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The continued nonobservation of events emanating from dark matter annihilations in various direct
and indirect detection experiments calls into question the mechanism for determining the relic density
of a weakly interacting massive particle. However, if the relic density is determined primarily by a
semiannihilation process, as opposed to the usual annihilation, this tension can be ameliorated. Here, we
investigate a Z3 symmetric effective field theory incorporating a fermionic dark matter that semiannihilates
to right-handed neutrinos. The dynamics of the right-handed neutrinos and the impact of its late decays are
also scrutinized while obtaining the correct dark matter relic. Finally, indirect detection bounds on the
semiannihilation cross sections are drawn from the gamma-ray observations in the direction of dwarf
spheroidal galaxies (Fermi-LAT), and including the projections obtained for the H.E.S.S. and the CTA
detectors.
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I. INTRODUCTION

Despite its stupendous success, the Standard Model
(SM) leaves many questions unanswered, and, in this
article, we aim to address two of them in an unified
way. One of these pertains to the existence of dark matter
(DM) and the other to the problem of neutrino masses.
While both the questions have been addressed independ-
ently, and, on occasions, even together, we consider a
mechanism for establishing the DM relic density that is
relatively less explored. Simultaneously, this mechanism
would be seen to naturally yield light neutrino masses of
the right orders, accommodating equally well both the
normal and inverted hierarchy.
A popular mechanism for generating neutrino masses is

to invoke the type-I seesaw mechanism via the introduction
of the right-handed neutrinos (RHNs) [1–5]. Being SM
gauge singlets, these rarely play any discernible role in
laboratory physics other than to generate neutrino masses
and mixings and, hence, this sector can hardly be probed,
whether directly or indirectly. Attempts have been made to
ascribe to these a role in determining the DM relic density,

whether through freeze-out or the freeze-in mechanisms
[6–13]. In such freeze-out scenarios, the DM particles pair
annihilate primarily to these RHNs which, thereafter, decay
to SM particles. Since the RHN has to be lighter than the
DM for this to take place, unless the DM itself is very
heavy, correct neutrino phenomenology would demand that
the neutrino-sector Yukawa couplings be small, thereby
delaying the decay of the RHN and, hence, the freeze-out
epoch [14–16]. Analogous effects are evinced in the freeze-
in mechanism as well [17].
The situation takes an interesting turn if the symmetry

ensuring the absolute stability of the DM is not the simple
and popular Z2. A more complicated symmetry (such as the
Z3 or Z5) may dictate that the leading interaction is not a
pair annihilation of the DM (whether directly into SM
particles or other exotics), but one where, say, three DM
particles D must be involved [18,19]. This could manifest
itself in two different ways, a 3D →

P
α Sα annihilation

(where Sα denotes Z3-neutral particles, whether within the
SM or exotic) or of the form DþD → D� þP

α Sα.
The first mechanism, seemingly, is very efficient in
reducing the DM density. It, however, is associated with
low cross sections, simply on account of the initial-state
flux factors, and is relevant only for a very light DM
particle [18,20,21]. The second process, on the other
hand, reduces the number of DM particles by only one,
instead of the customary two in the case of the usual pair-
annihilation processes. With the ensuing slow down of
the freeze-out process, the couplings required, in either
case, to reach the observed relic density [22] would be
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markedly different leading to differing consequences for
the direct or indirect detection experiments.
The semi-annihilation process, as the leading mecha-

nism, has been studied in the context of both scalar [23–30]
and vector [26,31–33] DM particles. For fermionic DM,
though, such a semi-annihilation process requires the
participation of at least one more fermion and, in a UV-
complete theory, at least one additional boson [26,34,35].
Gauge invariance is most easily ensured if the extra fermion
in question is a singlet under the SM and this brings into
focus the possibility that it is nothing but (one of) the
aforementioned RHNs.
To this end, we concentrate on a fermionic DM D whose

relic abundance is determined primarily by semiannihila-
tion (DD → DcNi) into RHNs in a Z3-symmetric frame-
work. Rather than focus on a specific construction, we
adopt a model-independent approach focusing on effective
operators. Almost irrespective of the UV completion
(we offer one in the Appendix), the RHNs further decay
or annihilate into SM particles. The Yukawa couplings
responsible for the latter are allowed a wide range of values;
in particular, small values can delay the freeze-out with
interesting cosmological ramifications.
It has been argued that models with DM annihilation

to RHN are severely constrained by direct and indirect
detection [10,14] experiments. We investigate these aspects
in the context of our model and find that while direct
detection constraints are very weak, the measurement of
energetic photon fluxes in the Fermi-LAT [36] and H.E.S.S.
[37] experiments do serve to constrain the parameter space.
The viability is comparable to (or even better than) models
wherein a bosonic DM undergoes semiannihilation [23].
The rest of paper is planned as follows. In Sec. II, we

describe the scenario and delineate the effective Lagrangian
at the lowest order. Section III examines semiannihilation
as well as the other relevant processes and thereby obtains
the DM relic abundance for various regions of the param-
eter space. Bounds on semiannihilation cross sections from
FermiLAT and H.E.S.S, as well as sensitivity projections
for the CTA are obtained in Sec. IV. We present our
conclusions in Sec. V. While a prospective UV completion
is described in Appendix A, calculational details are
presented in Appendixes B and C, respectively.

II. THE MODEL

We augment the SM with two kinds of fermions, the
RHN1 Ni (i ¼ 1; 2; 3) and the Dirac field χ for the DM.
While all the new fermions are SM singlets, we ascribe a
nontrivial transformation of the χ field under a Z3, namely,

Sα → Sα; Ni → Ni; χ → e2πi=3χ: ð1Þ

The Ni may have Majorana masses as well as lead to
Dirac masses through type-I Yukawa couplings. The
corresponding Lagrangian may be parametrized as

LN ¼
X
i

Ni i=∂Ni þ
X
i;j

ðmNÞijNc
i Nj

þ
�X

i;k

ðyNÞikLi H̃ Nj þ H:c:

�
; ð2Þ

where Li and H are, respectively, the SM lepton doublets
and the Higgs field. Without any loss of generality, the
(symmetric) Majorana mass matrix mN may be considered
to be diagonal.
After electroweak symmetry breaking, the usual type-I

seesaw mechanism generates a mass matrix for the light
neutrinos of the form

mν ¼
v2

2
yTNm

−1
N yN; ð3Þ

where v ¼ 246 GeV. The matrix mν, on diagonalization,
would yield the light neutrino masses and mixings.With the
Ni being heavy, their mixings with the light species are tiny
indeed. Nonetheless, for mN ≳ 100 GeV, the small mixing
still allows for prompt decays2 such as Ni → li þWþ
and Ni → νi þ Z=h with the branching fractions scaling
approximately as 2∶1∶1. Since we would be typically
interested in the range 100 GeV≲mN ≲ 1500 GeV, the
Yukawa couplings required to explain the neutrino masses
would lie in the range 10−7 ≲ yN ≲ 10−6. Precise choices for
the individual couplings can always reproduce the observed
masses and mixings, for both normal and inverted hierar-
chies. However, since this is not the primary goal, we desist
from such an exercise, limiting ourselves, instead, to
admitting only such couplings as would produce neutrino
masses of the right order.
Given the particles and their quantum numbers, the DM

field admits only a free Lagrangian, namely,

Lχ ¼ χ̄ði=∂ −mχÞχ; ð4Þ

and the introduction of interaction terms would require
either the breaking of the Z3 symmetry (which would
destroy the stability of the DM) or the presence of addi-
tional fields. Remaining agnostic to the nature of such
additional fields, except that these are heavy SM singlets,
one may, instead, express the consequences of their
inclusion in terms of an effective theory. Restricting
ourselves to the lowest dimensions, we have

1In principle, we could do with just two Ni fields as these
would be enough to generate two light neutrino masses.

2With mN being diagonal, flavor-changing decays are sup-
pressed. Even more suppressed are the lepton-number violating
decays.
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L6 ¼
cab
Λ2

Oab ¼
cab
Λ2

ðN̄ΓaχÞðχcΓbχÞ þ H:c:; ð5Þ

where Λ is the cutoff scale and we have dropped the index
on theN fields. The Dirac matrices Γa are to be chosen such
that Lorentz invariance is maintained. With ðχcγμχÞ and
ðχcσμνχÞ vanishing identically, the only remaining oper-
ators are3

OSS ¼ χcχNχ; OSP ¼ χcχNγ5χ

OAA ¼ χcγμγ5χNγμγ5χ; OVA ¼ χcγμχNγμγ5χ: ð6Þ

It might be argued, and rightly, that we have omitted other
possible terms such as ðN̄ΓaNÞðχ̄ΓbχÞ or even analogous
ones with the N replaced by the SM fermion fields. With
no symmetry precluding their presence, such terms
cannot be wished away in their entirety. However, the
corresponding Wilson coefficients could be small
depending on the UV completion of the model. A trivial
solution would be to postulate that the coupling of the
mediator to the Nχ current is much smaller than that to the
χχ current. One such completion is discussed at length in
Appendix A. However, independent of the details of the
actual UV completion, we assume that such terms [viz.
ðN̄ΓaNÞðχ̄ΓbχÞ, etc.] are indeed suppressed [compared
to those in Eq. (6)], for a strong violation of such a
suppression would bring us back to the normal regime of
the complete annihilation process (as opposed to semi-
annihilation) as the driving force behind the determina-
tion of the relic density. This would render operative the
direct detection bounds (which, we will see, are mani-
festly relaxed for semiannihilation). In other words, we
deliberately choose to work in a regime where semi-
annihilation dominates.
The Lagrangian of Eq. (5) would result in processes such

as χχχ ↔ N or χχ ↔ Nχc. Of these, the 3χ → N process is
naturally suppressed on account of the small incident flux,
while the decay N → 3χ can proceed only if mN > 3mχ .
Concentrating on the 2 → 2 scattering,

χðq1Þ þ χðq2Þ → Nðq3Þ þ χcðq4Þ; ð7Þ

the amplitude, then, reads,

M ¼ cab
Λ2

½ðū3Γau4ÞðuT2 Γ̂bu1Þ þ ðū3Γau2ÞðuT1 Γ̂bu4Þ
þ ðū3Γau1ÞðuT4 Γ̂bu2Þ�;

where Γ̂b ≡ CΓb − ðCΓbÞT with C being the charge
conjugation matrix. Once again, we see explicitly that

Γb ¼ γμ; σμν would lead to vanishing matrix elements.
Henceforth, we make the further simplifying assumption
that only one of the remaining cab is nonzero and, for
convenience, scale it to unity. One might worry about the
renormalization group evolution of the Wilson coeffi-
cients. However, unless the hidden sector is a strongly
interacting one, this evolution is not expected to be any
different from that in an usual ultraviolet complete
theory of DM. In particular, within the standard freeze-
out paradigm, it is only within a small range of momen-
tum scales that most of the interesting physics happens,
and the Wilson coefficients do not vary appreciably over
such a range.

III. SEMIANNIHILATION AND THE
DM RELIC ABUNDANCE

Having set up the effective theory, we must now validate
it against observations. To this end, we begin with the
cosmological constraints emanating from the PLANCK
observations of temperature and polarization anisotropy in
the cosmic microwave background, mainly, the relic
abundance of DM, ΩDMh2 ¼ 0.1199� 0.0012 [22].
As it will turn out, the mechanism of interest is the

freeze-out of the DM. In this model, it proceeds via its
semiannihilation to RHNs through χχ → χcN. The Yukawa
coupling of the RHNs allows these to decay through a
multitude of channels, viz.

Ni → liW; Ni → Zνi and Ni → hνi:

Although the first two of the decay modes proceed only
through the mixing of the Ni with the SM neutrinos, it is
easy to see that the leading modes in each subclass have
similar partial widths.
With Eqs. (2) and (5) encapsulating all of the inter-

actions of the χ and the Ni, their densities are essentially
governed by the processes in Fig. 1. The consequent
Boltzmann equations are best represented as the evolution
of the yield Y (Y ≡ n=swith n being the number density of
the species under consideration and s the ambient entropy
density) with the inverse of temperature, viz. x≡mχ=T.
These can be summarized as (see Appendix C for a
derivation)

FIG. 1. Feynman diagram of the semiannihilation dark matter
to RHN and the decays of RHN.

3OPP (OPS) is nonvanishing as well, but leads to results
identical to those for OSS OSP.
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dYχ

dx
¼ −xsðmχÞ

2HðmχÞ
X
i

hσviχχ→χNi

�
Y2
χ −

YEq
χ

YEq
N

YχYNi

�
;

dYNi

dx
¼ xsðmχÞ

2HðmχÞ
hσviχχ→χNi

�
Y2
χ −

YEq
χ

YEq
N

YχYNi

�

−
ΓNi

x

HðmχÞ
ðYNi

− YeqÞ: ð8Þ

Here, the thermally averaged cross section [38] is given by

hσðij→klÞvi
¼ ½4K2ðmi=TÞK2ðmj=TÞm2

i m
2
jT�−1

×
Z

∞

Emin
cm

dEcmλðE2
cm;mi;mjÞσij→klðEcmÞK1ðEcm=TÞ; ð9Þ

where Ecm is the center-of-mass energy, Kn is the
modified Bessel function of the second kind of order n,
and λða; b; cÞ is the usual Källen function. The expres-
sions for the cross sections and the decay widths of the
RHN can be gleaned from Appendix B.
A particular aspect needs to be appreciated at this

juncture. It is commonplace to write hσvi as a power series
in the relative velocity v. In most scenarios, the terms
involving the higher powers fall off quickly, allowing one
to understand the scattering in terms of s-wave or p-wave
dominance, etc. In the present situation though, while the
terms do continue to fall off similarly (see Fig. 2), additional
complications arise on account of the peculiarity of the
effective interaction (and, thus, the amplitude). No single
partial wave dominates over the entire range of evolution;
rather, different terms can be important during the decou-
pling ofDM,with the relative importance being a function of
both the DM and the RHN masses. For example, as Fig. 2
demonstrates, for a larger mχ=mN, the v2 term falls faster

with mχ=T whereas the v6 term falls slower. Consequently,
we use the full integral in Eq. (9). The yield of darkmatter, as
of today, is well approximated by Yχð∞Þ and can be used to
calculate the relic abundance using

Ωχh2 ¼
mχs∞Yχð∞Þh2

ρc
;

where s∞¼2889.2cm−3 and ρc¼1.05×10−5h2GeV2cm−3.
With the RHN playing a prime role in determining the

DM relic abundance, it is imperative to examine the
evolution of their density. The mass ratio mN=mX as well
as the size of the couplings both play important roles
resulting in a somewhat complicated behavior as summa-
rized in Fig. 3, Here, the yields of the DM and the RHNs
are shown as a function of x ¼ mχ

T for mχ ¼ 120; mNi
¼

100GeV and Λ ¼ 500 GeV. To highlight the individual
epochs of freezing out, we employ a ruse wherein the
yellow and blue curves represent the abundances of DM
and RHN, respectively, under the (unphysical) assumption
of these never having fallen out of equilibrium. The actual
evolution for the DM are depicted by the green curves
while those for the RHNwith yNi

¼ 10−7ð10−10Þ are shown
by the red(purple) ones.
At temperatures of the order of the electroweak scale, all

the SM particles would, of course, be in equilibrium. For
mN ∼Oð100 GeVÞ, a sizable yNð∼10−7Þwould ensure that
the aforementioned decays of the Ni, along with the reverse
processes, would keep these particles in equilibrium with
the leptons and the weak bosons, and, hence with the entire
SM sector. Furthermore, as the RHN are postulated to be
lighter than the χ, a large enough yNi

¼ 10−7 (red curve) for
all three RHNs, would imply that they would decouple at
an epoch later than χ (green curve) and, hence, would have
a much smaller relic density, as can be seen in Fig. 3(a).

(a) (b)

FIG. 2. Different terms in expansion of hσvi × Λ4 plotted as a function of x ¼ mχ=T for SS interaction with
(a) mχ ¼ 300; mN ¼ 100 GeV, (b) mχ ¼ 1000; mN ¼ 100 GeV.
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The situation changes dramatically if the yNi
is/are much

smaller, as is illustrated by Fig. 3(b) with yNi
¼ ð10−7;

10−7; 10−10Þ and Fig. 3(c) with yNi
¼ ð10−7; 10−10; 10−10Þ.

While the densities of theNi with a larger Yukawa coupling
(red curve) continue to behave as in Fig. 3(a), those with
small Yukawa coupling(s) (purple) behave differently as
their interactions with the SM sector are now much weaker
than the Hubble expansion rate. Hence, while the Ni with
larger Yukawas are still in equilibrium with the SM (and,
through χχ → χN, so is the DM), these other RHNs
decouple slightly before the DM does. Consequently,
postdecoupling, their number densities continue to be
much larger than that of the DM. This has an interesting
consequence. Owing to the larger density of such Ni, the
process χNi → χχ would occur more frequently than the
reverse, and the DM density would be slightly replenished
before becoming constant at a slightly lower temperature. A
careful comparison of Figs. 3(b) and 3(c) shows that this
effect is more pronounced in the latter, which is but a
consequence of the fact that the latter case corresponds to
two Ni with a small Yukawa coupling as opposed to just
one for the former.
For the sake of illustration, in Fig. 3(d) we depict the case

where yNi
¼ ð10−10; 10−10; 10−10Þ, a situation that cannot

explain all the neutrino masses. Owing to all the Yukawas
being tiny, the RHN (purple) and, hence, the DM (green)

both decouple from the equilibrium distribution very early.
However, the tiny Yukawas also mean that the RHN decay
late. Consequently, the χNi → χχ keeps on replenishing the
DM relic abundance for a longer period.
With the sizes of the Yukawa couplings having

such marked imprints on the thermal history, it is natural
to expect that the relic densities too would be quite
different. That such differences do not show up readily
on the scale of Fig. 3 should not be construed as evidence
that the effect of the Yukawa couplings is subdominant with
the relic densities being driven primarily by mχ and Λ.
Indeed, a careful calculation shows that the late-stage relic

(a) (b)

(c) (d)

FIG. 3. Yield of χ and right-handed neutrino for mχ ¼ 120;Λ ¼ 500; mN ¼ 100 as a function of x ¼ mχ

T . The yellow and blue
curves show the extrapolated equilibrium abundances of the DM and the RHN, respectively. The green and red (purple) curves
show the actual evolution of abundance of DM and RHN for different cases of Yukawa coupling: (a) yNi

¼ ð10−7; 10−7; 10−7Þ,
(b) yNi

¼ ð10−7; 10−7; 10−10Þ, (c) yNi
¼ ð10−7; 10−10; 10−10Þ, and (d) yNi

¼ ð10−10; 10−10; 10−10Þ. The red and purple curves in (b) and
(c) correspond to RHN with largest and smallest Yukawa couplings.

TABLE I. The yield of DM and RHN (N with smallest Yukawa
coupling) for different values of x and different cases of Yukawa
coupling considered in Fig. 3 are given.

Scenario

x (a) (b) (c) (d)

102
Yχ 5.2 × 10−12 1.1 × 10−11 1.3 × 10−11 1.2 × 10−10

YN 8.9 × 10−17 1.1 × 10−8 1.5 × 10−8 7.6 × 10−5

103
Yχ 4.5 × 10−12 8.2 × 10−12 9.7 × 10−12 2.7 × 10−11

YN 1.9 × 10−20 9.1 × 10−9 1.2 × 10−8 6.2 × 10−5

104
Yχ 4.5 × 10−12 8.2 × 10−12 9.7 × 10−12 2.7 × 10−11

YN 6.2 × 10−24 2.1 × 10−17 2.9 × 10−17 2.3 × 10−16
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abundances—in the four cases analyzed—vary as much as
by a factor of 6, as listed in Table I. The abundances of the
RHNs, of course, differ by orders of magnitude.
We must emphasize here that, starting with a 100 GeV

RHN, obtaining light neutrino masses of the right order
needs YN ≳ 10−7. This, seemingly, calls into question
our use of a benchmark of YN ∼ 10−10. With such small
couplings leading to a late decay (and, thus, a late freeze-
out) of the RHN, this benchmark value is primarily
motivated by the interesting interplay of DM and RHN
relics that this generates, while respecting constraints
coming from BBN as discussed below. As for the light
neutrino masses, two of the Yukawas being sufficiently
large—as in benchmark point (b)—can be enough to
address the neutrino oscillation data. Were more than
one of the YN to be very tiny, type-I seesaw no longer
works and one must, however, fall back on other mech-
anisms (such as loop-induced masses etc.) to achieve full
phenomenological consistency.
We now turn to other consequences of the presence of the

Ni. First and foremost, while their lifetimes are not ultra-
small, they still decay fast enough for overclosure to be an
issue. On the other hand, their not so inconsiderable
lifetimes could, presumably, alter physics at the era of
big bang nucleosynthesis (BBN) or even the CMBR epoch.
The latter alongwith the relative abundance of the light
elements (BBN) encode information about the thermal
history of the early universe, and is well described by SM
physics. The decay of particles post such epochs have the
potential of destroying the agreement between theoretical
predictions and the observations. Fortunately though, in the
present context, the longest lifetime of RHN is at most
0.001 s (corresponding to yN ∼ 10−10 and mN ¼ 100 GeV)
whereas BBN occurred in the cosmic time window
0.1–0.1–104 s and CMB is even later. Thus, the abundance
of RHN would have depreciated to a very large extent. To
be quantitative, studies carried out in Ref. [39] show that
the BBN constraints dictate that the fractional abundance of
particles of mass Oð100 GeVÞ and decaying into hadroni-
cally at t≳ 1 s after the inflationary phase should be less
than 10−12. Thus, given the smallness of the Ni lifetimes,
BBN constraints are trivially satisfied. Similar is the case
with the CMBR observations [40,41].
On the other hand, late decays of the N would presum-

ably leave their mark in the sky. The energetic neutrinos can
be coming from RHN decay can be detected by experi-
ments like SuperK, IceCube, etc. [17]. However, such
bounds are found to be much weaker compared to the ones
coming from photon spectrum as discussed in Sec. IV.

A. Scale and DM mass dependencies

Having studied the various dependencies, we now
proceed to determining the parameter space corresponding
to the observed relic density. The various panels of
Fig. 4 depict the contours, in the mχ − Λ plane satisfying

Ωh2 ¼ 0.1199� 0.0012 as applicable for different Lorentz
structures of the effective four-fermion interaction. Each
panel corresponds to a different set of values for the
Yukawa couplings yN with a common heavy neutrino
mass mN . Understandably, the area above the curves
(larger Λ) corresponds to smaller interaction strengths
and, hence, an overabundance of DM. On the other hand,
the area below the curve leads to an underabundance and,
hence, is still allowed (though only at the cost of postulat-
ing an additional component of the dark matter). Note that
these results are obtained for mχ > mN. For mχ < mN,
three body decays such as N → νþ Z�=h� → νf̄f or N →
lþW� → lf̄f0 would be important. However, we do not
explore this in the present work.
The curves in Fig. 4 imply that obtaining the correct

amount of energy density requires the mass of dark matter
particles to increase with Λ. This could be easily under-
stood by looking at the functional dependencies of the
cross sections. With the DM particle being non-relativistic
at the epoch of decoupling, the center of mass energy
(Ecm) for the process χχ → χN is close to 2mχ and the
thermal average of the cross section scales roughly as
m2

χFðmN=mχÞ=Λ4, where FðmN=mχÞ < 1 is specific to the
form of the interaction Lagrangian. This immediately
indicates that Λ should scale roughly as m2

χ with devia-
tions depending on the form of FðmN=mχÞ. Furthermore,
that the SSð≡PPÞ and SP structures require a cutoff scale
Λ to be nearly half of what is required for VA or AA can be
easily traced to the fact that the two disparate sets of cross
sections differ by a factor of nearly 16.
As for the mN dependence, note that for the VA and SP

structures, FðmN=mχÞ is a monotonically decreasing func-
tion of the argument. The consequent decrease in the total
cross section with an increase in mχ would need to be
compensated by an associated decrease in Λ so as to lead to
an unchanged relic abundance, and this is reflected in a
comparison of panels ðaÞ; ðcÞ and (d) of Fig. 4. On the
other hand, for the SS and AA cases, the cross sections do
not change appreciably with mN .
Finally, Fig. 4(b) corresponds to the case where one of

the RHN has small decay width (yNi
¼ 10−7; 10−7; 10−10),

which leads to a nominally larger relic abundance [as
shown in Fig. 3(b)] as compared to the case where all the
RHNs have same Yukawa coupling, yNi

¼ 10−7.
Before we end this section, it is contingent upon us to

examine the validity of the effective field theory paradigm
vis à vis the parameter space required to satisfy the correct
relic density. Clearly, the cutoff scale Λ for such a
description must be larger than the masses of any particle
present in the theory. In the present case, this is definitely
satisfied by the entire parameter space for the VA and the
AA cases. For the (pseudo) scalar current-current struc-
tures, though, this is not so for larger mχ values (although,
for smallermχ, this does hold). In other words, the effective
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theory approach may not be entirely valid and the use of the
full theory seems to be called for. It is, however, easy to
ascertain that the consequent changes in this part of the
analysis would not be severe, and that the results obtained
herein are precise enough for an exploratory study that
this is.

IV. CONSTRAINTS FROM INDIRECT
DETECTION OF DM

The semiannihilations of the DM would also lead to
electrons, positrons, quarks, neutrinos, gamma rays, etc.,
with different energy spectra. Of these, gamma-ray obser-
vations have been used prominently to probe the presence
of DM decay, annihilations, and semiannihilations. The
reasons for the choice are twofold: γ-ray emissions from
various astrophysical objects are well understood, and
unlike charged particles, photons travel through interstellar
and intergalactic matter suffering relatively little obstruc-
tion. Thus, by comparing the expected gamma-ray flux to

the measured one, one can derive upper limits on DM
interactions in the absence of any excess.
The processes relevant to the present study is the

semiannihilation of DM to RHN which, subsequently,
decay via W�l; Zν, and hν with the bosons cascading
down to quarks (hadronizing almost instantly) and leptons.
The resultant charged particles from the decay yield gamma
rays, either during hadronization or as a result of final state
radiation processes. To this end, we use observations from
the following three experiment setups to constrain the
effective operators analyzed in this work:

(i) Fermi-LAT: The satellite covers a wide energy
range, starting from 0.5 GeV and going up to
0.5 TeV. To derive the exclusion limits, 6 yr of data
from 15 dwarf spheroidals (see Table 1 of [36]),
based on the pass 8 event analysis [36] is used.

(ii) The high energy stereoscopic system (H.E.S.S.) is
sensitive to high energy γ-rays spanning energies
ranging from 0.2 to 30 TeV. The initial phase
(H.E.S.S. I) had already published competitive limits

(a) (b)

(c) (d)

FIG. 4. Contour on mχ − Λ plane satisfying Ωh2 ¼ 0.1200� 0.0012 for different interactions for different values of mN and yN .
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on DM annihilations cross sections [42]. With the
addition of a large dish at the center of the array, the
second phase (H.E.S.S. II) is expected to lead to
much stronger constraints [37]. To exploit this
expected sensitivity, we first tune our analysis to
reproduce the H.E.S.S I data [42], and follow it by
rescaling it with the projected sensitivity in the bb̄
channel as calculated in Ref. [37].

(iii) With more than a 100 individual telescopes, the
Cherenkov telescope array (CTA) would be well-
placed to detect high-energy gamma-rays over a very
wide energy range (∼60 GeV to ∼300 TeV) and is
projected to be more than ten times as sensitive as
the currently operating ones. This unprecedented
sensitivity is expected to yield very strong con-
straints (if not an actual discovery) especially when
looking at gamma rays from Galactic center.

Note that the Fermi-LAT experiment is more sensitive to
gamma rays at low energies, whereas H.E.S.S. and CTA are
sensitive at larger energies.

A. The γ-ray spectrum

A gamma-ray signal from DM annihilation or semi
annihilation is inferred from the number of photons at a
given energy bin from a portion of the sky. The quantity
that captures this information is the differential flux, which
is proportional to (i) the square of the number density of the
dark matter particle; (ii) the thermal-averaged product of
the annihilation cross section and the velocity (hσvi);
(iii) the number of photons produced per dark matter
process as a function of energy, i.e., the energy spectrum
(dN/dE); and (iv) the size and density of the region of the
sky under study, as captured in the J factor. On inclusion of
the appropriate normalization factor, the differential flux
for dark matter semiannihilation is

dϕγ

dE
¼ 1

8πm2
χ
hσvi dNγ

dE
J; ð10Þ

where

J ¼
Z
l:o:s

ds
r⊙

�
ρðrðs; θÞÞ

ρ⊙

�
2

; ð11Þ

and includes an integration over the line of sight between
the observatory and the source. This factor obviously
depends on the dark matter distribution which we have
assumed to follow the NFW profile [43].
We compute the energy spectrum dN=dE due to

the semiannihilation processes,4 etc., including the

hadronization effects, using a suitably augmented version
of PYTHIA8.3 [44]. The resultant normalized energy spec-
trum for different values of mχ at a fixed RHN mass (with
the RHN decaying to a final state containing an e�) in
Fig. 5. Since the DM is non-relativistic, the energy of the
RHN can be estimated to be

EN ¼ sþm2
N −m2

χ

2
ffiffiffi
s

p ∼
m2

N þ 3m2
χ

4mχ
:

As expected, and as illustrated by Fig. 5, a heavier DM
leads to a more energetic RHN. With the extra energy being
transmitted to the N’s decay products, this would lead to a
harder gamma-ray spectrum. Given the expression for EN,
it is obvious that it changes substantially with mN only
when the latter is comparable to mχ . This property is
naturally transmitted to the N’s daughters, including to the
gamma-ray spectrum (Fig. 6). For a given mχ , the heaviest
of the N’s would lead to the hardest γ spectrum. On the
other hand, by virtue of being most boosted, the lighter
ones lead to a larger number of energetic photons (Fig. 6).
Finally, for a given ðmχ ; mNÞ combination, with each being
heavier than a 100 GeV, the leptons from the N’s decay
would have a virtually flavor-independent energy spectrum.
Nonetheless, the τ channel would result in more energetic
photons owing simply to its decay and subsequent hadro-
nization. Understandably, the spectrum for the muonic
decay channel would lie in between the two.

B. Results

Armed with the discussions of the preceding subsection,
we are now in a position to compare the expectations of our
model with the observational data from Fermi-LAT and
H.E.S.S. on the one hand, and compare with the expected
sensitivity of the CTA on the other. To this end, we use the
GamLike package [45] to compute the likelihood function

FIG. 5. Photon energy spectrum for different values of mχ at a
fixed value of mN ¼ 100 GeV.

4For the sake of simplicity, we do not include inverse Compton
scattering. Inclusion of this would only increase the number of
photons at larger energies and would improve limits obtained
here. Our analysis here is thus a conservative one.
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Lðμ̂; θ̂jDÞ where D represents the observational data, θ̂ the
(unknown) parameters describing the background and μ̂ a
set of parameters encapsulating the features of the dark
matter model. The limits on the semiannihilation cross
section are then derived through the statistical test (TS),

TS ¼ −2 ln
�
Lðμ̂0; θ̂jDÞ
Lðμ̂; θ̂jDÞ

�
; ð12Þ

with TS > 2.71 corresponding to 95% C.L. exclusion.
Here, μ̂0 corresponds to the null hypothesis, i.e., the
absence of dark matter.
The consequent constraints, in the mχ–hσvi plane, from

the Fermi-LAT and H.E.S.S. as also the projected CTA
sensitivity are depicted in Fig. 7. The area above the curves

are (would be) ruled out at 95% C.L. Understandably, the
limits for the tau channel are slightly more stringent as it
leads to a slightly larger gamma-ray production. As pointed
out earlier, the FermiLAT experiment is more sensitive
at lower energies, whereas H.E.S.S. is sensitive in the
0.2–30 TeV range. Similarly, the energy threshold of the
CTA is lower than that of H.E.S.S., making the CTA much
more sensitive to photons of intermediate energies. Thus,
CTA would furnish the strongest bounds for dark matter
masses above 600 GeValmost independent ofmN , whereas
the FermiLAT gives better limits for mχ ≲ 500 GeV. For
mχ greater than a few TeV, H.E.S.S. already provides
bounds equally significant as those the CTAwould lead to.
The shape of the constraint curves are determined by a

convolution of the γ-ray spectrum with the energy

(a) (b)

FIG. 6. Photon energy spectrum for mχ ¼ 3 TeV for different values of RHN mass and different final state leptons (a) electron and
(b) tau lepton.

(a) (b)

FIG. 7. Upper limits on hσvi as a function ofmχ for (a) electron-RHN final state and (b) tau-RHN final state. We obtained these limits
from different experiments Fermi-LAT, H.E.S.S., and CTA for different values of RHN mass, mN ¼ 100GeV (solid), mN ¼ 750GeV
(dashed), and mN ¼ 1500 GeV (dotted).
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sensitivity. To understand the final outcome, several aspects
have to be borne in mind:

(i) As we have discussed earlier, the three detectors
have peak sensitivity at different Eγ ranges. Fermi-
LAT is the most sensitive at lower energies (0.5 GeV
to 0.5 TeV) while for H.E.S.S., this lies in the few
TeVs range. As for the CTA, although it covers a
very wide range (∼60 GeV to ∼300 TeV), for low-
energy (in tens of GeVs) γ rays it obviously loses out
to Fermi-LAT. For somewhat higher energies, it
competes very well with the H.E.S.S., and goes
much beyond.

(ii) Thus, we would expect the Fermi-LAT to be the
most sensitive detector for relatively low DM
masses, as is borne out by Fig. 7.

(iii) Naively, one would expect that a larger value for mN
would, typically, translate to more energetic decay
products and, hence, a harder γ-ray spectrum. Con-
sequently, the constraints from nonobservation
would be stronger. This is reflected by the fact of
the constraints being stronger for mN ¼ 1.5 TeV
than they are for mN ¼ 0.75 TeV.

(iv) On the other hand, formN ≪ mχ, a competing effect
takes over. The RHN is, now, highly boosted and its
kinetic energy is transferred to its daughters, thereby
allowing them to radiate off more photons. Some of
these would have energies between 20 GeV and
0.5 TeV and visible to the detectors under discus-
sion. With Fermi-LAT’s sensitivity to low energy γ
rays being the highest, the improvement is most
pronounced for this case.

(v) Clearly, the aforementioned features pull in oppos-
ing directions, and the ensuing constraints would be
determined by an interplay of mχ and mN on the one
hand, and the detector sensibility on the other. This
is exemplified in the figure by the remarkably
different dependence of the limits on mN for the
three detectors under discussion.

Compared to DM annihilation [10,46] these indirect
bounds are less constrained for the semiannihilation proc-
esses [23], as expected owing to less photons in the final
state. The Fermi-LAT imposes interesting bounds for light
DM with mass less than 200 GeV. For instance, for
mχ ∼ 100 GeV, a thermal annihilation cross section hσvi ∼
5 × 10−26 cm3 s−1 is ruled out. However, the bounds are
weaker for heavier mχ, and most of the parameter space
satisfying relic abundance is allowed by the Fermi-LATand
H.E.S.S data. Although the forecasts from C.T.A are not
particularly strong, we think that in the future, improved
background estimations and increased angular resolution
from C.T.A and H.E.S.S II will result in strong bounds for
heavy DM.
We also analyzed the sensitivity of semiannihilating DM

through their neutrino spectrum in detectors like Super-
Kamiokande [47]. We found that the limits are at leastOð1Þ

magnitude weaker than the DM annihilating to two
neutrinos [48] and 2–3 orders of magnitude weaker than
the complimentary photon channel discussed above. This is
due to the fact that the neutrino spectrum is weaker in
comparison to the photon spectrum and, additionally,
neutrinos interact weakly with the detectors. Thus, dedi-
cated analyses that include direction and energy informa-
tion might provide the stronger limits. Similarly, neutrino
experiments/detectors like DUNE [49] and Hyper-
Kamiokande [50] can provide stronger limits for low-χ
whereas IceCube [51] and ANTARES [52] can be utilized
for heavy χ. Even so, these are expected to be weaker than
the complementary photon channel.
Before we end this section we would like to comment on

the fact that semiannihilation processes in an effective
theory do not have the mediator to couple to the nucleons,
thus do not put on any direct detection constraints.
However, for an UV complete theory as discussed in
Appendix A, this can lead to the restriction on nucleon-
DM couplings.

V. CONCLUSION

The continued absence of any signal for particulate Dark
Matter, other than the astrophysical or cosmological infer-
ences calls for a reevaluation of the paradigm. One
particular aspect is the mechanism that renders it stable
against decay. While in most theories, this is ensured by the
imposition of a Z2 symmetry, it certainly is not the only
avenue. Alternatives such as Znðn > 2Þ, or even more
complicated ones, are not only feasible, but also dramati-
cally alter the expectations in both laboratory (direct
detection) as well as satellite-bound (indirect detection)
experiments.
In this study we consider the simplest alternative,

namely, a Z3 symmetry under which the DM χ transforms
nontrivially while all the Standard Model fields transform
trivially. While similar efforts have been made earlier for
scalar DM, we eschew that path for every new fundamental
scalars brings along its own hierarchy problem. Instead, we
choose to work with a fermionic DM.
We further augment the theory by the inclusion of right-

handed (SM—as well as Z3 neutral) neutrino fields Ni.
These serve twin purposes. Allowed Majorana masses as
well as nonvanishing Yukawa couplings connecting with
the SM neutrinos, they allow the generation of correct
masses for the light neutrinos (via the seesaw mechanism).
Furthermore, they offer an efficient avenue for the dis-
appearance of the DM so as to obtain the correct relic
density.
Rather than adopt a particular UV-complete theory

(although we do offer one in an Appendix), we have
chosen to work in the effective theory framework (with a
cutoff scale Λ) through the inclusion of dimension-six
operators involving χ and the Ni. While complete annihi-
lations (χ̄ þ χ → Ni þ Nj) are possible, for a very wide
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range of parameters (as exemplified in the Appendix),
it is the semiannihilation process (χ þ χ → χc þ Ni) that
dominates.
The Boltzmann equations governing the evolution of the

DM density changes from the usual paradigm not only
because it is the semiannihilation that dominates, but also
because it is coupled with the evolution of the Ni densities,
which decay to the SM particles through their Yukawa
couplings. If the size of these couplings are to be com-
mensurate with the observed neutrino masses, they do help
in keeping the Ni in equilibrium with the SM plasma until
relatively late. The exact sizes of these couplings under-
standably have a very big effect on the Ni decoupling era
and, hence, their densities at that epoch. However, the effect
on the χ relic density is not as pronounced. Given this, we
have obtained the region in the EFT parameter space that
correctly reproduces the relic density for various choices of
the operators in the effective Lagrangian. On the adoption
of a specific UV-complete theory (as in Appendix A), this
can be easily translated to a corresponding statement for the
said theory.
While direct detection experiments would obviously be

insensitive to such a scenario, the indirect detection theatre
is a very interesting one. The decays of the Ni (themselves
the products of the semiannihilation process) yield charged
particles (gauge bosons/quarks and charged leptons).
These, as well as their cascade decay products, radiate
energetic photons which could be detected by the satellite
experiments like FermiLAT or earth based telescope like
the H.E.S.S. and CTA. We explored such detection pos-
sibilities in detail, simulating the photon energy spectrum
and convoluting with the detector responses. While non-
observation of such signals the Fermi-LAT already imposes
interesting bounds, especially for a light DM, future data
from H.E.S.S.-II and the CTA are expected to lead to strong
bounds in the heavy-χ region. As an example, for
mχ ∼ 100 GeV, a thermal annihilation cross section hσvi ∼
5 × 10−26 cm3 s−1 would be ruled out. For heavier mχ, the
bounds are weaker, and most of the parameter space
satisfying relic abundance is allowed by the Fermi-LAT,
H.E.S.S., and C.T.A data. And although, the neutrino
spectrum of RHNs, can, in principle, be detected in several
neutrino detectors, the corresponding constraints are much
weaker compared to those obtained from the gamma-ray
telescopes.
With the effective theory presented here easily escaping

constraints from current and near-future experiments, it is
obvious that such a scenario can indeed alleviate the
tension between the PLANCK measurements of the DM
relic density on the one hand and the null results from direct
and indirect detections of DM on the other. It also needs to
be appreciated that the quest for an UV complete theory
(such as that discussed in Appendix A) could engender
DM-nucleon interactions as well as self-interactions of the
DM. While the former would open new windows to both

direct and indirect detection, the latter could be expected to
leave a discernible mark on the small-scale structure in
galaxies and clusters. The paradigm, thus, holds much
promise.
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APPENDIX A: AN ULTRAVIOLET COMPLETION

While the Lagrangian of Eq. (5) is quite acceptable as an
effective theory, a renormalizable theory is always desir-
able. Furthermore, the absence of certain terms (such as
χ̄ΓiχN̄ΓjN, with Γi;j being commensurate Dirac matrices)
in Eq. (5) is a cause of concern for their presence would
tend to reduce the efficacy of semiannihilation. In this
Appendix, we present a possible ultraviolet completion that
addresses both these issues.
To this end, let us introduce to the model in Sec. II, a

SUð2ÞL singlet neutral scalar ϕ which transforms, under
Z3, just as χ does. This would allow for Yukawa terms of
the form

Lint ⊃ χcðy2 þ y02γ5Þχϕþ ϕχðy3 þ y03γ5ÞN þ H:c: ðA1Þ

In the event of a heavy ϕ, the field can be integrated
out to yield effective four-fermion vertices of the form
ðCab=m2

ϕÞðN̄ΓaχÞðχcΓbχÞ with the coefficients cab being
related through Fierz rotations.
Of course, analogous terms such as χΓiχN̄ΓjN would be

generated as well. However, for jy3; y03j ≪ jy2; y02j—a
technically natural choice—such operators are relatively
suppressed with the consequence that semiannihilation
wins over annihilation.
It is instructive to consider the potential for the scalars in

the theory, namely, ϕ and the usual SM doublet Φ. The
most general form is given by

VðΦ;ϕÞ ¼ μ21jΦj2 þ μ22jϕj2 þ
μ3
3
ðϕ3 þ ϕ†3Þ

þ λ1
2
jΦj4 þ λ2

2
jϕj4 þ λϕjϕj2jΦj2 þ H:c: ðA2Þ

A nonzero value for hϕi would result in ϕ −Φ mixing, and
thereby to direct χχ annihilation to the SM particles through
the Higgs portal. However, the spontaneous breaking of Z3

that this entails would also allow the DM to decay. While
the lifetime could be suitably extended by choosing
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parameters appropriately, the solutions tend to be some-
what unnatural and we eschew that path.

APPENDIX B: GETTING TO THE CROSS
SECTIONS

We list below the squares of the matrix elements for the
process in Eq. (7) using the Lagrangian of Eq. (5) with the
assumption that only one of the cab is nonzero and set to
unity. Defining the Lorentz-invariant quantities

A4 ≡ q1 · q3q2 · q4 þ q1 · q2q3 · q4 þ q1 · q4q2 · q3;

A2 ≡ q1 · q3 þ q2 · q3 þ q3 · q4;

Ã2 ≡ q1 · q2 þ q1 · q4 þ q2 · q4; ðB1Þ

we have

jMj2SS ¼ jMj2PP ¼
8

Λ4
ðA4−m2A2þmmNÃ2−3m3mNÞ;

jMj2SP ¼ jMj2PS ¼
8

Λ4
ð−A4þm2A2þmmNÃ2−3m3mNÞ;

jMj2VV ¼
128

Λ4

�
A4þ

m2

2
A2−

mmN

2
Ã2−3m3mN

�
;

jMj2VA ¼
128

Λ4
ðA2−m2A2−mmNÃ2þ3m3mNÞ;

jMj2AA¼
128

Λ4
ðA4−m2A2þmmNÃ2−3m3mNÞ: ðB2Þ

Note that spin summing (and averaging) is yet to be done.
The corresponding expressions for the reverse process
(χ̄c → χχ) or analogous ones (such as χN → χcχc, etc.)
can be obtained from those above using crossing symmetry.
Similarly, the decay widths for the RHN are given by

ΓðNi → Wþl−Þ ¼ ΓðNi → W−lþÞ

¼ y2NMNi

32π

�
1 −

M2
W

M2
Ni

�
2
�
1þ 2M2

W

M2
Ni

�
;

ΓðNi → ZνÞ ¼ ΓðNi → Zν̄Þ

¼ y2Ni
MNi

64π

�
1 −

M2
Z

M2
Ni

�
2
�
1þ 2M2

Z

M2
Ni

�
;

ΓðNi → hνÞ ¼ ΓðNi → hν̄Þ

¼ y2Ni
MNi

64π

�
1 −

M2
h

M2
Ni

�
2

; ðB3Þ

where the masses of the charged leptons have been
neglected.

APPENDIX C: BOLTZMANN EQUATION

We, now, derive the Boltzmann equation relevant for the
Dark Matter density evolution in the present context. With

2 → 2 scattering being the dominant process, the calcu-
lation proceeds quite similarly to the standard case, except
for the fact that only one DM particle is produced (or
destroyed) per collision process. On the other hand, there
would be two identical particles in either the initial or the
final state, thereby necessitates the inclusion of a factor of
ð1=2!Þ in the phase space calculation. This gives, for the
1þ 2 → 3þ 4 process, the time-variation of the number
density nχ to be

dnχ
dt

þ 3Hnχ

¼ −1
2!

Z
½dP�ðjM12→34j2f1f2 − jM34→12j2f3f4Þ; ðC1Þ

where, for the sake of simplicity, we have suppressed the
Pauli blocking5 factors. Here, fi’s represent the appropriate
statistical distribution factors, H is the instantaneous
Hubble expansion rate, and

½dP�≡
�Y4

i¼1

d3pi

ð2πÞ32Ei

�
ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ

ðC2Þ

with appropriate spin-sum and averaging being understood.
If we assume time-reversal invariance, we have jM12→34j2¼
jM34→12j2 and, thus, the right-hand side of Eq. (C1) can be
written as

r:h:s: ¼ −1
2

Z
½dP�jM12→34j2ðf1f2 − f3f4Þ: ðC3Þ

Rather than continue with the number density nχ, it is
customary to consider the yield which is defined as it ratio
with the ambient entropy density s, viz. Yχ ≡ nχ=s. This
immediately leads to

dnχ
dt

þ 3Hnχ ¼ s
dYχ

dt
:

Noting that, during the cosmological evolution, there exists
a monotonic relation between the time elapsed and the
temperature of the universe, it is useful to consider a change
of variables

x ¼ mχ

T
;

such that we have

5For nonrelativistic and heavy particles, the blocking is,
anyway, numerically unimportant.
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dYχ

dx
¼ −x

2HðmχÞs
Z

½dP�; ðC4Þ

where

HðmχÞ ¼
π

ffiffiffiffiffi
g�

p
m2

χffiffiffiffiffi
90

p
Mpl

and s ¼ 2π2g�T3

45
¼ 2π2g�m3

χ

45x3
;

with g� denoting the number of degrees of freedom relevant
at that temperature.

It is an excellent approximation to consider these
particles (N and χ) to be in kinetic equilibrium during
the freeze-out. This allows us to write

fðE; tÞ ¼ nðxÞ
neq:ðxÞ f

eq:ðE; tÞ;

where

feq: ¼ 1

eE=T þ 1
and neq: ¼ g

2π2

Z
∞

m

ðE2 −m2Þ1=2
eE=T þ 1

EdE;

both χ and Ni being fermionic. Now, decoupling occurs, typically, at x≡mχ=T ≳ 20 and, hence, in feqðχÞ, we may safely
approximate ðeE=T þ 1Þ−1 ≈ e−E=T . And, since we would not be contemplating a large hierarchy between mχ and mN , an
analogous approximation would hold as well for feqðNiÞ. Furthermore, using conservation of energy, we have

feq:1 ðxÞfeq:2 ðxÞ ≈ e−ðE1þE2Þ=T ¼ e−ðE3þE4Þ=T ≈ feq:3 ðxÞfeq:4 ðxÞ: ðC5Þ

This leads to

dYχ

dx
¼ −x

2HðmÞs
Z

½dP�jM12→34j2
�

n1ðxÞn2ðxÞ
neq:1 ðxÞneq:2 ðxÞ f

eq:
1 ðE; tÞfeq:2 ðE; tÞ − n3ðxÞn4ðxÞ

neq:3 ðxÞneq:4 ðxÞ f
eq:
3 ðE; tÞfeq:4 ðE; tÞ

�

¼ −x
2HðmÞs

Z
½dP� jM12→34j2

neq:1 ðxÞneq:2 ðxÞ f
eq:
1 ðE; tÞfeq:2 ðE; tÞ

�
n1ðxÞn2ðxÞ − n3ðxÞn4ðxÞ

neq:1 ðxÞneq:2 ðxÞ
neq:3 ðxÞneq:4 ðxÞ

�

¼ −xs
2HðmÞ

Z
½dP� jM12→34j2

neq:1 ðxÞneq:2 ðxÞ f
eq:
1 ðE; tÞfeq:2 ðE; tÞ

�
Y1ðxÞY2ðxÞ − Y3ðxÞY4ðxÞ

Yeq:
1 ðxÞYeq:

2 ðxÞ
Yeq:
3 ðxÞYeq:

4 ðxÞ
�
:

Thus, defining a thermal average as

hσvi≡
Z �Y4

i¼1

dΠi

� ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ
neq:1 ðxÞneq:2 ðxÞ jM12→34j2feq:1 ðE; tÞfeq:2 ðE; tÞ;

we obtain the set of equations describing the evolution of number density of DM as well as RHN in the early
universe:

dYχ

dx
¼ −xsðmχÞ

2HðmχÞ
hσviχχ→χN

�
Y2
χ −

YEq
χ

YEq
N

YχYN

�
dYN

dx
¼ xsðmχÞ

2HðmχÞ
hσviχχ→χN

�
Y2
χ −

YEq
χ

YEq
N

YχYN

�
−

ΓNx
HðmχÞ

ðYN − YeqÞ: ðC6Þ

Note that the second term in dYN=dx carries the information of the RHN decaying into the SM particles.
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