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We propose a scenario where dark matter (DM) can be generated nonthermally due to the presence of a
light Dirac neutrino portal between the standard model (SM) and dark sector particles. The SM is
minimally extended by three right-handed neutrinos (νR), a Dirac fermion DM candidate (ψ) and a complex
scalar (ϕ), transforming nontrivially under an unbroken Z4 symmetry while being singlets under the SM
gauge group. While DM and νR couplings are considered to be tiny in order to be in the nonthermal or
freeze-in regime, ϕ can be produced either thermally or nonthermally depending upon the strength of its
Higgs portal coupling. We consider both these possibilities and find out the resulting DM abundance via
freeze-in mechanism to constrain the model parameters in the light of Planck 2018 data. Since the
interactions producing DM also produce relativistic νR, we check the enhanced contribution to the effective
relativistic degrees of freedom ΔNeff in view of existing bounds as well as future sensitivities. We also
check the stringent constraints on free-streaming length of such freeze-in DM from structure formation
requirements. Such constraints can rule out DM mass all the way up to Oð100 keVÞ keeping the ΔNeff ≤
Oð10−3Þ out of reach from near future experiments. Possible extensions of this minimal model can lead to
observable ΔNeff which can be probed at next generation experiments.
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I. INTRODUCTION

As suggested by irrefutable evidences from astrophysics
and cosmology based experiments gathered over several
decades, we live in a universe whose matter content is
dominated by a nonbaryonic, nonluminous form of matter,
known as dark matter (DM) [1,2]. While it is approximately
five times more dominant than ordinary baryonic matter, its
total contribution to the present universe’s energy density is
around 26%. Present abundance of DM is often quoted in
terms of density parameter ΩDM and reduced Hubble
parameter h ¼ Hubble parameter=ð100 km s−1Mpc−1Þ as
[2] ΩDMh2 ¼ 0.120� 0.001 at 68% C.L. In spite of so
many observational evidences, the particle nature of DM is

not yet known. However, it is known for sure that none of
the standard model (SM) particles can satisfy the criteria for
being a particle DM candidate, leading to several beyond
standard model (BSM) proposals in the literature. Among
these proposals, the weakly interacting massive particle
(WIMP) paradigm is one of the most well-studied ones. In a
WIMP paradigm, a particle DM candidate having mass and
interaction strength (with SM particles) typically around
the electroweak ballpark can give rise to the observed DM
abundance after thermal freeze-out, a remarkable coinci-
dence often referred to as the WIMP miracle [3]. The same
interactions responsible for thermal freeze-out of a WIMP
can also lead to its promising direct detection prospects like
observable DM-nucleon scattering. However, the direct
detection experiments have not seen any such scattering yet
leading to tighter bounds on DM-nucleon couplings.
Similar null results have also been reported at indirect
detection as well as collider experiments. A recent review
on the status of WIMP type DMmodels can be found in [4].
The null results in WIMP detection have also motivated the
particle physics community to look for other viable alter-
natives like freeze-in or feebly interacting massive particle
(FIMP) dark matter [5–18] where DM, due to its feeble
interactions with SM bath, never enters equilibrium in the
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early universe. A recent review of such models can be
found in [19]. While a FIMP offers a viable alternative to a
WIMP, such models are often difficult to probe due to tiny
DM interactions except some special cases [20–22].
In this work, we propose a FIMP scenario by connecting

it to neutrino physics. While the origin of neutrino mass and
nature of neutrinos (Dirac versus Majorana) are not yet
known, we consider the presence of right-handed neutrinos
which couple to the left-handed ones via tiny SM Higgs
couplings resulting in light Dirac neutrinos. The right chiral
part of a Dirac neutrino, being singlet under the SM gauge
symmetry, can act like a portal between the dark and visible
sectors. To be more precise, we consider a minimal
framework where the SM is extended by three right-handed
neutrinos, one singlet fermion DM candidate, and one
additional singlet scalar to facilitate the coupling of DM
with right-handed neutrinos. Additional discrete symmetry
Z4 is imposed in order to forbid unwanted couplings while
keeping DM stable. While a thermal as well as a non-
thermal singlet scalar can decay to produce DM as well as
right-handed neutrinos, the latter can lead to additional
relativistic degrees of freedom or dark radiation which can
be probed at cosmic microwave background (CMB) experi-
ments. Existing data from CMB experiments like Planck
constrains such additional light species by putting limits on
the effective degrees of freedom for neutrinos during the era
of recombination (z ∼ 1100) as [2]

Neff ¼ 2.99þ0.34
−0.33 ð1Þ

at 2σ or 95% C.L. including baryon acoustic oscillation
(BAO) data. At 1σ C.L. it becomes more stringent to
Neff ¼ 2.99� 0.17. A similar bound also exists from big
bang nucleosynthesis (BBN) 2.3 < Neff < 3.4 at 95% C.L.
[23]. All these bounds are consistent with SM predictions
NSM

eff ¼ 3.045 [24–26]. Future CMB experiment CMB
Stage IV (CMB-S4) is expected to reach a much better
sensitivity of ΔNeff ¼ Neff − NSM

eff ¼ 0.06 [27], taking it
closer to the SM prediction. Light Dirac neutrino models
often lead to enhanced ΔNeff , some recent works on
which can be found in [28–40]. While Planck bound on
ΔNeff put moderate constraints on the model parameters,
the structure formation bounds on DM free-streaming
length turn out to be severe, disfavoring DMmasses all the
way up to Oð100 keVÞ. This also leads to small enhance-
ment ΔNeff ≤ Oð10−3Þ which, though safe from Planck
bounds, remain out of reach for next generation experi-
ments. Suitable extension of this minimal model can,
however, lead to enhanced ΔNeff which can be probed in
the near future.
This paper is organized as follows. In Sec. II we discuss

our basic setup including the model description and
relevant Boltzmann equations required to compute the
abundance of DM as well as ΔNeff . In Sec. III we discuss
the constraints from structure formation followed by the

details of our numerical results related to DM and ΔNeff in
Sec. IV. In Sec. V we discuss possible UV completions of
our minimal setup and finally conclude in Sec. VI.

II. THE BASIC SETUP

There have been several BSM proposals to realize light
Dirac neutrinos. In order to keep our framework minimal,
we consider only three types of BSM particles sufficient to
highlight the interesting phenomenology. They are namely,
right-handed neutrinos νR, fermion singlet DM ψ , and a
complex scalar singlet ϕ transforming nontrivially under an
unbroken discrete Z4 symmetry. The right-handed neutri-
nos couple to left-handed lepton doublets via SM Higgs
with fine-tuned Dirac Yukawa couplings to generate sub-
eV Dirac neutrino masses. All SM leptons as well as νR
have Z4 charge i which keep the Majorana mass terms
away. The Z4 charges of ψ ;ϕ are chosen to be −1; i
respectively which ensures DM has only one tree-level
coupling of the form yϕψ̄νRϕ. On the other hand, νR;ϕ can
have other couplings as well. For example νR couples to
SM lepton doublet l and Higgs H as yHl̄ H̃ νR. On the
other hand, the scalar singlet ϕ can have quartic interactions
with the SM Higgs as λHϕðH†HÞðϕ†ϕÞ. Thus, the
Lagrangian involving the newly introduced fermions can
be written as

Lfermion ¼ iν̄Rγμ∂μνR þ iψ̄γμ∂μψ −mψ ψ̄ψ

− ðyHl̄ H̃ νR þ yϕψ̄νRϕþ H:c:Þ: ð2Þ

Similarly, the scalar Lagrangian of the model is

Lscalar ¼ðDHμHÞ†ðDμ
HHÞþð∂μϕÞ†ð∂μϕÞ

− ½−μ2HðH†HÞþ λHðH†HÞ2þμ2ϕðϕ†ϕÞ
þλϕðϕ†ϕÞ2þλHϕðH†HÞðϕ†ϕÞþ λ0ϕðϕ4þðϕ†Þ4Þ�;

ð3Þ

where, the covariant derivative for H is defined as

DHμH ¼
�
∂μ þ i

g
2
σaWa

μ þ i
g0

2
Bμ

�
H: ð4Þ

Here, g and g0 are the gauge couplings for SUð2ÞL
and Uð1ÞY respectively while the corresponding gauge
bosons are denoted by Wa

μ and Bμ. Since Z4 needs to
remain unbroken, the singlet scalar does not acquire any
vacuum expectation value (VEV). After the neutral
component of the SM Higgs doublet H acquires a
VEV v ¼ 246 GeV, the physical masses of the scalars
can be written as

m2
h ¼ 2λHv2; ð5Þ
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m2
ϕ ¼ μ2ϕ þ

1

2
v2λHϕ: ð6Þ

While Dirac Yukawa coupling yH remains suppressed
from neutrino mass criteria, without much relevance to
the phenomenology of DM and ΔNeff , the two other
couplings namely, yϕ; λHϕ play crucial roles along with
the masses of ϕ;ψ denoted by mϕ; mψ respectively.
Therefore, the relevant free parameters of this model
are the following couplings and the masses:

mϕ; mψ ; yϕ; λHϕ: ð7Þ

Since both DM and νR will be dominantly produced
from ϕ, it is important to track the evolution of ϕ in the
early universe. Depending upon coupling of ϕ with SM
Higgs and its mass mϕ, production of DM, νR can occur
while ϕ is either in equilibrium or out of equilibrium. In
order to discuss our results in details, we consider three
different scenarios and write the corresponding Boltzmann
equations as follows. For the detailed derivations of the
Boltzmann equations for each of these scenarios, please
refer to Appendix A.

A. Case I: ϕ in equilibrium

In this case, ϕ remains in equilibrium with the SM bath
during DM and νR production from ϕ decay. Thus ϕ
abundance can be considered to be its equilibrium abun-
dance throughout while for the other two species ψ ; νR, the
relevant Boltzmann equations, in terms of comoving
number densities of ϕ and ψ , and comoving energy density
of νR, are given by

dYψ

dx
¼ β

xH
Γϕ

K1ðxÞ
K2ðxÞ

Yeq
ϕ ; ð8Þ

dỸ
dx

¼ β

Hs1=3x
hEΓiYeq

ϕ ; ð9Þ

where x ¼ mϕ=T and

β ¼
�
1þ Tdgs=dT

3gs

�
; ð10Þ

hEΓi ¼ gψgνR
jMj02ϕ→ν̄Rψ

32π

ðm2
ϕ −m2

ψ Þ2
m4

ϕ

: ð11Þ

Here H is the Hubble parameter in a radiation dominated
universe andKi is the modified Bessel function of ith order.
While the comoving number density Yψ ¼ nψ=s, the
comoving energy density of νR which remains relativistic
during the CMB formation, is defined in terms of its energy
density as Ỹ ¼ ρνR=s

4=3.

B. Case II: Freeze-out of ϕ

For certain choices of model parameters, one can have a
scenario where ϕ gets thermally produced first followed by
its freeze-out and only after that dominant production of
DM1 and νR take place from decay of ϕ. Since ϕ can no
longer be taken to be in equilibrium throughout, we need to
track its evolution using the corresponding Boltzmann
equation. The system of Boltzmann equations in this case
is given by

dYϕ

dx
¼ βs

Hx

�
−hσviϕϕ†→XX̄ððYϕÞ2 − ðYeq

ϕ Þ2Þ

−
Γϕ

s

K1ðmϕ=TÞ
K2ðmϕ=TÞ

Yϕ

�
; ð12Þ

dYψ

dx
¼ β

xH
Γϕ

K1ðxÞ
K2ðxÞ

Yϕ; ð13Þ

dỸ
dx

¼ β

Hs1=3x
hEΓiYϕ: ð14Þ

Here hσviϕϕ†→XX̄ is the thermally averaged annihilation
cross section [42,43] of ϕ into the SM particles via Higgs
portal interactions. These include the contact interaction of
ϕ with the Higgs (h) along with all other Higgs portal
interactions ϕϕ† → ff̄; VV; hh, where f denotes the SM
fermions (quarks and leptons) and V denotes the SM gauge
bosons. The definition of other parameters remain same as
in case I discussed earlier.

C. Case III: Nonthermal ϕ

Finally, we consider the remaining possibility where ϕ
can be out of equilibrium throughout due to tiny couplings
with the SM Higgs. Thus, the initial abundance of ϕ
remains negligible, like FIMP DM, and then it starts to
populate the universe due to decay or annihilation of SM
bath particles. Since ϕ has only Higgs portal couplings, the
relevant production mechanism is from Higgs decay or
Higgs annihilation depending upon mϕ. The distribution
function for ϕ can be calculated by solving the following
equation:

∂fϕ
∂t

−Hp1

∂fϕ
∂p1

¼ Ch→ϕϕ† þ Chh→ϕϕ† þ Cϕ→ν̄Rψ ; ð15Þ

the details of the collision terms on the RHS are given in
Appendix A. Once the distribution function fϕ is evaluated,
it can be used to find the evolution of DM and νR densities
by solving the following Boltzmann equations:

1This production mechanism of DM is known as super-WIMP
formalism, first proposed in [41].
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dYψ

dr
¼ gϕβ

rHs

Γϕmϕ

2π2

Z ðA m0

r Þ3ξ2fϕðξ; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξA m0

r Þ2 þm2
ϕ

q dξ;

dỸ
dr

¼ gϕβ

rHs4=3
hEΓi 1

2π2

Z
∞

0

�
A
m0

r

�
3

ξ2fϕðξ; rÞdξ; ð16Þ

where r ¼ m0=T withm0 being an arbitrary mass scale and
details of A, ξ are given in Appendix A.

III. STRUCTURE FORMATION CONSTRAINTS

Fermion DMwith mass roughly below a keV is ruled out
from galactic phase space arguments [44,45]. This implies
that a fermion DMwith mass above a keV can still allow, in
principle, the formation of structures as we observe in the
universe. However, such generic lower bound on fermion
DM mass based on phase space arguments, can become
more stringent depending upon the production mechanism
of DM. Such bounds can be imposed on a particular DM
scenario by calculating the free-streaming length (FSL) of
DM. While hot DM is already ruled out, warm DM with
FSL λFSL < 0.1 Mpc is still allowed, and can be favorable
over cold DM of FSL λFSL < 0.01 Mpc due to the small-
scale structure problems associated with the latter [46].
Dark matter free-streaming length can be estimated from
the matter power spectrum inferred from the Lyman-α
forest data [47,48]. This has been done in several earlier
works including [49]. Quasar data have also been used for
studying free-streaming properties of DM [50]. For theo-
retical and simulation based studies of dark matter free-
streaming properties, one may refer to [51–54]. For some
recent discussions on structure formation constraints on
DM production mechanisms, please see [55–57] and
references therein.
The free-streaming length can be defined as

λFSL ¼
Z

Teq

Tprod

hvðTÞi
aðTÞ

dt
dT

dT; ð17Þ

where Teq is the temperature of the universe at the time of
matter-radiation equality while Tprod denotes the temper-
ature during maximum production of DM. The average
velocity of DM (hvðTÞi) at a temperature T can be
expressed as

hvðTÞi ¼
R p1

E1

d3p1

ð2πÞ3 fψðp1; TÞR d3p1

ð2πÞ3 fψ ðp1; TÞ
: ð18Þ

Here p1 is the momentum of DM particle ψ having energy
E1. The above integration over p1 are for all possible values
of the momentum (p1) of ψ . In terms of two new variables
ξψ and r as defined in Appendix A, the above definition of
hvi becomes

hvðrÞi ¼ AðrÞR
ξ2ψfψðξψ ; rÞdξψ

×
Z

ξ3ψfψðξψ ; rÞdξψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAðrÞξψÞ2 þ ð r

m0
mψÞ2

q :

ð19Þ

The function AðrÞ is defined in Appendix Awith m0 being
a reference mass scale, considered to be 125 GeV in our
analysis. Now, in terms of r the above definition of FSL
takes the following form:

λFSL ¼
�
11

43

�
1=3

r0

Z
req

rprod

hvðrÞig1=3s
β

HðrÞ
dr
r2

: ð20Þ

Therefore, in order to calculate the free-streaming length
of dark matter ψ, we first need to find the distribution
function fψðξψ ; rÞ. The nonthermal distribution function of
ψ depends mostly on two factors. One of the factors is the
momentum distribution of the parent particle ϕ while the
rest is the production mechanism of ψ from the parent ϕ. In
our case, ψ can be produced from the decay of ϕ as the
decay is always kinematically allowed. The Boltzmann
equation for fψ due to the process ϕðK1Þ → ψðP1Þ þ
νRðP2Þ is given by

∂fψ
∂t

−Hp1

∂fψ
∂p1

¼ 1

16πEp1
p1

Z
kmax
1

kmin
1

k1dk1
Ek1

jMj2ϕ→νRψ
fϕðk1Þ;

ð21Þ
where

kmin
1 ¼ 1

2m2
ψ

����−p1ðm2
ϕþm2

ψÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1ðm2

ϕþm2
ψÞ2−m2

ψf4p2
1m

2
ϕ− ðm2

ϕ−m2
ψÞ2g

q ����;
ð22Þ

kmax
1 ¼ 1

2m2
ψ

�
p1ðm2

ϕþm2
ψÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1ðm2

ϕþm2
ψ Þ2−m2

ψf4p2
1m

2
ϕ− ðm2

ϕ−m2
ψ Þ2g

q �
;

ð23Þ

and when mϕ ≫ mψ , the above limits on k1 reduce to the
following simplified forms:

kmin
1 ≃

m2
ϕ

2m2
ψ

�
−p1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 − 4

m2
ψ

m2
ϕ

p2
1 þm2

ψ

s �
; ð24Þ

kmax
1 ≃

m2
ϕ

2m2
ψ

�
p1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 − 4

m2
ψ

m2
ϕ

p2
1 þm2

ψ

s �
: ð25Þ

Now for the different cases:
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(i) Case I: fϕðk1Þ ¼ e−Ek1
=T .

(ii) Case II: we can find fϕðk1Þ after the freeze-out of ϕ
by using

∂fϕ
∂t

−Hk1
∂fϕ
∂k1

¼ Cϕ→ψν̄R : ð26Þ

(iii) Case III: we can find fϕðk1Þ by using

∂fϕ
∂t

−Hk1
∂fϕ
∂k1

¼Ch→ϕϕ† þChh→ϕϕ† þCϕ→ν̄Rψ :

ð27Þ

Once we find fϕ from the above equations, we can use
that to find fψ which we can use again to find thermal
average velocity and free-streaming length. We can also
cross-check the numerical calculations by obtaining

nϕ ¼ gϕ
R d3k1

ð2πÞ3 fϕ and nψ ¼ gψ
R d3p1

ð2πÞ3 fψ and comparing

it with the previous section’s results. Note that the same
expression for nψ also appears in the denominator for the
expression of hvðTÞi.
We will discuss the results for free-streaming length for

each case together with DM and ΔNeff results in the
upcoming section.

IV. NUMERICAL RESULTS

In this section, we discuss our numerical results for all
the three cases mentioned above. After solving the
Boltzmann equations for comoving densities of dark sector
species, we can find the observable quantities like DM
abundance ΩDMh2 and ΔNeff by following the procedure

shown in Appendix B. Since the region of validity for these
three cases crucially depends upon the parameters involv-
ing complex scalar singlet ϕ, we first show the parameter
space in terms of its mass and Higgs portal couplings in the
left panel of Fig. 1 indicating the region excluded by the
constraints from the Large Hadron Collider (LHC) on
invisible decay of the SM Higgs boson into a pair of ϕ. The
ATLAS and the CMS collaborations have put the limit on
invisible Higgs branching ratio as BRh→inv < 14.6% [58]
and BRh→inv < 18% [59] respectively, of which we use the
stronger ATLAS bound in the left panel of Fig. 1. In the
right panel of Fig. 1, we show the interaction rate of ϕ (Γ) in
comparison to the Hubble expansion rate for three bench-
mark values of mϕ; λHϕ to indicate typical Higgs portal
couplings required to consider thermal production of ϕ in
the early universe. Clearly, for Higgs portal coupling λHϕ ≤
10−8 validates the nonthermal nature of ϕ as we consider
while discussing details of case III. In the following, we
will choose the benchmark points as well as the scan range
while keeping Fig. 1 in mind.
In addition to bounds on ΩDMh2, ΔNeff , and the

ðmϕ; λHϕÞ plane mentioned above, we also note the model
independent bounds on DM mass. If DM is very light, it
can remain relativistic for a long time after being produced
from ϕ decay resulting in large free-streaming length.
While hot dark matter is ruled out, a warm dark matter
(WDM) component is still allowed provided certain bounds
are satisfied. Depending upon the details of the production
mechanism, warm dark matter mass below a few keV is
ruled out as shown in several works incorporating different
observations [52,60,61]. Coincidentally, a similar lower
bound exists on fermion DM mass from galactic phase

FIG. 1. Left: LHC constraint inmϕ − λHϕ plane showing the region excluded by upper limit on invisible decay width of the SM Higgs.
Right: interaction rates of ϕ in comparison to the Hubble expansion rate for benchmark choices of mϕ − λHϕ used in our analysis.
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space arguments [44,45]. While these lower bounds can
vary slightly depending upon the production scenario and
observational constraint imposed, we consider a lower
bound of Oð1Þ keV in our analysis. We also consider a
conservative upper bound on ϕ lifetime such that its decay
is complete before the BBN epoch TBBN ∼Oð10Þ MeV.
This ensures the production of dark matter as well as dark
radiation before the onset of the BBN epoch.

A. Case I

In this case, ϕ remains in equilibrium while DM and νR
production takes place. This is the simplest scenario where
we need to solve only two coupled Boltzmann equations
for ψ ; νR while using equilibrium abundance for ϕ through-
out. Figure 2 shows the evolution of dark sector particles as
functions of temperature for different sets of parameters.
The magenta, blue, and green lines correspond to the
comoving number densities of ϕ (in equilibrium) and ψ ,
and comoving energy density of νR respectively. The three
free parametersmϕ, yϕ, andmψ are taken in such a way that
DM abundance ΩDMh2 is always satisfied. While ϕ
abundance follows the equilibrium abundance as shown
by the magenta line, DM and νR freeze-in from decay of ϕ
and get saturated after ϕ abundance gets Boltzmann sup-
pressed for T ≲mϕ.
Now, let us discuss the phenomenology for this situation

with respect to the parameters mϕ, yϕ, and mψ governed by
Eqs. (8) and (9). The approximate analytical solutions of
these two equations are given in Appendix C. Equations in
(C1) say that for mϕ ≫ mψ , both Yψ and Ỹ depend on mϕ

and yϕ only, making ΔNeff independent of mψ (from
equations in Appendix B). Equation (C4) that gives a
relation between ΔNeff and ΩDMh2 carries DM mass as an
independent parameter. For correct relic abundance, a
minimum value of DM mass will provide a maximum

contribution to extra radiation energy density. Keeping this
in mind, we plot the solid line in the left panel of Fig. 2,
where we keep DM mass to be 10 keV. We see that the
corresponding ΔNeff value is 0.002. This is the maximum
value of effective relativistic degrees of freedom and it is out
of the reach of both Planck 2018 and the CMB-S4 limit. An
approximate analytical approximation also gives the same
valueΔNeff ≈ 0.0016 [fromEq. (C3)]. For the dashed line in
the left panel, we have changed yϕ and observed its effects
onΔNeff . In order to satisfy theDMabundance,mψ has to be
increased accordingly for the dashed lines. As expected,
ΔNeff is reduced further. The right panel in Fig. 2 has been
plotted for a different value ofmϕ. Here, due to a largermass,
ϕ gets Boltzmann suppressed earlier resulting in a smaller
Yψ and Ỹ. In both the plots, we show a horizontal line
denoting the comoving energy density of a single species of
right-handed neutrinos that corresponds to the 2σ upper
bound from the Planck 2018 data. In conclusion, for this
situation when ϕ is always in bath, the contribution of dark
radiation to effective relativistic degrees of freedom is
beyond the reach of future CMB experiments.

1. Structure formation constraints

For case I, where the particle ϕ is always in thermal
equilibrium, we have calculated the free-streaming
length for three different benchmark points. Here, we
already know the distribution function of ϕ using
which the distribution function of ψ can be calculated.
Equation (17) tells us that the free-streaming length is
mainly dependent on two factors: the production temper-
ature (Tprod) and the injected energy to the DM from the
decaying particle which will determine the average thermal
velocity of the latter. In this section, we will see that if the
production temperature is the same and injected energy to
DM is more, one can expect a larger free-streaming length
as the dark matter particle will be relativistic for a longer

FIG. 2. Evolution of dark sector particles ðϕ;ψ ; νRÞ in case I considering ϕ to be in equilibrium throughout. All the lines denote the
total comoving number/energy densities of dark sector particles. The left and right panel plots show the change in evolution for two
different choices of yϕ, mϕ respectively. Chosen sets of points keep the DM abundance within the Planck limit.
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duration. If the production temperature is high but the
injected energy is the same, one can expect a smaller FSL
due to higher red-shift of DM momentum which will make
the DM to be nonrelativistic at an earlier epoch.
In Fig. 3, we have shown the average velocity of DM as a

function of temperature for two different values of ϕ,mϕ ¼
10 GeV and mϕ ¼ 50 GeV. The values of dark sector
coupling yϕ is the same in the upper panel plots of Fig. 3. In
all the figures, the red lines show the average velocity of ψ
for which mψ gives the correct DM relic. As can be seen
from all the three plots, formψ⪆10 keV, the free-streaming
length is less than 0.1Mpc, that is, they are in the warm DM
region. From the first two plots, we see that for a particular
value of mψ (e.g., mψ ¼ 1000 keV), both the plots give
very similar values for free-streaming length. This is
contrary to the expectation as for higher mass of decaying
particle, the injected energy to the DM should be more. The
reason why the FSL is still small for higher decaying
particle mass is that the production of DM from ϕ also
occurs at an earlier epoch (see benchmark plot in Fig. 2). As
a result although the DM has higher momentum, its
momentum gets red-shifted more. These two different
phenomena compete with each other and as a result, we
get similar FSL values in both of the plots. In the top right

panel plot and in the bottom plot, we have kept ϕmass to be
the same and have changed the dark sector coupling, yϕ.
Due to the same mϕ, the initial energy of DM will be the
same. Also we have already seen that that changing yϕ does
not change Tprod, the production temperature of dark
matter. Hence we can expect the same FSL for the same
DM mass. This is exactly what we can see from the top
right plot and the bottom plot. The only difference in these
two plots is that the ψ mass satisfying the correct DM relic
is different. From the above analysis, we have found that
the FSL for DMmass corresponding to the correct DM relic
falls under the warm dark matter region.
We summarize our FSL results for case I in Table I, by

including only those benchmark points from the above

FIG. 3. Average velocity of DM as a function of temperature in case I for different benchmark combinations of relevant parameters.

TABLE I. Table for case I.

Parameters
FSL
(Mpc)mϕ (GeV) yϕ mψ (keV) ΩDMh2 ΔNeff

10 5 × 10−10 81 0.12 1.6 × 10−4 0.0141

50 5 × 10−10 440 0.12 2.9 × 10−5 0.0030

50 10−9 110 0.12 1.2 × 10−4 0.0105
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analysis which satisfy the correct DM relic. Clearly, the
constraints on DM mass from FSL criteria can be as severe
as Oð100 keVÞ keeping ΔNeff ≤ Oð10−3Þ.

B. Case II

We now discuss the results for the intermediate scenario
where ϕ gets produced thermally followed by its freeze-out.
This requires solving the Boltzmann equation for ϕ as well
together with the ones for ψ ; νR. Therefore, in addition to
mϕ; yϕ; mψ , the Higgs portal coupling λHϕ can play a
crucial role in deciding DM abundance as well as ΔNeff .
We show the evolution of dark sector particles for case II in
Fig. 4. The top left, top right, and bottom panels in this
figure show the comparisons for two different choices of
yϕ; λHϕ; mϕ respectively. Similar to case I, the magenta,
blue, and green lines correspond to the comoving number
densities of ϕ (in equilibrium) and ψ , and comoving energy
density νR respectively. The red line corresponds to the
actual comoving number density of ϕ which undergoes
thermal freeze-out at an intermediate epoch followed by
complete decay at later epochs. In all these plots, one can

clearly see the production of ψ ; νR to be taking place during
equilibrium as well as frozen-out phases of ϕ separated by a
kink in between, as seen from the blue and green lines. The
Higgs portal coupling of ϕ is chosen in such a way that the
freeze-out abundance of ϕ is non-negligible in order to play
a substantial role in ψ ; νR production. This is clearly visible
from the plots shown in Fig. 4, where the production of
ψ ; νR from frozen-out ϕ appear to be significant. Another
significant improvement from case I is that mass of DM can
satisfy the lower limits discussed earlier even when ΔNeff
saturates the Planck upper bound.
In the top left panel plot of Fig. 4, we show the evolution

for two different values of yϕ while keeping other param-
eters fixed. Since yϕ dictates the decay width of ϕ, a lower
value of yϕ delays the decay of frozen-out ϕ. Change in yϕ,
however, keeps DM density the same as the number of ϕ
gets transferred to the number of ψ , both of which behave
as nonrelativistic particles. On the other hand, a lower value
of yϕ or delayed production of νR from frozen-out ϕ
increases the comoving energy density of νR which behaves
as radiation with comoving energy density defined as
Ỹ ¼ ρνR

s4=3
. This can be understood if we solve the coupled

FIG. 4. Evolution of dark sector particles ðϕ;ψ ; νRÞ in case II considering ϕ to freeze out from the bath while decaying into ðψ ; νRÞ.
Top left, top right, and bottom panel plots show the change in evolution for two different choices of yϕ, λHϕ, mϕ respectively. Chosen
sets of points keep the DM abundance within the Planck limit.
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Boltzmann equations given in Eqs. (12)–(14) analytically
after the freeze-out of ϕ. Equations (C5) and (C6) give the
approximate analytical expressions for Yfo

ϕ , Yψ , and Ỹ. As is
evident from Fig. 4, the freeze-out abundance of ϕ namely,
Yfo
ϕ , gets converted to Yψ ; whereas, Ỹ ∝ hEΓi

f2
∝ y−1ϕ .

In the top right panel plot of Fig. 4, we show the evolution
for two different choices of Higgs portal coupling λHϕ. As
expected from the freeze-out mechanism of WIMP type
particles, a larger value of λHϕ leads to smaller freeze-out
abundance of ϕ and hence smaller yield of ψ ; νR at later
epochs. On the other hand, for larger benchmark value of
λHϕ resulting in smaller yield ofYψ , we choose a heavierDM
mass in order to keepΩDMh2 within Planck bounds. Finally,
in the bottom panel plot of Fig. 4, we show the evolution of
dark sector particles for two different choices ofϕmass. Due
to change in Boltzmann suppression, the equilibrium evo-
lution also changes for these two values. Since the annihi-
lation cross section decreases with increase in mass, we see
larger freeze-out abundance for heavierϕ. Naturally, a larger
freeze-out abundance for heavier ϕ leads to enhancement in
comoving densities of DM and νR as well. The benchmark
values of mϕ; mψ are chosen in such a way that DM
abundance ΩDMh2 remains within the Planck limit while
heavier (lighter) benchmark of mϕ keeps ΔNeff close to the
Planck upper bound (CMB-S4 sensitivity). It should also be
noted that increasing ϕ mass also increases its decay width
(for mψ ≪ mϕ) and hence we notice a delay in the
production of ψ ; νR for lighter ϕmass. Although we noticed
enhanced Ỹ from such delayed production in the top left
panel plot of Fig. 4, in the bottom panel plot of the same
figure, this effect remains subdominant. The expected
increase in Ỹ for lighter mϕ due to delayed production

remains subdominant compared to a decrease in Ỹ for lighter
mϕ due to reduced freeze-out abundance of the latter.
Therefore, we only notice an overall increase in Ỹ for
heavier ϕ having larger freeze-out abundance. In each of
these plots shown in Fig. 4, the two benchmark parameter
values (that is, yϕ in top left, λHϕ in top right,mϕ in bottom)
are chosen in such a way that one of them leads to ΔNeff
close to the Planck 2σ upper limit while the other pushes it
close to the CMB-S4 sensitivity limit.
As seen from the evolution plots of case I and case II

discussed above, case II becomes similar to case I if the
maximum production of ψ from the decay of ϕ happens
before the freeze-out of the latter from the thermal bath.
This requires either late freeze-out of ϕ (due large portal
coupling λHϕ) or a short-lived ϕ (due to large Yukawa
coupling yϕ). Unless we consider such regimes of cou-
plings, these two cases need to be considered separately,
yielding distinct result and phenomenology.
After highlighting the interesting features of case II with

benchmark choices of key parameters, we perform a
numerical scan over the parameter space. The relevant
parameters are varied in the following range:

200 GeV ≤ mϕ ≤ 2000 GeV;

10−5 ≤ λHϕ ≤ 10−3.5;

1 keV ≤ mψ ≤ 10 MeV:

The value of yϕ is kept constant and remains fixed at 10−10,
which also ensures that the decay of ϕ occurs before the
BBN epoch. The resulting parameter space is shown in
ΔNeff vs mϕ plane in Fig. 5. The color bar in the left and
right panel plots show the variation in λHϕ and mψ

respectively. While all the points satisfy the Planck bound

FIG. 5. Parameter space plot for case II obtained from numerical scans, shown in terms of ΔNeff vsmϕ while λHϕ (left) andmψ (right)
are shown in color code. The other relevant parameter yϕ is kept fixed at 10−10. The magenta and gray shaded regions indicate the current
and future bound on ΔNeff from Planck 2018 (2σ) and CMB-S4 respectively.
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on DM relic abundance, the corresponding upper bound on
ΔNeff is shown by the magenta shaded region. The future
sensitivity of the CMB-S4 experiment is shown as the gray
shaded region. From the left panel of Fig. 5, we can clearly
see that for decrease in λHϕ, while keeping mϕ constant,
ΔNeff decreases. This is expected as a smaller value of
Higgs portal coupling λHϕ leads to a larger freeze-out
abundance of ϕ followed by enhanced production of νR
from ϕ decay. Since the same decay also produces DM, we
need to choose lower values of DMmasses in order to keep
its relic abundance within Planck limits. This can be
noticed from the right panel plot of Fig. 5 where the points
with large ΔNeff correspond to smaller DM masses.
Additionally, for fixed λHϕ, if we increase mϕ, the corre-
sponding ΔNeff increases. Once again, this is due to larger
freeze-out abundance of ϕ for heavier masses, as noticed
while discussing the evolution plots in Fig. 4. Accordingly,
for heavier mϕ with fixed λHϕ, we need to choose lighter
DM masses in order to keep its relic abundance within
observed limits, as seen from the right panel plot of Fig. 5.
Thus, the FIMP type DM candidate in our setup with
masses all the way up to a few tens of keV can already get
disfavored by Planck 2018 limit ð2σÞ on ΔNeff . As we will
see in the next section, this lower bound on DM mass gets
pushed to hundreds of keV after imposing the structure

formation bounds. Accordingly, as Fig. 5 suggests, ΔNeff
gets pushed down to second or third decimal places.

1. Structure formation constraints

For case II, we have estimated the free-streaming length
of dark matter for some benchmark points. The free-
streaming length for dark matter when mϕ ¼ 1000 GeV,
λHϕ ¼ 5 × 10−5, and yϕ ¼ 10−10 are shown in the left side
of Fig. 6 for different values of mψ . Except the red colored
lines, the other lines do not satisfy the current DM abun-
dance. As expected, for lower mass, the dark matter remains
relativistic for a longer period and hence its free-streaming
length is higher. Even for themaximummψ in the figure, i.e.,
for mψ ¼ 1000 keV, the free-streaming length is greater
than 0.1Mpc, which is roughly the boundary betweenwarm
and hot dark matter. Thus for all mψ in the figure, the free-
streaming lengths are found to be higher than 0.1 Mpc. By
decreasing the injected energy to dark matter from the
particle ϕ, the dark matter can be made to become non-
relativistic at an earlier epoch. This can be obtained by
decreasing mϕ. The top right panel plot of Fig. 6 shows the
free-streaming length for a smallermϕ ¼ 500 GeVwith λHϕ

and yϕ having the same value as the top left panel plot. We

FIG. 6. Average velocity of DM as a function of temperature in case II for different benchmark combinations of relevant parameters.
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can see that although the free-streaming length now has a
smaller value, all the points still give hot dark matter.
Another effective way to make dark matter nonrelativistic
at an earlier time is to increase the dark sector coupling yϕ.
This will give a higher decay rate Γϕ, leading to a higher
dark-matter production temperature. The results can be seen
from the bottom plots of Fig. 6. The left-hand side is for
mϕ ¼ 1000 GeV and the right-hand side is for mϕ ¼
500 GeV. As increasing λHϕ will also increase mψ for
correct DM abundance, the other parameters are tuned in
both the figures so that we get DMmass in order of hundred

of keV mass, satisfying the relic density constraint. We
summarize our FSL results for case II in Table II, by
including only those benchmark points from the above
analysis which satisfy correct DM relic density.

C. Case III

In this subsection, we discuss the results for the last
subclass of scenarios mentioned earlier where the mother
particleϕ never enters equilibriumdue to feebleHiggs portal
coupling. In order to simplify the analysis, we consider ϕ
production to be taking place dominantly from the SM
Higgs, either via decay or via annihilation. Formϕ < mh=2,
the decay process (h → ϕϕ) dominates while in the other
limit only annihilation (hh → ϕϕ) can contribute to ϕ
production. To show the roles of decay and annihilation
separately, we discuss these two limits separately.

1. mϕ < mh=2

In this case, ϕ freezes in from Higgs decay and then
decays into ψ and νR. Similar to earlier cases, we first show
the evolution of dark sector particles for suitable choices of

FIG. 7. Evolution of dark sector particles ðϕ;ψ ; νRÞ in case III considering ϕ to freeze-in from Higgs decay and then decaying into
ðψ ; νRÞ. Top left, top right, and bottom panel plots show the change in evolution for two different choices of yϕ; λHϕ; mϕ respectively.
Chosen sets of points keep the DM abundance within the Planck limit.

TABLE II. Table for case II.

Parameters

FSL
(Mpc)

mϕ

(GeV) λHϕ yϕ

mψ

(keV) ΩDMh2 ΔNeff

1000 5 × 10−5 10−10 146 0.12 5.8 × 10−2 2.625
500 5 × 10−5 10−10 275 0.12 2.2 × 10−2 1.146
1000 1.6 × 10−4 10−9 820 0.12 7.2 × 10−4 0.071
500 10−4 10−9 550 0.12 6.5 × 10−4 0.077
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model parameters such that both DM abundance as well as
ΔNeff remain within Planck 2σ limits. The corresponding
evolution plots are shown in Fig. 7. We maintain similar
color codes as before namely, magenta, red, blue, green to
show the evolution of comoving number densities of ϕ
(equilibrium), ϕ (actual), DM ψ , νR respectively. In sharp
contrast to case I, II discussed earlier, here we see that the
initial abundance of ϕ remains negligible and then it slowly
freezes in from decay of SM Higgs. In the top left panel of
Fig. 7, we show the differences in these evolutions for two
different choices of yϕ. As usual, a smaller value of yϕ
delays the decay of ϕ. While final DM density remains the
same for both values of yϕ, the smaller value of yϕ leads to
enhancement in νR density. Similar observation was noted
in case II as well. In the top right panel of Fig. 7, we show
the variation due to two different choices of Higgs portal
coupling λHϕ. In sharp contrast to case II, here we get
smaller abundance of ϕ for smaller value of λHϕ which also
highlights the generic difference between freeze-in and
freeze-out production mechanisms [5]. Consequently,
smaller λHϕ leads to smaller yields in ψ ; νR as clearly seen
from the same plot in the top right panel. Finally, in the
bottom panel plot of Fig. 7, we show the variation due to
two different choices of mϕ. We see a marginal decrease in
freeze-in abundance of ϕ for larger mϕ due to the fact that
as mϕ approaches mh=2, the corresponding partial decay
width Γh→ϕϕ† decreases suppressing the production of ϕ
slightly. On the other hand, a larger mϕ corresponds to
larger decay width of ϕ in the limit mψ ≪ mϕ leading to
depletion in ϕ abundance earlier. The increase in ϕ decay
width for larger mϕ also results in increased initial
production of ψ and νR. While final DM abundance

decreases slightly for larger mϕ due to smaller freeze-in
abundance of heavier ϕ, the abundance of νR gets slightly
enhanced for larger mϕ due to larger decay width. Thus,
there exists a competition between two effects: (i) decrease
in νR production due to decrease in freeze-in production of
ϕ for larger mϕ and (ii) increase in νR production due to
increase in ϕ decay width for largermϕ and the final results
will be decided by the dominance of either of these, to be
discussed below. In all the plots shown in Fig. 7, we notice
an intermediate plateau region for ϕ abundance. This arises
when the freeze-in production rate of ϕ from Higgs decay
and decay rate of ϕ into ψ ; νR remain comparable.
We then perform a numerical scan to show the parameter

space assuming ϕ to be out of equilibrium throughout
which freezes-in only from the SM Higgs decay. In the
scan, we vary the relevant parameters in the following
range:

5 GeV ≤ mϕ ≤ 60 GeV;

10−9 ≤ λHϕ ≤ 10−8;

1 keV ≤ mψ ≤ 1 MeV:

Here also yϕ is kept fixed at 10−10. The resulting parameter
space is shown inΔNeff vsmϕ plane in Fig. 8 with the color
bars in the left and right panel plots showing the variation in
λHϕ and mψ respectively. Similar to case II, here also the
scattered points satisfy the Planck bound on the DM relic
abundance while the corresponding upper bound (future
sensitivity) on ΔNeff is shown by magenta (gray) shaded
region. With an increase in λHϕ while keepingmϕ fixed, we
get enhancement inΔNeff as seen from the left panel plot of

FIG. 8. Parameter space plot for case III (considering ϕ to freeze-in from Higgs decay) obtained from numerical scans, shown in terms
of ΔNeff vs mϕ while λHϕ (left) and mψ (right) are shown in color code. The other relevant parameter yϕ is kept fixed at 10−10. The
magenta and gray shaded regions indicate the current and future bound on ΔNeff from Planck 2018 (2σ) and CMB-S4 respectively.
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Fig. 8, in sharp contrast with the corresponding results in
case II. As discussed above, this trend is expected as an
increase in λHϕ leads to increased freeze-in production of ϕ.
Since DM number density also increases from the same ϕ
decay, we need to choose lighter DM masses for larger λHϕ

in order to keep ΩDMh2 within observed limits, as seen
from the right panel plot of Fig. 8. On the other hand, if ϕ
mass increases for fixed λHϕ, we first see an increase in
ΔNeff followed by decrease for mϕ closer to mh=2. The
initial rise in ΔNeff can be explained by noting the increase
in ϕ decay width for larger mϕ. However, if we continue to
increase mϕ, taking it closer to mh=2, the partial decay
width of the SM Higgs Γh→ϕϕ† decreases leading to
suppression in freeze-in abundance of ϕ. Consequently,
this leads to decrease in νR;ψ densities. Correct DM
abundance can be obtained by choosing heavier DM
masses in the high mϕ regime, as seen from the right
panel plot of Fig. 8. Similar to case II discussed before, here
also the bounds on DM mass become more severe, after
imposing the structure formation constraints, as we discuss
in the next section.

2. mϕ > mh=2

We now briefly discuss the essential features of the
nonthermal ϕ scenario where its freeze-in production is
dominated by annihilations only and decay is forbidden
kinematically due to mϕ > mh=2. The evolution of dark
sector particles in this case are shown in Fig. 9. Once again,
the choice of benchmark parameters is made in such a way
that the finalDMabundance andΔNeff remainwithin Planck
2018 limits. In top top left panel of Fig. 9, we show the
variation in evolution for two different choices of yϕ. As
expected, this only alters the decay width of ϕ and hence the
production of νR;ψ . While final DM density remains the
same for both choices, late production of νR due to smaller
yϕ leads to an enhancement in Ỹ, an observation which was
alsomade in other scenarios discussed above. In the top right
panel of Fig. 9, we show the difference in evolution due to
variation in Higgs portal coupling λHϕ. Naturally, a smaller
λHϕ results in smaller freeze-in abundance of ϕ from
annihilation and hence smaller yields in νR;ψ . Variation
due to change in mϕ is shown in the bottom panel plot of
Fig. 9. We do not see much difference between the two

FIG. 9. Evolution of dark sector particles ðϕ;ψ ; νRÞ in case III considering ϕ to freeze-in from Higgs annihilations and then decaying
into ðψ ; νRÞ. Top left, top right, and bottom panel plots show the change in evolution for two different choices of yϕ, λHϕ, mϕ

respectively. Chosen sets of points keep the DM abundance within the Planck limit.
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values except for the fact that a largermϕ increases ϕ decay
width leading to early depletion. Since the overall features in
this case remains similar to the earlier case where ϕ is
produced from decay only, we expect the parameter space to
remain similar. Therefore, we do not perform any numerical
scan in this case.

3. Structure formation constraints

For case III, we have considered the situation when
mϕ < mh=2. Here, we have considered the same bench-
mark point as in the bottom plot of Fig. 7 for two different ϕ
masses, mϕ ¼ 10 GeV and mϕ ¼ 50 GeV. The production
temperature for both situations is around 10 MeV (pro-
duction temperature of DM for mϕ ¼ 10 GeV and mϕ ¼
50 GeV are about 10 and 30 MeV respectively). Figure 10
shows that the FSL for a particular dark matter mass is more
in the right plot wheremϕ is 50 GeV. This is expected as the
production temperature is almost the same, so an increase
in mass of a decaying particle injects more energy to the
dark matter particles. For the left plot, the DM relic is
satisfied when mψ ¼ 3.42 keV and for the right side plot
whenmψ ≈ 5 keV. For both cases, the FSL when DMmass
gives correct DM relic is larger than 0.1 Mpc making the
DM “hot.” For these two benchmark points, the ΔNeff is
within the current CMB bound. In principle, by increasing
the dark sector coupling yϕ, the production temperature can
be increased making the FSL small.

We summarize our FSL results for case III in Table III,
by including only those benchmark points from the above
analysis which satisfy correct DM relic density. Clearly, the
constraints on DM mass from FSL criteria can be as severe
as Oð100 keVÞ keeping ΔNeff ≤ Oð10−3Þ. In the next
section, we briefly comment on possible UV completions
which can bring theΔNeff within CMB-S4 sensitivity while
keeping the DM phenomenology similar to the above
analysis.

V. POSSIBLE UV COMPLETIONS

We have discussed a minimal scenario to illustrate the
essential results of freeze-in DM via a light Dirac neutrino
portal. The minimal nature of this model with only three
new BSM fields has led to strong predictions on DM mass
as well as ΔNeff allowed from experimental constraints.
Possible UV completions of this model can, in principle,
give rise to a natural origin of light Dirac neutrino masses,
a gauge symmetric realization of the discrete Z4 symmetry
while also giving a flexibility to enhance ΔNeff to bring it
within future experimental sensitivity.
One simple possibility is to introduce an additional

Higgs doublet H2, responsible for generating a light
Dirac neutrino mass [62]. While the freeze-in contribution
to ΔNeff from the Dirac Yukawa interaction with the SM
Higgs doublet is negligibly small due to tiny Yukawa
couplings [34,35], the neutrinophilic Higgs doublet H2 can
have a larger Yukawa coupling leading to either thermal-
ized νR or large freeze-in contribution to ΔNeff . We can
choose the Z4 charges of SM leptons, νR;ψ ;ϕ; H2 to be
i;−i;−1; i;−1 respectively, so that the Yukawa interaction
L̄ H̃2 νR is responsible for light Dirac neutrino mass. This
charge assignment leaves the dark sector interactions the
same as in the minimal model. The second Higgs doublet
can have a tiny soft-breaking term with the SM Higgs
μ12H†H2 by virtue of which its neutral component can
acquire a tiny VEV, leading to a larger Dirac Yukawa.

FIG. 10. Average velocity of DM as a function of temperature in case III for different benchmark combinations of relevant parameters.

TABLE III. Table for case III.

Parameters

FSL
(Mpc)

mϕ

(GeV) λHϕ yϕ

mψ

(keV) ΩDMh2 ΔNeff

10 4.8 × 10−9 10−10 3.42 0.12 2.7 × 10−1 9.42
50 4.8 × 10−9 10−10 5.63 0.12 3.6 × 10−1 15.5
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Due to the presence of multiple sources of ΔNeff , we can
have correct FIMP DM phenomenology while enhancing
ΔNeff to remain within the sensitivity of next generation
experiments.
Another possibility is to consider a gauge extension of

the SM which naturally accommodates three right-handed
neutrinos required to realize a Dirac neutrino scenario.
Perhaps the simplest possibility is to consider the gauged
B − L extension of the SM [63–68] where three right-
handed neutrinos arise a minimal possibility to keep the
model anomaly free. Depending upon the scalar content,
light neutrinos can be purely Dirac in this model [30,36,69–
73]. The B − L gauge charges of SM leptons, νR;ψ ;ϕ are
−1;−1, 0, 1 to realize the minimal possibility. The fermion
singlet DM couples via the same portal ψνRϕ while light
Dirac neutrino mass arises from the SM Higgs Yukawa
couplings. Although the contribution to ΔNeff from SM
Higgs Yukawa interactions remain suppressed, there can be
sizable enhancement to it due to B − L gauge interactions
of νR. The DM phenomenology will remain similar to the
minimal setup except for the fact that ϕ can now interact
with the SM bath via Higgs as well as B − L gauge portal
interactions. Therefore, such nonminimal FIMP DM via a
light Dirac neutrino portal can lead to observable ΔNeff
which can be probed at CMB-S4 as well as other planned
experiments like SPT-3G [74] and Simons Observatory
[75]. We leave detailed phenomenological studies of such
nonminimal scenarios to future works.

VI. CONCLUSION

We have studied a minimal scenario where the origin of
neutrino mass and dark matter remain connected with
interesting observational prospects at CMB experiments.
Assuming light neutrinos to be of Dirac nature necessitates
the inclusion of right-handed neutrinos νR which can also
act like a portal to a dark sector comprising of a fermion
singlet DM and a scalar singlet ϕ. While the scalar singlet
can be directly coupled to the SM bath via a Higgs portal
coupling, a fermion singlet DM can couple only to νR via ϕ.
We have studied in details the freeze-in production of ψ and
νR from ϕ decay, by considering three different possibilities
with (i) ϕ in equilibrium, (ii) ϕ undergoing thermal freeze-
out, and (iii) ϕ getting produced via freeze-in. Since νR
couples to SM leptons very feebly due to the requirement of
generating sub-eV scale Dirac neutrino mass, the corre-
sponding freeze-in production of νR directly from the SM
bath remains suppressed. Since the same coupling with ϕ
leads to freeze-in production of both DM and νR with the
latter remaining relativistic throughout, we show the
possibility of correlating DM parameter space with effec-
tive relativistic degrees of freedom ΔNeff . We find that the
scenario with ϕ in equilibrium throughout leads to tiny
enhancement inΔNeff while being consistent with DM relic
criteria. However, for the other two scenarios, due to one
additional free parameter in the form of a Higgs portal

coupling λHϕ at play, we can have correct DM phenomenol-
ogywhile getting a sizable enhancement inΔNeff at the same
time.Additionally, depending upon the choice of parameters,
existing bounds from the Planck experiment can also rule out
DM mass up to a few tens of keV. However, structure
formation constraints on such nonthermal DM rules out DM
masses all thewayup to a fewhundred keV. SinceDMand νR
are produced from the same decay in this minimalmodel, the
resulting ΔNeff also gets reduced to ≤ Oð10−3Þ to be in
agreement with required DM properties. We briefly discuss
two possible UV completions which can disentangle the
production of DM and νR while still maintaining the light
Dirac neutrino portal scenario, such that correct DM proper-
ties can be realized even with enhanced ΔNeff within
experimental sensitivity.
Since the scalar singlet can be light in these scenarios

opening up the possibility of a SM Higgs decaying
invisibly into a pair of ϕ, future LHC measurements will
be able to constrain the Higgs portal coupling further from
measurements of Higgs invisible decay rates. In addition to
these specific signatures of our model keeping it very
predictive, one can also pursue such neutrino portal dark
matter scenarios from the point of view of easing cosmo-
logical tensions between early and late universe cosmo-
logical observations [76]. There have been a few works
already in this direction [77,78] which we plan to explore in
future works.
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APPENDIX A: DERIVATION OF BOLTZMANN
EQUATIONS

The Boltzmann equation in differential form can be
written as

∂f
∂t

−Hp
∂f
∂p

¼ C½f�; ðA1Þ

where H is the Hubble expansion rate and C½f� is the
collision term for a species with distribution function f. In
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this section, we discuss the derivation of the Boltzmann
equations for the relevant species (ϕ;ψ ; νR) in all the cases
considered in this work.

1. Case I: ϕ in equilibrium

a. For ψ abundance

For the process: ϕðKÞ → ψðP1Þ þ νRðP2Þ. Integrating
both sides of Eq. (A1) over the three momentum p1 of
species ψ , we get

Z
gψ

d3p1

ð2πÞ3
�
∂fψ
∂t

−Hp1

∂fψ
∂p1

�
¼
Z

gψ
d3p1

ð2πÞ3C½fψ �: ðA2Þ

Using the definition of nψ and integration by parts method
for the term proportional to H, the left-hand side (LHS) of
Eq. (A2) becomes

dnψ
dt

þ 3Hnψ ; ðA3Þ

where

nψ ¼
Z

gψ
d3p1

ð2πÞ3 fψ ; ðA4Þ

with gψ being the internal degree of freedom of ψ . The
right-hand side (RHS) of Eq. (A2) is

Z
gψ

d3p1

ð2πÞ3C½fψ �

¼
Z

gψ
d3p1

ð2πÞ3
1

2E1

Z
gνR

d3p2

ð2πÞ32E2

gϕ
d3k

ð2πÞ32Ek

×ð2πÞ4δ4ðK−P1−P2ÞjMj2ϕ→νRψ
ðfeqϕ −fψfνRÞ: ðA5Þ

We assume that the initial abundances of both ψ and νR are
negligible, so both fψ and fνR can be set to zero. Thus we
can omit the backreaction term in the above equation.
Now using the definition of decay width of ϕ in the rest
frame of ϕ i.e.,

Γϕ ¼ 1

2mϕ

Z
gψd3p1

ð2πÞ32E1

gνRd
3p2

ð2πÞ32E2

× ð2πÞ4δ4ðK − P1 − P2ÞjMj2ϕ→ν̄Rψ
; ðA6Þ

we get

RHS ¼ gϕ

Z
d3k
ð2πÞ3

2mϕ

2Ek
Γϕf

eq
ϕ : ðA7Þ

Here, the decay width Γϕ is given by

Γϕ ¼ gψgνR
16πmϕ

jMj2ϕ→ν̄Rψ

�
1 −

m2
ψ

m2
ϕ

�

and

jMj2ϕ→ν̄Rψ
¼ 1

gϕgψgνR
y2ϕðm2

ϕ −m2
ψÞ: ðA8Þ

Using feqϕ ¼ e−Ek=T , the Maxwell-Boltzmann distribution,
we get,

RHS ¼ gϕΓϕ

Z
d3k
ð2πÞ3

2mϕ

2Ek
e−Ek=T

¼ gϕΓϕ
T
2π2

m2
ϕK1ðmϕ=TÞ: ðA9Þ

Putting neqϕ ¼ gϕ
2π2

m2
ϕTK2ðmϕ=TÞ, the RHS becomes

RHS ¼ Γϕ
K1ðmϕ=TÞ
K2ðmϕ=TÞ

neqϕ : ðA10Þ

Finally, after equating LHS and RHS of Eq. (A2), the
Boltzmann equation for nψ becomes

dnψ
dt

þ 3Hnψ ¼ Γϕ
K1ðmϕ=TÞ
K2ðmϕ=TÞ

neqϕ : ðA11Þ

Now,instead of nψ , we can write the equation in terms of a
new variable Yψ ¼ nψ=s, known as comoving number
density. Using the fact that sa3 ¼ constant with s, a
being the entropy density and cosmic scale factor of the
FLRW metric respectively, the LHS of Eq. (A11) becomes

s
dYψ

dt
¼ dnψ

dt
þ3Hnψ

⇒
dYψ

dT
¼−

1

3Hs

�
3

T
þdgs=dT

gs

��
dnψ
dt

þ3Hnψ

�

¼−
1

3H

�
3

T
þdgs=dT

gs

�
gψgνRgϕΓϕ

K1ðmϕ=TÞ
K2ðmϕ=TÞ

Yeq
ϕ

¼−
1

HT

�
1þTdgs=dT

3gs

�
Γϕ

K1ðmϕ=TÞ
K2ðmϕ=TÞ

Yeq
ϕ : ðA12Þ

Now defining x ¼ mϕ=T, we can write the above equation
in terms of dimensionless variables x

dYψ

dx
¼ β

xH
Γϕ

K1ðxÞ
K2ðxÞ

Yeq
ϕ ; ðA13Þ

where

β ¼
�
1þ Tdgs=dT

3gs

�
: ðA14Þ
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b. For νR energy density

Let us start with the differential Boltzmann equation
for νR

∂fνR
∂t

−Hp2

∂fνR
∂p2

¼ C½fνR �: ðA15Þ

Integrating both sides with
R
gνRE2

d3p2

ð2πÞ3, we get

Z
gνRE2

d3p2

ð2πÞ3
�
∂fνR
∂t

−Hp2

∂fνR
∂p2

�

¼
Z

gνRE2

d3p2

ð2πÞ3 C½fνR �: ðA16Þ

The LHS, after simplification becomes

Z
gνRE2

d3p2

ð2πÞ3
�
∂fνR
∂t

−Hp2

∂fνR
∂p2

�
¼ dρνR

dt
þ 4HρνR ;

ðA17Þ

where

ρνR ¼
Z

gνR
d3p2

ð2πÞ3 E2fνR : ðA18Þ

Expanding the collision term, the RHS becomes

Z
gνRE2

d3p2

ð2πÞ3 C½fνR �

¼ gνR

Z
d3p2

ð2πÞ3
1

2E2

Z
gψ

d3p1

ð2πÞ32E1

gϕ
d3k

ð2πÞ32Ek

× E2ð2πÞ4δ4ðK − P1 − P2ÞjMj2ϕ→ν̄Rψ
feqϕ : ðA19Þ

Let us perform the following integral first:

I¼
Z

d3p1

ð2πÞ32E1

d3p2

ð2πÞ32E2

E2ð2πÞ4δ4ðK−P1−P2ÞjMj2ϕ→ν̄Rψ

¼ 1

4ð2πÞ2
Z

d3p1

E1

d3p2δ
4ðK−P1−P2ÞjMj2ϕ→ν̄Rψ

: ðA20Þ

We first perform the integration over p⃗2 using the Dirac
delta function,

I ¼ 1

4ð2πÞ2
Z

d3p1

E1

δðEk − E1 − Ek−1ÞjMj2ϕ→νRψ

¼ 2π

4ð2πÞ2
Z

p2
1dp1dðcos θÞ

E1

δðfðθÞÞjMj2ϕ→ν̄Rψ
: ðA21Þ

Here, θ is the angle between k⃗ and p⃗1 and fðθÞ ¼ Ek −

E1 − Ek−1 with Ek−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗ − p⃗1Þ2 þm2

ν

q
. Now to find the

root of fðθÞ, we set

fðθÞ ¼ 0

⇒ Ek − E1 − Ek−1 ¼ 0

⇒ cos θ ¼ 2EkE1 − ðm2
ϕ þm2

ψ −m2
νÞ

2jk⃗jjp⃗1j
≡ cos θ0:

ðA22Þ

Also,

df
d cos θ

����
cos θ¼cos θ0

¼ jk⃗jjp⃗1j
Ek − E1

: ðA23Þ

Thus, the integral I reduces to

I¼ 1

4ð2πÞ
Z

p2
1dp1

E1

Z
dðcosθÞδðcosθ− cosθ0Þ

j df
dcosθ jθ¼θ0

jMj2ϕ→νRψ

¼ jMj02ϕ→ν̄Rψ

8π

Z
p2
1dp1

E1

Ek−E1

jk⃗jjp⃗1j

¼ jMj02ϕ→ν̄Rψ

8πjk⃗j

Z
Emax
1

Emin
1

dE1ðEk−E1Þ: ðA24Þ

In the above, jMj0 implies jMj at θ ¼ θ0. The limits of the
integration will come from the condition

−1 ≤ cos θ0 ≤ 1: ðA25Þ

Working through it, we get

Emin
1 ¼

Ekðm2
ϕ þm2

ψ −m2
νÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
kðm2

ϕ þm2
ψ −m2

νÞ2 −m2
ϕðΛþ 4E2

km
2
ψ Þ

q
2m2

ϕ

≡ g1ðEkÞ

Emax
1 ¼

Ekðm2
ϕ þm2

ψ −m2
νÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
kðm2

ϕ þm2
ψ −m2

νÞ2 −m2
ϕðΛþ 4E2

km
2
ψ Þ

q
2m2

ϕ

≡ g2ðEkÞ; ðA26Þ
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where

Λ ¼ ðm2
ϕ þm2

ψ −m2
νÞ2 − 4m2

ϕm
2
ψ : ðA27Þ

Hence, I becomes

I ¼ g2ðEkÞ − g1ðEkÞ
8πjk⃗j

����Mj02ϕ→ν̄Rψ

�
Ek −

g2ðEkÞ þ g1ðEkÞ
2

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
kðm2

ϕ þm2
ψ −m2

νÞ2 −m2
ϕðΛþ 4E2

km
2
ψ Þ

q
8πjk⃗jm2

ϕ

jMj02ϕ→ν̄Rψ

�
Ek −

Ekðm2
ϕ þm2

ψ −m2
νÞ

2m2
ϕ

�

¼ jMj02ϕ→ν̄Rψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
kðm2

ϕ þm2
ψ −m2

νÞ2 −m2
ϕðΛþ 4E2

km
2
ψÞ

q
8πjk⃗jm2

ϕ

Ek

�
m2

ϕ −m2
ψ þm2

ν

2m2
ϕ

�
: ðA28Þ

Finally, the RHS becomes

RHS ¼ gϕgψgνR
jMj02ϕ→ν̄Rψ

32π3
ðm2

ϕ −m2
ψ þm2

νÞ
2m4

ϕ

Z
∞

mϕ

Ekf
eq
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
kðm2

ϕ þm2
ψ −m2

νÞ2 −m2
ϕðΛþ 4E2

km
2
ψÞ

q
dEk

¼ gϕgψgνR
jMj02ϕ→ν̄Rψ

32π3
ðm2

ϕ −m2
ψÞ2

2m4
ϕ

Z
∞

mϕ

Ekf
eq
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −m2

ϕ

q
dEk ð∵mν ≃ 0Þ ðA29Þ

¼ gϕgψgνR
jMj02ϕ→ν̄Rψ

32π3
ðm2

ϕ −m2
ψÞ2

2m4
ϕ

Z
∞

mϕ

Eke−Ek=T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −m2

ϕ

q
dEk

¼ gϕgψgνR
jMj02ϕ→ν̄Rψ

32π3
ðm2

ϕ −m2
ψÞ2

2m4
ϕ

m2
ϕTK2ðmϕ=TÞ

¼ hEΓineqϕ ; ðA30Þ

where

hEΓi ¼ gψgνR
jMj02ϕ→ν̄Rψ

32π

ðm2
ϕ −m2

ψ Þ2
m4

ϕ

: ðA31Þ

So, the final form of the evolution equation of ρνR is

dρνR
dt

þ4HρνR ¼hEΓineqϕ

⇒
dỸ
dT

¼−
β

HTs4=3
hEΓineqϕ

�
where Ỹ¼ ρνR

s4=3

�
:

ðA32Þ
In terms of x ¼ mϕ=T, the above equation becomes

dỸ
dx

¼ β

Hs1=3x
hEΓiYeq

ϕ : ðA33Þ

2. Case II

In this case, ϕ is not in equilibrium always. It is produced
in equilibrium and at some epoch it goes out of equilibrium
due to thermal freeze-out.

a. For ψ abundance

The procedure to obtain the Boltzmann equation for ψ in
this case is the same as the above case from Eq. (A2) to
Eq. (A7) except that feqϕ is now replaced by fϕ. Thus, the
Boltzmann equation for ψ is

dnψ
dt

þ 3Hnψ ¼ gϕ

Z
d3k
ð2πÞ3

2mϕ

2Ek
Γϕfϕ: ðA34Þ

Since ϕ was in equilibrium earlier and goes out of
equilibrium after freeze-out, we can write the general form
of the Maxwell-Boltzmann distribution function for ϕ with
a chemical potential that is nonzero only after the freeze-out
of ϕ i.e., fϕ ¼ eμ=Te−Ek=T . The chemical potential μ is

defined as μ ¼ T lnðnϕðTÞneqϕ ðTÞÞ. Substituting fϕ in Eq. (A34),

the Boltzmann equation becomes

dnψ
dt

þ 3Hnψ ¼ gϕeμ=T
Z

d3k
ð2πÞ3

2mϕ

2Ek
Γϕe−Ek=T: ðA35Þ

BISWAS, BORAH, DAS, and NANDA PHYS. REV. D 107, 015015 (2023)

015015-18



The RHS of the equation is the same as Eq. (A9) in case I
except for the eμ=T factor. Hence, following the same
procedure as Eqs. (A9)–(A11) and replacing μ by number
density, we get

dnψ
dt

þ 3Hnψ ¼ eμ=TΓϕ
K1ðmϕ=TÞ
K2ðmϕ=TÞ

neqϕ ;

¼ Γϕ
K1ðmϕ=TÞ
K2ðmϕ=TÞ

nϕ: ðA36Þ

We can write the above equation in terms of
Yψ ¼ nψ=s, Yϕ ¼ nϕ=s, and x ¼ mϕ=T. In terms of these

dimensionless quantities the above equation takes the
following form:

dYψ

dx
¼ β

xH
Γϕ

K1ðxÞ
K2ðxÞ

Yϕ: ðA37Þ

b. For νR energy density

To find the energy density of νR in this case, we will
follow the same procedure as in the previous case, the only
difference will be that now feqϕ will be replaced by

fϕ ¼ eμ=TeEk=T . Hence starting from Eq. (A29), the RHS
of the Boltzmann equation for ρνR can be written as

dρνR
dt

þ 4HρνR ¼ gϕgψgνR
jMj02ϕ→ν̄Rψ

32π3
ðm2

ϕ −m2
ψ Þ2

2m4
ϕ

Z
∞

mϕ

Ekfϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −m2

ϕ

q
dEk;

¼ gϕgψgνR
jMj02ϕ→ν̄Rψ

32π3
ðm2

ϕ −m2
ψ Þ2

2m4
ϕ

Z
∞

mϕ

Ekeμ=TeEk=T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −m2

ϕ

q
;

¼ gϕgψgνR
jMj02ϕ→ν̄Rψ

32π3
ðm2

ϕ −m2
ψ Þ2

2m4
ϕ

eμ=T
Z

∞

mϕ

EkeEk=T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −m2

ϕ

q
;

¼ gϕgψgνR
jMj02ϕ→ν̄Rψ

32π3
ðm2

ϕ −m2
ψ Þ2

2m4
ϕ

eμ=Tm2
ϕTK2ðmϕ=TÞ;

¼ hEΓieμ=Tneqϕ ;

⇒
dρνR
dt

þ 4HρνR ¼ hEΓinϕ: ðA38Þ

Now expressing ρνR by the comoving energy density, Ỹ, the above equation in terms of T and x ¼ mϕ=T are given by

dỸ
dT

¼ −
β

HTs1=3
hEΓiYϕ;

dỸ
dx

¼ β

Hs1=3x
hEΓiYϕ: ðA39Þ

c. For comoving number density of nonthermal ϕ

The calculation of the number density of ϕ will involve two processes: XðK0
1Þ þ X̄ðK0

2Þ → ϕðK1Þ þ ϕ†ðK2Þ and
ϕðK1Þ → ψðP1Þ þ νRðP2Þ. Hence, the differential form of the Boltzmann equation is (X is any SM particle)

∂fϕ
∂t

−Hk1
∂fϕ
∂k1

¼ CXX→ϕϕ† ½fϕ� − Cϕ→ψνR ½fϕ�Z
gϕ

d3k1
ð2πÞ3

�
∂fϕ
∂t

−Hk1
∂fϕ
∂k1

�
¼

Z
gϕ

d3k1
ð2πÞ3 ðC

XX̄→ϕϕ† ½fϕ� − Cϕ→ψνR ½fϕ�Þ: ðA40Þ

The LHS is

Z
gϕ

d3k1
ð2πÞ3

�
∂fϕ
∂t

−Hk1
∂fϕ
∂k1

�
¼ dnϕ

dt
þ 3Hnϕ: ðA41Þ
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The first term of RHS isZ
gϕ

d3k1
ð2πÞ3C

XX̄→ϕϕ† ½fϕ�;

¼
Z

gϕ
d3k1
ð2πÞ3

1

2Ek1

Z
gX

d3k01
ð2πÞ32Ek0

1

Z
gX

d3k02
ð2πÞ32Ek0

2

Z
gϕ

d3k2
ð2πÞ32Ek2

ð2πÞ4δ4ðK0
1þK0

2−K1−K2ÞjMj2XX̄→ϕϕ†ðfk0
1
fk0

2
−fk1fk2Þ;

¼ðneqϕ Þ2hσviϕϕ†→XX̄

��
nX
neqX

�
2

−
�
nϕ
neqϕ

�
2
�
;

�
∵ fi¼eμi=Te−Ei=T¼ ni

neqi

�
;

¼hσviϕϕ†→XX̄ððneqϕ Þ2−ðnϕÞ2Þ; ð∵neqX ¼nXÞ ðA42Þ
where

hσvi ¼ 1

ðneqϕ Þ2
Z

gϕ
d3k1
ð2πÞ3

1

2Ek1

Z
gX

d3k01
ð2πÞ32Ek0

1

Z
gX

d3k02
ð2πÞ32Ek0

2

Z
gϕ

d3k2
ð2πÞ32Ek2

× ð2πÞ4δ4ðK0
1 þ K0

2 − K1 − K2ÞjMj2XX̄→ϕϕ†e−ðEk1
þEk2

Þ=T;

¼ 1

ðneqϕ Þ2
Z

gϕ
d3k1
ð2πÞ3

Z
gϕ

d3k2
ð2πÞ3

1

4Ek1Ek2

Z
gX

d3k01
ð2πÞ32Ek0

1

Z
gX

d3k02
ð2πÞ32Ek0

2

× ð2πÞ4δ4ðK0
1 þ K0

2 − K1 − K2ÞjMj2
ϕϕ†→XX̄e

−ðEk1
þEk2

Þ=T; ð∵jMj2XX̄→ϕϕ
¼ jMj2

ϕϕ→XX̄Þ

¼ g2ϕ
ðneqϕ Þ2

Z
d3k1
ð2πÞ3

d3k2
ð2πÞ3 ðσvÞϕϕ†→XX̄e

−ðEk1
þEk2

Þ=T;

¼
R d3k1

ð2πÞ3
R d3k2

ð2πÞ3 ðσvÞϕϕ†→XX̄e
−ðEk1

þEk2
Þ=TR d3k1

ð2πÞ3
R d3k2

ð2πÞ3 e
−ðEk1

þEk2
Þ=T ;

¼ 1

8m4
ϕTK

2
2ðmϕ=TÞ

Z
∞

4m2
ϕ

ðσÞϕϕ†→XX̄ðs − 4m2
ϕÞ

ffiffiffi
s

p
K1ð

ffiffiffi
s

p
=TÞds: ðA43Þ

We have obtained the last expression following the prescription given in [42]. Now the second term in the RHS isZ
gϕ

d3k1
ð2πÞ3 C

ϕ→ψνR ½fϕ� ¼
Z

gϕ
d3k1
ð2πÞ3

1

2Ek1

Z
gψ

d3p1

ð2πÞ32E1

Z
gνR

d3p2

ð2πÞ32E2

ð2πÞ4δ4ðK1 − P1 − P2Þfϕ: ðA44Þ

Here due to the nonthermal nature of ψ and νR, we have omitted the backreaction term which otherwise will be there in
Eq. (A44) and is proportional to fψfνR . This is the same decay process that we have worked through in Sec. A 2 a when ϕ is
not in equilibrium. Therefore, from Eq. (A36) we obtain

Z
gϕ

d3k1
ð2πÞ3 C

ϕ→ψνR ½fϕ� ¼ Γϕ
K1ðmϕ=TÞ
K2ðmϕ=TÞ

nϕ: ðA45Þ

Finally, the full equation for the evolution of nϕ is

dnϕ
dt

þ 3Hnϕ ¼ −hσviϕϕ†→XX̄ððnϕÞ2 − ðneqϕ Þ2Þ − Γϕ
K1ðmϕ=TÞ
K2ðmϕ=TÞ

nϕ: ðA46Þ

In terms of comoving number density Yϕ,

dYϕ

dT
¼ −

βs
HT

�
−hσviϕϕ†→XX̄ððYϕÞ2 − ðYeq

ϕ Þ2Þ −
Γϕ

s

K1ðmϕ=TÞ
K2ðmϕ=TÞ

Yϕ

�
;

⇒
dYϕ

dx
¼ βs

Hx

�
−hσviϕϕ†→XX̄ððYϕÞ2 − ðYeq

ϕ Þ2Þ −
Γϕ

s

K1ðmϕ=TÞ
K2ðmϕ=TÞ

Yϕ

�
: ðA47Þ
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3. Case III

a. Distribution function of ϕ

The case III, where ϕ never attains thermal equilibrium
with the SM bath, has the same forms of Boltzmann
equations for nϕ and ρνR as those are in case I except here
we need to replace the thermal distribution function of ϕ by
the nonthermal distribution function. The differential form
of the Boltzmann equation to find the distribution function
of ϕ, fϕ is given by [79,80]

∂fϕ
∂t

−Hp1

∂fϕ
∂p1

¼ Ch→ϕϕ† þ Chh→ϕϕ† þ Cϕ→ν̄Rψ : ðA48Þ

Here Ch→ϕϕ†
is the collision term for production of

the ϕϕ† pair from the decay of the SM Higgs boson
hðKÞ → ϕðP1Þ þ ϕ†ðP2Þ. The expression of Ch→ϕϕ†

is
given by

Ch→ϕϕ† ¼ 1

2Ep1

Z
d3p2

2Ep2
ð2πÞ3

d3k
2Ekð2πÞ3

ð2πÞ4δ4ðK − P1 − P2ÞjMj2h→ϕϕ†ðfeqh ðkÞ − fϕðp1Þfϕ†ðp2ÞÞ;

¼ 1

2Ep1
ð2πÞ2

Z
d3p2

4Ep2
Ep1þp2

δðEp1þp2
− Ep1

− Ep2
ÞjMj2h→ϕϕ†ðfeqh ðkÞ − fϕðp1Þfϕ†ðp2ÞÞ: ðA49Þ

Now we can write d3p2 ¼ p2
2dp2dðcos θÞdϕ, where θ is the angle between p⃗1 and p⃗2. Therefore, the Dirac delta function

δðEp1þp2
− Ep1

− Ep2
Þ actually fixes the angle θ. So, from the condition Ep1þp2

¼ Ep1
þ Ep2

, we will get

cos θ ¼ 2m2
ϕ −m2

h þ 2Ep1
Ep2

2p1p2

≡ cos θ0: ðA50Þ

Therefore,

Ch→ϕϕ† ¼ 1

2Ep1
ð2πÞ2

Z
p2
2dp2ð2πÞ
4Ep2

Z
1

−1

dðcos θÞδðcos θ − cos θ0Þ
Ep1þp2

j df
d cos θ jθ¼θ0

jMj2h→ϕϕ†ðfeqh ðEp1þp2
Þ − fϕðp1Þfϕ†ðp2ÞÞ; ðA51Þ

where fðcos θÞ ¼ Ep1þp2
− Ep1

− Ep2
with Ep1þp2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗1 þ p⃗2j2 þm2

h

p
and

df
d cos θ

����
θ¼θ0

¼ p1p2

Ep1
þ Ep2

; ðA52Þ

Ep1þp2
jθ¼θ0

¼ Ep1
þ Ep2

: ðA53Þ

After some simplification, the collision term takes the following form:

Ch→ϕϕ† ¼ 1

16πEp1
p1

Z
pmax
2

pmin
2

p2dp2

Ep2

jMj2h→ϕϕ†ðfeqϕ ðEp1
Þfeq

ϕ†ðEp2
Þ − fϕðp1Þfϕ†ðp2ÞÞ: ðA54Þ

The limits of the integration are obtained from the condition −1 ≤ cos θ0 ≤ 1. This condition translates to

pmin
2 ¼

������
p1ðm2

h − 2m2
ϕÞ −mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

h − 4m2
ϕÞðp2

1 þm2
ϕÞ

q
2m2

ϕ

������;

pmax
2 ¼

p1ðm2
h − 2m2

ϕÞ þmh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

h − 4m2
ϕÞðp2

1 þm2
ϕÞ

q
2m2

ϕ

: ðA55Þ

Here we have neglected the inverse decay term in Eq. (A54) as it is substantially smaller compared to the decay term as long
as ϕ is nonthermal. Therefore, the collision term Ch→ϕϕ†

becomes
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Ch→ϕϕ† ¼ 1

16πEp1
p1

Z
pmax
2

pmin
2

p2dp2

Ep2

jMj2h→ϕϕ†e−Ep1
=Te−Ep2

=T;

¼
jMj2h→ϕϕ†Te−Ep1

=T

16πEp1
p1

ðe−Emin
p2

=T − e−E
max
p2

=TÞ; ðA56Þ

and EmaxðminÞ
p2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpmaxðminÞ

2 Þ2 þm2
ϕ

q
.

Now, we will briefly discuss the derivation of the collision term Chh→ϕϕ†
for the production of the ϕϕ† pair due to the

scattering of the Higgs boson hðK1Þ þ hðK2Þ → ϕðP1Þ þ ϕ†ðP2Þ,

Chh→ϕϕ† ¼ 1

2Ep1

Z
d3k1

2Ek1ð2πÞ3
d3k2

2Ek2ð2πÞ3
d3p2

2Ep2
ð2πÞ3 ð2πÞ

4δ4ðK1þK2−P1−P2ÞjMj2hh→ϕϕ†ðfhðk1Þfhðk2Þ−fϕðp1Þfϕ†ðp2ÞÞ;

¼ 1

2Ep1

Z
d3p2

2Ep2
ð2πÞ3

�Z
d3k1

2Ek1ð2πÞ3
d3k2

2Ek2ð2πÞ3
ð2πÞ4δ4ðK1þK2−P1−P2Þ

�

× jMj2hh→ϕϕ†ðfhðk1Þfhðk2Þ−fϕðp1Þfϕ†ðp2ÞÞ: ðA57Þ

The term inside the square brackets is Lorentz invariant, and we can perform that integration easily in the center of
momentum frame. Here, for calculational simplification, we assume that the matrix amplitude square jMj2hh→ϕϕ† depends

only on the Mandelstam variable s which is true for s-channel scatterings and contact interactions. For a general matrix
amplitude square depending on all three Mandelstam variables one can use the prescription given in [81],

I ¼
Z

d3k1
2Ek1ð2πÞ3

d3k2
2Ek2ð2πÞ3

ð2πÞ4δ4ðK1 þ K2 − P1 − P2Þ: ðA58Þ

This will give

I ¼ 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

s

r
: ðA59Þ

Now, since I is a Lorentz invariant quantity, we can use this result in any inertial frame of reference with a proper
definition of s. In any arbitrary reference frame, the Mandelstam variable is sðp1; p2; cos αÞ ¼ ðP1 þ P2Þ2 ¼
2m2

ϕ þ 2Ep1
Ep2

− 2jp⃗1jjp⃗2j cos α, where α is the angle between p⃗1 and p⃗2 which is π in the center of momentum frame.
Hence, the collision term in an arbitrary inertial frame of reference is given by

Chh→ϕϕ† ¼ 1

16πEp1

Z
d3p2

2Ep2
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

sðp1; p2; cos αÞ

s
jMj2hh→ϕϕ†ðsÞðfhðk1Þfhðk2Þ − fϕðp1Þfϕ†ðp2ÞÞ;

¼ 2π

16πEp1
2ð2πÞ3

Z
p2
2dp2dðcos αÞ

Ep2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

sðp1; p2; cos αÞ

s
jMj2hh→ϕϕ†ðsÞfhðk1Þfhðk2Þ; ðA60Þ

where, in the last step we have neglected the backscattering term. Now using the Maxwell-Boltzmann distribution function
for the SM Higgs boson and fhðk1Þfhðk2Þ ¼ e−ðEk1

þEk2
Þ=T ¼ e−ðEp1

þEp2
Þ=T , we obtain

Chh→ϕϕ† ¼ e−Ep1
=T

16Ep1
ð2πÞ3

Z
∞

0

p2
2dp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
2 þm2

ϕ

q e−Ep2
=T

Z
cosαmax

−1
dðcos αÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

sðp1; p2; cos αÞ

s
jMj2hh→ϕϕ†ðsÞ: ðA61Þ

The limit on cos α will come from the condition that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

h
sðp1;p2;cos αÞ

q
is real. This is possible only when s ≥ 4m2

h and

therefore
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cos α ≤
2m2

ϕ − 4m2
h þ 2Ep1Ep2

2jp⃗1jjp⃗2j
≡ cos α0: ðA62Þ

Thus the upper limit of the integration is

cos αmax ¼ Min½Max½cos α0;−1�; 1�: ðA63Þ

And, lastly, the collision term Cϕ→νRψ is for the decay of
ϕ into νR and ψ (ϕðP1Þ → νRðqÞ þ ψðq0Þ) and it has the
following expression [80]:

Cϕ→νRψ ¼ −fϕ
mϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
1 þm2

ϕ

q Γϕ→νRψ : ðA64Þ

The LHS of Eq. (A48) can be greatly simplified if we
transform the variables from p1 and T to new variables

r ¼ m0=T and ξ ¼ ðgsðT0Þ
gsðTÞ Þ

1=3 p1

T where m0 is any arbitrary

mass scale. In terms of the two new variables, the LHS of
Eq. (A48) depends only on r [79,80]

∂fϕ
∂t

−Hp1

∂fϕ
∂p1

¼ rH
�
1þ Tg0sðTÞ

3gsðTÞ
�

−1 ∂fϕ
∂r

: ðA65Þ

Therefore, the full Boltzmann equation for fϕ is

∂fϕðξ; rÞ
∂r

¼
ð1 − r

3gsðrÞ
dgsðrÞ
dr Þ

rH
ðCh→ϕϕ†ðξ; rÞ

þ Chh→ϕϕ†ðξ; rÞ þ Cϕ→ν̄Rψðξ; rÞÞ: ðA66Þ

Now, the number density of ϕ can be written as

nϕðrÞ ¼
gϕ
2π2

AðrÞ3
�
m0

r

�
3
Z

dξξ2fϕðξ; rÞ; ðA67Þ

where

AðrÞ ¼
�

gsðm0=rÞ
gsðm0=T0Þ

�
1=3

: ðA68Þ

After solving Eq. (A66) for the nonthermal distribution
function fϕðξ; rÞ, we can now calculate the comoving
number density of ψ and Ỹ using the following Boltzmann
equations:

dYψ

dr
¼ gϕβ

rHs

Γϕmϕ

2π2

Z
∞

0

ðAm0

r Þ3ξ2fϕðξ;rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξAm0

r Þ2þm2
ϕ

q dξ;

dỸ
dr

¼ gϕβ

rHs4=3
hEΓi 1

2π2

Z
∞

0

�
A
m0

r

�
3

ξ2fϕðξ;rÞdξ: ðA69Þ

APPENDIX B: EQUATIONS FOR
ΩDMh2 AND ΔNeff

The effective number of relativistic degrees of freedom
Neff can be defined as

Neff ¼
8

7

�
11

4

�
4=3

�
ρrad − ργ

ργ

�
; ðB1Þ

where ρrad, ργ denote total radiation and photon
densities respectively. The change in Neff is defined as
ΔNeff ¼ Neff − NSM

eff . While the expected value in the SM is
close to 3 due to three left-handed neutrinos, in our scenario
this can increase due to the presence of three right-handed
neutrinos νR which are relativistic. Thus, taking ρνR to be
part of ρrad, we can write ΔNeff as

ΔNeff ¼ 2 × 3

�
ρνR
ρνL

�
CMB

¼ 2 × 3

�
ρνR
ρνL

�
10 MeV

�
∵ρνL ∝

1

a4
; ρνL ∝

1

a4

�

¼ 2 × 3

�
s4=3Ỹ
ρνL

�
10 MeV

; ðB2Þ

where in the second step, we equate the ratio ρνR=ρνL
at the scale of recombination or CMB to that of
BBN ∼Oð10Þ MeV. This is possible as we ensure the
production of νR is complete before the BBN epoch.
Similarly, final DM abundance ΩDMh2 can be written in

terms of corresponding comoving number density as

ΩDMh2¼ 2×
ρ0ψ
ρ0c

h2 ¼ 2×
mψs0Y0

ψ

ρ0c
h2¼ 2×

mψs0ðYψÞ10
ρ0c

h2:

ðB3Þ

Since we have taken gϕ ¼ 1 throughout (the value of gψ and
gνR are taken as 2), this implies that we are considering
either the equations for ϕ or ϕ†. Hence, Yψ and Ỹ are only
for either particles or antiparticles. So, in the expressions
for ΔNeff and ΩDMh2 above, we have included a factor of 2
to incorporate both particles and antiparticles. Also a factor
of 3 is included in ΔNeff for three flavors of νR.

APPENDIX C: APPROXIMATE ANALYTICAL
SOLUTIONS FOR CASE I AND CASE II

1. Case I

Equations (8) and (9) for case I can be solved analytically
neglecting the variation of gs and gρ. The expressions of Yψ

and Ỹ after freeze-in are
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Yψ ¼ 135gϕ
1.66 × 8π3gs

ffiffiffiffiffigρp
MplΓϕ

m2
ϕ

;

Ỹ ¼ 675gϕ
1.66 × 8π3gs

ffiffiffiffiffigρp
�

45

2π2gs

�
1=3MplhEΓi

m3
ϕ

; ðC1Þ

where gs and gρ are effective number of degrees of
freedoms at the freeze-in temperature T ∼mϕ and

hEΓi ¼ mϕ

2

�
1 −

m2
ψ

m2
ϕ

�
Γϕ: ðC2Þ

With this, the ratio of Ỹ to Yψ in the limit mϕ ≫ mψ is
given by

Ỹ
Yψ

¼ 675

270

�
45

2π2

�
1=3 1

g1=3s

: ðC3Þ

Using this ratio, we can easily establish a relation between
ΔNeff and ΩDMh2 as

ΔNeff ¼ 3.29
C2

C1mψ

ΩDMh2

g1=3s

; ðC4Þ

where C1 ¼ 2 × 2.755 × 108 GeV−1 and C2 ¼ 3 × 1.16 ×
ð43=4Þ4=3 are constants.

2. Case II

For case II, we have solved Eq. (12) neglecting its first
term i.e., after the freeze out of ϕ. This gives

Yϕ ¼ Yfo
ϕ e

−
ΓϕMpl

1.66×
ffiffiffi
gρ�

p
m2
ϕ

ðx2
2
−ðxf Þ2

2
Þ
: ðC5Þ

Now this expression can be used to solve Eqs. (13) and (14)
analytically (once again we are neglecting the temperature
dependence of gs and gρ),

Yψ ≈ Yfo
ϕ ;

Ỹ ≈
Yfo
ϕ

g1=3s g1=2ρ

MplhEΓi
m3

ϕ

f1
e
f2
2
ðxfÞ2

f3=22

; ðC6Þ

where

f1 ¼
1

1.66

ffiffiffi
π

2

r �
45

2π2

�
1=3

f2 ¼
ΓϕMpl

1.66 ffiffiffiffiffigρp m2
ϕ

¼ Γϕ

HðmϕÞ
: ðC7Þ

Here Yfo
ϕ is the abundance of ϕ just after freeze-out. The

expression for Ỹ given in Eq. (C6) is valid as long as the
product f2ðxfÞ2 ≪ 1. Now in the limit mϕ ≫ mψ the ratio
of Ỹ to Yψ is given by

Ỹ
Yψ

≈
1

g1=3s g1=2ρ

MplΓϕ

2m2
ϕ

f1
e
f2
2
ðxfÞ2

f3=22

; ðC8Þ

and finally,

ΔNeff ≈
MplΓϕ

2m2
ϕ

f1
e
f2
2
ðxfÞ2

f3=22

C2

C1mψ

ΩDMh2

g1=3s g1=2ρ

: ðC9Þ
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