively. It
shows that the surviving region is mainly determined by
conditions C5 > 0, C7 > 0, and C8 > 0. We also impose a
perturbativity condition that all the parameters should be
smaller than

ffiffiffiffiffiffi
4π

p
. Given the relatively large initial values

of λ1 and jλ4j in Fig. 3(a), the perturbativity condition also
matters. For a smaller x as in Fig. 3(b), condition C7 > 0 is
relaxed, but condition C8 > 0 is strengthened, but the
boundary of C5 > 0 remains unchanged, while the boun-
daries of C7 > 0 and C8 > 0 shift to the left. For the case of
x ¼ 3, we did not identify any parameter region since the
condition C7 > 0 becomes too strong.
Again, in Fig. 4, we show one benchmark point in the

region of Fig. 3 for the RGE running of the vacuum stability
conditions. The related parameters are fixed at λ1 ¼ 0.7,
λ2 ¼ 0, λ3 ¼ 0.1, λ4 ¼ −0.8 at the TeV scale. We find
that at the Mp scale λ1 ¼ 2.70, λ2 ¼ 0.64, λ3 ¼ 0.35,
λ4 ¼ −1.32 and λH ¼ 0.8, λΔ ¼ 0.99, λHΔ ¼ 1.38. For
x ¼ 1, we have 2λH − λHΔ ¼ 0.22, 2λΔ − λHΔ ¼ 0.60.
Then, we can calculate the mixing angle and effective
quartic coupling during inflation

tan α ¼ 1.65; λ ¼ 0.77:

FIG. 2. Running of couplings from the TeV scale to Mp, with
λ1 ¼ −0.2, λ2 ¼ 0.15, λ3 ¼ 0.1, λ4 ¼ −0.05 at the TeV scale.

(a) (b)

FIG. 3. Regions surviving the conditions in the parameter space for λ2 ¼ 0, λ3 ¼ 0.1, yν ¼ 0, x ¼ 1, 1
3
at the TeV scale.
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We stress the importance of imposing the vacuum
stability conditions between the low scale and Mp since
it is possible that the vacuum instability happens at an
intermediate scale. To illustrate this point, in Fig. 5, we
show a particular case where the vacuum stability con-
ditions are satisfied at the low scale and at the Planck scale,
but a second minimum develops at the scale around
1013 GeV. The couplings are fixed to be λ1 ¼ −0.2,
λ2 ¼ 0.1, λ3 ¼ 0.1, λ4 ¼ −0.06 at the TeV scale, and

Fig. 5 clearly shows that vacuum stability conditions are
violated in the scale of 104–1013 GeV.

A. Effect from Yukawa couplings
of triplet Higgs with leptons

In this subsection, we discuss the effect of Yukawa
couplings from triplet Higgs with leptons. Since we have
six independent Yukawa couplings, to simplify our analy-
sis, however, we only require one of them could be sizable,
and all the others are too small to have a significant effect.
In Fig. 6, we show the effect of Yukawa couplings.
As shown in Appendix C, the Yukawa coupling yν

contributes to the RGE of λHΔ from the term λHΔy2ν. In the
case of λ2 ¼ 0.1, λ3 ¼ 0.1, since λHΔ < 0 at almost all
scales belowMpl, a nonvanishing Yukawa coupling reduces
the value of λHΔ atMp, and then condition 7 can be relaxed
slightly as shown in the left panel of Fig. 6. In the case of
λ2 ¼ 0.1, λ3 ¼ 0.1, the λ1 evolves with a positive and
relatively large value. With the λ1y2ν term in the RGE of λ1,
the value of λ1 becomes larger at the higher-energy scale,
and it is easily beyond the perturbativity at Mp. Thus, the
perturbativity condition is strengthened with nonzero yν.
We can see that the surviving region shrinks in as shown in
the left panel of Fig. 6 compared with the plot without the
contribution of Yukawa coupling.
Notice that when yν ≳ 0.7 it will hit the Landau pole

before Mp, and such a case should be avoided.

V. PHENOMENOLOGICAL IMPLICATIONS

In the previous section, we identify the parameter regions
consistent with theoretical conditions. In this section, we
will show the low-energy implications of the parameter
space. After electroweak symmetry spontaneous breaking,
the triplet and SM Higgs field both obtain a vacuum
expectation value,

Δ ¼
�

0 0

vt=
ffiffiffi
2

p
0

�
; H ¼

�
0

vd=
ffiffiffi
2

p
�
: ð5:1Þ

FIG. 4. Running of couplings from the TeV scale to the Mpl
scale, with λ1 ¼ 0.7, λ2 ¼ 0, λ3 ¼ 0.1, λ4 ¼ −0.8.

FIG. 5. Running of couplings from the electroweak scale to the
Mpl scale, with λ1 ¼ −0.3, λ2 ¼ 0.15, λ3 ¼ 0.1, λ4 ¼ 0.1.

(a) (b)

FIG. 6. Regions surviving the conditions in the parameter space for yν ¼ 0.6, x ¼ 1.
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Then, the type II seesaw model predicts seven massive
particles: H��; H�; H0; A0, and h.
As in Ref. [48], for vt ≪ vd, which is the region we are

interested in, the mass squared difference of these scalar
particles can be deduced,

m2
H�� −m2

H� ≃m2
H�� −m2

H0=A0 ≃
λ4
4
v2d: ð5:2Þ

Thus, λ4 can be used to constrain the mass splitting of H��

and H�, as shown in Figs. 7(a) and 7(b), which are related
to the parameter regions in Figs. 1 and 3, respectively.
We see that for a mass of doubly charged Higgs around

TeV, the mass splitting of doubly charged Higgs and
charged Higgs is generally below 10 GeV; thus, the cascade
decay of the doubly charged Higgs is highly suppressed. In
addition, the vacuum value of the triplet Higgs is less than
10 keV; thus, most of the doubly charged Higgs would
decay into dileptons, providing a unique signature to test
the model.

VI. CONCLUSIONS

In this work, we investigate the parameter space of type
II seesaw model consistent with the vacuum stability and
perturbativity, while solving the problems of neutrino
masses, baryon asymmetry of the Universe, and inflation.
A successful leptogenesis requires that the inflation is
driven by the mixing state of the SM Higgs doublet and
the triplet Higgs, providing additional constraints on the
parameter space. After combining these conditions, we give
two typical viable parameter regions where the SM Higgs
self-coupling could be large Oð1Þ or small Oð0.01Þ.
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APPENDIX A: DERIVATION OF THE VACUUM
STABILITY CONDITIONS

In this section, we calculate the vacuum stability con-
ditions for a potential including the SM Higgs doublet and
triplet Higgs. All the results can be found in Refs. [29,31],
and here we just add some details. Here, we consider the
potential from Eq. (2.2), in which high-dimension operators
are neglected,

VðH;ΔÞ ¼ −m2
HH

†H þm2
ΔTrðΔ†ΔÞ

þ ½μðHTiσ2Δ†HÞ þ H:c:� þ λHðH†HÞ2
þ λ1ðH†HÞTrðΔ†ΔÞ þ λ2ðTrðΔ†ΔÞÞ2
þ λ3TrðΔ†ΔÞ2 þ λ4H†ΔΔ†H þ � � � : ðA1Þ

It can be seen that in the large field limit the potential V
mainly depends on the following four items: H†H,
ðTrðΔ†ΔÞÞ2, TrðΔ†ΔÞ, and H†ΔΔ†H. Take TrðΔ†ΔÞ≠0,
and define r, ζ, and ξ as the following non-negative
dimensionless quantities:

H†H ≡ rTrðΔ†ΔÞ; ðA2Þ

TrðΔ†ΔÞ2 ≡ ζ½TrðΔ†ΔÞ�2; ðA3Þ

H†ΔΔ†H ≡ ξTrðΔ†ΔÞðH†HÞ: ðA4Þ

If all scalar masses are positive, the potential does not
classically drop to another minimum, but this still leaves
the possibility of tunneling to a deeperminimum. For this not
to happen, we must ensure that V is bounded, which is
equivalent to requiring that the quartic part of the potential in
Eq. (A1), Vð4Þ, must be positive for all nonzero field values,

Vð4Þ

½TrðΔ†ΔÞ�2 ¼ λHr2 þ λ1rþ λ2 þ λ3ζ þ λ4ξr: ðA5Þ

(a) (b)

FIG. 7. The mass splitting of H�� and H� predicted in the case of Figs. 1 and 3 for x ¼ 1.
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For Vð4Þ > 0 and ½TrðΔ†ΔÞ�2 > 0, we have

Vð4Þ

½TrðΔ†ΔÞ�2 > 0; ðA6Þ

so we can rewrite Eq. (A5) as

fðrÞ≡ ar2 þ brþ c > 0; ðA7Þ

where a ¼ λH, b ¼ λ1 þ λ4ξ, and c ¼ λ2 þ λ3ζ. Obviously,
Eq. (A7) is regarded as a one-dimensional quadratic inequal-
ity. Depends on the sign of b, there are two cases which need
to be considered.

(I) b > 0.
For fðrÞ > 0 and r ∈ ð0;∞Þ, the parabola opens up,
a > 0, which is

λH > 0: ðA8Þ

When r → 0, we have c > 0 and

λ2 þ λ3ζ > 0: ðA9Þ

In this case, Eq. (A6) is apparently satisfied.
(II) b < 0.
Likewise, a > 0 and c > 0 still hold. At this time, due to

fðrÞ > 0, the minimummust also satisfy this condition. For
f0ðrÞ ¼ 0, one can obtain,

2λHrþ λ1 þ λ4ξ ¼ 0; r ¼ −
λ1 þ λ4ξ

2λH
: ðA10Þ

Substitute the minimum point back to Eq. (A5),

−ðλ1 þ λ4ξÞ2 þ 4λHðλ2 þ λ3ζÞ > 0: ðA11Þ

A(11) can be written as

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3ζÞ

p
< λ1 þ λ4ξ< 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3ζÞ

p
: ðA12Þ

Since the case where b is less than zero is considered here,
it is only necessary to consider that

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3ζÞ

p
< λ1 þ λ4ξ; ðA13Þ

which is

λ1 þ λ4ξþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3ζÞ

p
> 0: ðA14Þ

To sum up, we can make a summary and redefine Eqs. (A9)
and (A14),

λH > 0; ðA15Þ

λ2 þ λ3ζ ≡ F1ðζÞ > 0; ðA16Þ

λ1 þ λ4ξþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3ζÞ

p ≡ F2ðξ; ζÞ > 0: ðA17Þ

Since the value range of ζ is 2ξ2 − 2ξþ 1 ≤ ζ ≤ 1, which is
proofed in Appendix. B, and F2ðξ; ζÞ is monotonic about ζ
and ξ, we can take ζ ¼ 2ξ2 − 2ξþ 1 and rewrite Eq. (A15)
as the function FðξÞ:

FðξÞ ¼ λ1 þ ξλ4 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λH½λ2 þ λ3ð2ξ2 − 2ξþ 1Þ�

q
: ðA18Þ

Since ξ ∈ ½0; 1� and FðξÞ > 0, there are Fð0Þ > 0 and
Fð1Þ > 0, i.e.,

Fð0Þ ¼ λ1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3Þ

p
> 0; ðA19Þ

Fð1Þ ¼ λ1 þ λ4 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3Þ

p
> 0: ðA20Þ

If FðξÞ is a monotonic function, the above two con-
ditions are sufficient. On the contrary, it is necessary to
find its minimum point. So, we need to take the first
derivative of FðξÞ,

F0ðξÞ ¼ λ4 þ
2λHλ3ð2ξ − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λH½λ2 þ λ3ð2ξ2 − 2ξþ 1Þ�
p ; ðA21Þ

whose second derivative is

F00ðξÞ ¼ 2λ2Hλ3ð2λ2 þ λ3Þ
λH½λ2 þ λ3ð2ξ2 − 2ξþ 1Þ�3=2 : ðA22Þ

It can be seen from the above formula that the sign of F00ðξÞ
is the same as that of λ3. If λ3 > 0 and F0ð0Þ < 0,
F0ð1Þ > 0, the minimum falls in (0,1). Otherwise, the
minimum value is Fð0Þ or Fð1Þ, and Eq. (A19) with
Eq. (A20) is sufficient to ensure FðξÞ > 0. For F0ð0Þ < 0
and F0ð1Þ > 0, we have

F0ð0Þ ¼ λ4 −
2λHλ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λHðλ2 þ λ3Þ
p < 0; ðA23Þ

F0ð1Þ ¼ λ4 þ
2λHλ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λHðλ2 þ λ3Þ
p > 0: ðA24Þ

Combining Eqs. (A23) and (A24) gives

2λ3
ffiffiffiffiffiffi
λH

p
> jλ4j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ λ3

p
: ðA25Þ

That is to say, if and only if 2λ3
ffiffiffiffiffiffi
λH

p
> jλ4j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ λ3

p
, we

should calculate the minimum of FðξÞ in (0,1). Taking zero
for Eq. (A21) and solving the equation, the extreme point
can be obtained as

ξ0 ¼
1

2
−

λ4
2λ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3ð2λ2 þ λ3Þ
8λHλ3 − λ24

s
: ðA26Þ
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Substituting ξ0 back into Eq. (A18), the FðξÞ > 0 condition can be obtained:

Fðξ0Þ ¼ λ1 þ
1

2
λ4 þ 4λH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3ð2λ2 þ λ3Þ
8λHλ3 − λ24

s
−

λ24
2λ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3ð2λ2 þ λ3Þ
8λHλ3 − λ24

s

¼ λ1 þ
1

2
λ4 þ

1

2
ð8λHλ3 − λ24Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 λ2
λ3
þ 1

8λHλ3 − λ24

s

¼ λ1 þ
1

2
λ4 þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8λHλ3 − λ24Þ

�
2
λ2
λ3

þ 1

�s
> 0: ðA27Þ

In summary, the vacuum stability conditions are obtained as follows:

λH; λ2 þ λ3; 2λ2 þ λ3; λ1 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3Þ

p
; λ1 þ λ4 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λHðλ2 þ λ3Þ

p
> 0; ðA28Þ

and

2λ3
ffiffiffiffiffiffi
λH

p
≤ jλ4j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ λ3

p
or λ1 þ

1

2
λ4 þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8λHλ3 − λ24Þ

�
2
λ2
λ3

þ 1

�s
> 0: ðA29Þ

APPENDIX B: PROOF OF THE PROPERTIES OF ξ AND ζ

1. 0 ≤ ξ ≤ 1

We already know

Δ ¼
�
Δþ=

ffiffiffi
2

p
Δþþ

Δ0 −Δþ=
ffiffiffi
2

p
�
; Δ† ¼

�
Δ−=

ffiffiffi
2

p
Δ0

Δ−− −Δ−=
ffiffiffi
2

p
�
: ðB1Þ

From the above formula, we can easily find

TrΔ ¼ 0; TrΔ† ¼ 0: ðB2Þ

For any 2 × 2 matrices M and N, we have

MN þ NM ¼ 1ðTrMN − TrMTrNÞ þMTrN þ NTrM;

ðB3Þ

where 1 is identity matrix, from which follows immediately

ΔΔ† þ Δ†Δ ¼ 1 × TrΔΔ†: ðB4Þ

Then, multiply this by H† on the left and by H on the right
to get

H†ΔΔ†H þH†Δ†ΔH ¼ H†HTrΔΔ†: ðB5Þ

Because of H†Δ†ΔH ≥ 0, we can obtain

H†HTrΔΔ† ≥ H†ΔΔ†H: ðB6Þ

According to the definition of ξ, it is easy to know

ξ≡ H†ΔΔ†H
H†HTrΔΔ† ≤ 1: ðB7Þ

Since H†HTrΔΔ† and H†ΔΔ†H are positive, ξ must
be trivially greater than zero. Finally, the two boundary
values 0 and 1 are effectively reached, respectively, when
H†Δ ¼ 0 and ΔH ¼ 0. Thus,

0 ≤ ξ ≤ 1: ðB8Þ

2. 1
2 ≤ ζ ≤ 1

Using Eq. (B1) and considering their product,

ΔΔ† ¼
 j Δþffiffi

2
p j2 þ jΔþþj2 ΔþΔ0ffiffi

2
p þ ΔþþΔ−ffiffi

2
p

Δ−Δ0ffiffi
2

p − Δ−−Δþffiffi
2

p j Δþffiffi
2

p j2 þ jΔ0j2

!
: ðB9Þ
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First, trace Eq. (B9), and then square it; we have

ðTrΔΔ†Þ2 ¼
�����Δþffiffiffi

2
p
����2 þ jΔþþj2

�
2

þ
�����Δþffiffiffi

2
p
����2 þ jΔþþj2

�
2

þ 2

�����Δþffiffiffi
2

p
����2 þ jΔþþj2

������Δþffiffiffi
2

p
����2 þ jΔ0j2

�
: ðB10Þ

Furthermore, square Eq. (B9), and then find the trace to get

TrðΔΔ†Þ2 ¼
�����Δþffiffiffi

2
p
����2 þ jΔþþj2

�
2

þ
�����Δþffiffiffi

2
p
����2 þ jΔþþj2

�
2

þ 2

�
ΔþΔ0ffiffiffi

2
p þ ΔþþΔ−ffiffiffi

2
p

��
Δ−Δ0ffiffiffi

2
p −

Δ−−Δþffiffiffi
2

p
�
: ðB11Þ

Finally, subtract Eqs. (B10) and (B11),

ðTrΔΔ†Þ2 − TrðΔΔ†Þ2 ¼ 2

�����Δþffiffiffi
2

p
����2 þ jΔþþj2

������Δþffiffiffi
2

p
����2 þ jΔ0j2

�
− 2

�
ΔþΔ0ffiffiffi

2
p þ ΔþþΔ−ffiffiffi

2
p

��
Δ−Δ0ffiffiffi

2
p −

Δ−−Δþffiffiffi
2

p
�

¼ 2DetΔΔ†: ðB12Þ

Using DetΔΔ† ≡ jDetΔj2 ≥ 0 and Eq. (B12), it is easy to
note that ðTrΔΔ†Þ2 ≥ TrðΔΔ†Þ2. According to the defi-
nition of ζ, we have

ζ≡ TrðΔΔ†Þ2
ðTrΔΔ†Þ2 ≤ 1; ðB13Þ

and ζ must be positive because ðTrΔΔ†Þ2 and TrðΔΔ†Þ2 are
both greater than zero. But in fact, ζ cannot go below 1=2.
To see this, we will rewrite ζ by M2

1 and M2
2, the two (real

and positive) eigenvalues of ΔΔ†,

ζ ¼ M4
1 þM4

2

ðM2
1 þM2

2Þ2
; ðB14Þ

and then divide it up and down byM4
2, we can easily read the

function ζðxÞ ¼ ð1þ x2Þ=ð1þ xÞ2 where x≡M2
1=M

2
2 ≥ 0

to show that it has a minimum of ζ ¼ 1=2 when x ¼ 1.
Similarly, we calculated that ζ ≤ 1 and reaches 1 at x → 0 or
x → ∞. Therefore,

1

2
≤ ζ ≤ 1: ðB15Þ

3. Correlation between ξ and ζ

We first perform a general gauge transformation
H → UH, Δ→UΔU†, where U is any element of SUð2ÞL×
Uð1ÞY . Since U is unitary and ΔΔ† is Hermitian, we can
always find a gauge transformation that diagonalizesΔΔ† for
any given fieldΔ. According to the definitionof ξ and a series
of calculation, ξ reads

ξ ¼ M2
2jϕ̃0j2 þM2

1jϕ̃þj2
ðM2

1 þM2
2Þðjϕ̃0j2 þ jϕ̃þj2Þ ; ðB16Þ

where diagfM1;M2g is the diagonalized matrix ofΔ and the
tilde denotes the components of the transformed doublet
H̃ ¼ UH. Furthermore, we define

c2Δ ≡ M2
1

M2
1 þM2

2

; s2Δ ≡ M2
2

M2
1 þM2

2

; ðB17Þ

c2H ≡ jϕ̃þj2
jϕ̃0j2 þ jϕ̃þj2 ; s2H ≡ jϕ̃0j2

jϕ̃0j2 þ jϕ̃þj2 ; ðB18Þ

they scan all their allowed domains c2Δðor s2ΔÞ; c2Hðor s2HÞ ∈
½0; 1�. Using these definitions, we can rewrite ξ and ζ as

ξ ¼ M2
1jϕ̃þj2 þM2

2jϕ̃0j2
ðM2

1 þM2
2Þðjϕ̃þj2 þ jϕ̃0j2Þ

¼ c2Δc
2
H þ s2Δs

2
H

¼ 1

2
½ðc2Δ þ s2ΔÞðc2H þ s2HÞ þ ðc2Δ − s2ΔÞðc2H − s2HÞ�

¼ 1

2
ð1þ c2Δc2HÞ; ðB19Þ

ζ ¼ M4
1 þM4

2

ðM2
1 þM2

2Þ2
¼
�

M2
1

M2
1 þM2

2

�
2

þ
�

M2
2

M2
1 þM2

2

�
2

¼ c4Δ þ s4Δ ¼ 1

2
½ðc2Δ þ s2ΔÞ2 þ ðc2Δ − s2ΔÞ2�

¼ 1

2
ð1þ c22ΔÞ; ðB20Þ

wherewe have defined c2H ¼ c2H − s2H, c2Δ ¼ c2Δ − s2Δ with
their range of variation c2H ∈ ½−1; 1�, c2Δ ∈ ½−1; 1�.
Combining Eqs. (B19) and (B20) and then eliminating
c22Δ, we can obtain

2ξ2 − 2ξþ c22H þ 1

2
¼ c22Hζ: ðB21Þ

In other words, we have

2ξ2 − 2ξþ 1

2
¼
�
ζ −

1

2

�
c22H: ðB22Þ
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Since the value of c22H ∈ ½0; 1�, it is easy to get

ζ ≥ 2ξ2 − 2ξþ 1: ðB23Þ

It is obvious to find that 2ξ2 − 2ξþ 1 ≥ 1
2
with ξ ∈ ½0; 1�, and

as mentioned earlier, ζ ∈ ½1
2
; 1�, so we can obtain

2ξ2 − 2ξþ 1 ≤ ζ ≤ 1: ðB24Þ

APPENDIX C: ONE-LOOP RENORMALIZATION
GROUP EQUATIONS

The one-loop renormalization group equations are
extracted below. For simplicity, among the SM Yukawa
couplings, we only retain the top coupling. Similarly, we
take the normal ordering assumption of neutrino mass
spectrum and neglect the contribution of the first two
generations of neutrino Yukawa coupling. Here, t ¼ log μ.

ð4πÞ2 dg1
dt

¼ 47

10
g31;

ð4πÞ2 dg2
dt

¼ −
5

2
g32;

ð4πÞ2 dg3
dt

¼ −7g33;

ð4πÞ2 dyt
dt

¼ −
17

20
g21yt −

9

4
g22yt − 8g23yt þ

9

2
y3t ;

ð4πÞ2 dyν
dt

¼ −
9

10
g21yν −

9

2
g22yν þ 2y3ν;

ð4πÞ2 dλH
dt

¼ 27

200
g41 þ

9

20
g21g

2
2 þ

9

8
g42 þ 3λ21 þ 3λ1λ4 þ

5

4
λ24 −

9

5
g21λH − 9g22λH þ 24λ2H þ 12λHy2t − 6y4t ;

ð4πÞ2 dλ1
dt

¼ 27

25
g41 −

18

5
g21g

2
2 þ 6g42 −

9

2
g21λ1 −

33

2
g22λ1 þ 4λ21 þ 16λ1λ2 þ 12λ1λ3

þ 6λ2λ4 þ 2λ3λ4 þ λ24 þ 12λ1λH þ 4λHλ4 þ 6λ1y2t þ λ1y2ν;

ð4πÞ2 dλ2
dt

¼ 54

25
g41 þ 15g42 þ 2λ21 − 24g22λ2 þ 28λ22 −

36

5
g21ðg22 þ λ2Þ þ 24λ2λ3 þ 6λ23 þ 2λ1λ4 þ 2λ2y2ν;

ð4πÞ2 dλ3
dt

¼ 72

5
g21g

2
2 − 6g42 −

36

5
g21λ3 − 24g22λ3 þ 24λ2λ3 þ 18λ23 þ λ24 þ 2λ3y2v − y4ν;

ð4πÞ2 dλ4
dt

¼ 36

5
g21g

2
2 −

9

2
g21λ4 −

33

2
g22λ4 þ 8λ1λ4 þ 4λ2λ4 þ 8λ3λ4 þ 4λ24 þ 4λHλ4 þ 6λ4y2t þ λ4y2ν:
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