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Recent experimental results in B physics from Belle, BABAR, and LHCb suggest new physics (NP) in
the weak b → c charged-current processes. Here we focus specifically on the decay modes B̄0 → D�þl−ν̄
with l ¼ e and μ. The world averages of the ratios RD and R�

D currently differ from the Standard Model
(SM) predictions by 3.4σ while recently a new anomaly has been observed in the forward-backward
asymmetry measurement, AFB, in B̄0 → D�þμ−ν̄ decay. It is found that ΔAFB ¼ AFBðB → D�μνÞ −
AFBðB → D�eνÞ is around 4.1σ away from the SM prediction in an analysis of 2019 Belle data. In this work
we explore possible solutions to the ΔAFB anomaly and point out correlated NP signals in other angular
observables. These correlations between angular observables must be present in the case of beyond the
Standard Model physics. We stress the importance of Δ type observables that are obtained by taking the
difference of the observable for the muon and the electron mode. These quantities cancel form-factor
uncertainties in the SM and allow for clean tests of NP. These intriguing results also suggest an urgent need
for improved simulation and analysis techniques in B̄0 → D�þl−ν̄ decays. Here we also describe a new
Monte Carlo event generator tool based on EVTGEN that we developed to allow simulation of the NP
signatures in B̄0 → D�þl−ν, which arise due to the interference between the SM and NP amplitudes. We
then discuss prospects for improved observables sensitive to NP couplings with 1, 5, 50, and 250 ab−1 of
Belle II data, which seem to be ideally suited for this class of measurements.
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I. INTRODUCTION

A powerful way to study physics beyond the Standard
Model (SM) is via virtual effects of new particles, not
present in the SM, in low energy experiments. These virtual
effects can in many cases probe mass scales beyond the
reach of present or proposed colliders, where the new
particles are expected to appear. There is also the possibility
that beyond the Standard Model physics comes in the form
of weakly coupled light new states. These new states are

more likely to be detected at low energy, high precision
experiments. In this work we will focus on charged current
semileptonic B decays, B̄0 → D�þl−ν̄ with l ¼ e and μ.
These decays originate from the underlying quark-level
transitions b → cl−ν̄l, where l ¼ e, μ, or τ. At the hadron
level they manifest as decays such as B̄ → Dð�Þl−ν̄l.
The charged-current decays B → Dð�Þτντ have been

measured by the BABAR, Belle, and LHCb experiments.
Discrepancies with SM predictions of Rτl

Dð�Þ ≡ BðB̄ →

Dð�Þτ−ν̄τÞ=BðB̄ → Dð�Þl−ν̄lÞ (l ¼ e, μ) [1–10] have been
observed thus far. The SM predictions and the correspond-
ing world-averaged experimental results from the heavy
flavor averaging group (HFLAV) [11] are shown in Table I.
The deviation from the SM in Rτl

D and Rτl
D� (combined) has

a significance of 3.4σ [11]. These measurements suggest
the presence of new physics (NP) that is lepton-flavor
universality violating (LFUV) in b → cτντ decays.
We will focus on the decay B̄0 → D�þl−ν̄ as a labo-

ratory to explore NP effects in b → cl−ν̄l transitions. At
leading order, the B̄0 → D�þl−ν̄ transitions proceed via
the SM. However, new interactions can affect these decays.
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In experiment, the underlying transition is b → clX where
the invisible state X can be a left-handed (LH) neutrino (part
of the SM LH doublet of leptons) or a light right-handed
(RH) singlet neutrino. Here we will focus on NP scenarios
that produce only LH neutrinos in the final state.
Although theoretical work on NP has concentrated on

the semileptonic τ modes, where experimental statistics are
limited, attention is now also being paid to the semileptonic
muon and electron modes where large data samples will be
available. For example, scaling the Belle results in [15] to
Belle II at 50 ab−1 we expect a yield of 8 × 106 events in
each of the muon and electron modes. Similarly, scaling the
BABAR results in [16] on B → D�lν with a fully recon-
structed hadronic tag, we expect 3 × 105 events with no
background.
An additional advantage is that the missing neutrino

momentum can be calculated from kinematic constraints of
eþe− production at the ϒð4SÞ and the angular distributions
can be fully reconstructed. Unlike the τ, which is detected
through its decay products, the muon and electron are
directly detected in experiment. In contrast, for semilep-
tonic B decays to the τ lepton, the final state contains one or
more additional neutrinos from the τ decay, which com-
plicates the situation. Examining NP in the muon mode is
further motivated by the anomalous ðg − 2Þμ measurements
[17] as well as by the neutral-current LFUV B anomalies in
the b → sμþμ− decays (see, for example, Ref. [18]). At first
glance, when studying the B anomalies within the frame-
work of an effective field theory (EFT), these anomalies
may appear unrelated. However, within an SMEFT frame-
work NP in the b → sμþμ− transition could imply NP in
the b → cμ−ν̄μ decay [19]. In this article, therefore, we will
focus on the muon and electron modes, assuming that the
electron decay mode is well described by the SM, but NP
contributions are allowed in the muon mode.
Although hints for NP have appeared in the ratio of rates

such asRDð�Þ , establishing NP and diagnosing the type of NP
will require examination of deviations from the SM in other
observables as well. Several observables can be constructed
from a complete differential distribution of events using
helicity angles. Figure 1 shows a schematic definition of the
three helicity angles in B̄ → D�ð→ DπÞl−ν̄.

Angular observables are even more interesting as these
may provide one or more unambiguous signals for NP. One
such sensitive angular observable is the forward-backward
asymmetry of the charged lepton, AFB, which can be
reconstructed as the difference between the number of
leptons with the lepton’s helicity angle, θl (see Fig. 1),
greater and less than π=2. Another observable is S3, which
can be reconstructed as an asymmetric integral over the
angle χ, which measures the difference between the decay
planes of the D� and the lepton-neutrino system (see
Fig. 1). There are additional interesting and correlated
angular observables, such as S5 and S7, which require
asymmetric integrals over multiple helicity angles. In
Ref. [20], it was shown that NP in the μ modes can also
be detected in the CP-violating triple-product terms, like
S7, in the angular distribution [21,22]. Some previous work
in the literature on the effects of new physics in angular
observables of semileptonic B-meson decays can be found
in [23–28].
A nonzero AFB is present in both the muon and electron

channels in the SM due to interference between different
helicity amplitudes of the virtual W boson. However, in a
Δ-type observable,1 ΔAFB ¼ Aμ

FB − Ae
FB, where one con-

siders the difference between the muon and electron
channels, the SM contributions approximately cancel,
except for a small residual effect due to the dependence
on the muon mass close to its threshold. Furthermore,
we find that the observable ΔAFB has reduced sensitivity
to hadronic uncertainties in form factors. Therefore, any

FIG. 1. Schematic diagram defining various angles in B̄ →
D�ð→ DπÞl−ν̄ decay [20]. We have aligned the coordinate axes
so that the decaying B̄ meson is at rest at the origin and in this
frame the momentum of the D� meson is oriented along the z
axis. Subsequent decays are shown in the rest frames of the
corresponding object that is decaying—D� → Dπ is in the rest
frame of the D� and a virtual particle decays into l−ν̄. The polar
angles, θ� and θl, are, respectively, defined in these subsequent
rest frames, while the azimuthal angle, χ, is defined in the rest
frame of the B̄ meson.

TABLE I. Measured values of observables that suggest NP in
b → cτντ. Measurements presented in this table refer to world
averages (WA). Note that in [12], the most recent lattice data from
[13] on B → D�lν form factors were used to obtain the SM
prediction for Rτ=l

D� , 0.2586� 0.0030.

Observable SM prediction Measurement (WA)

Rτ=l
D� 0.258� 0.005 [11] 0.295� 0.011� 0.008 [11]

Rτ=l
D 0.299� 0.003 [11] 0.340� 0.027� 0.013 [11]

Rμ=e
D� ∼1.0 1.04� 0.05� 0.01 [14]

1Such observables were first proposed in Ref. [29] for angular
analyses study on B → K�ll decay.
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deviation from the SM prediction for ΔAFB is likely due to
NP effects. Recently, using the tables of Belle data from
Ref. [15], an anomaly in ΔAFB was reported in Ref. [30].
This could be a signature of LFUV NP [30–32].
LFUV NP in the electron and muon sectors is tightly

constrained by the measurement of the ratio of rates Rμe
Dð�Þ ≡

BðB̄ → Dð�Þμ−ν̄μÞ=BðB̄ → Dð�Þe−ν̄eÞ which is 1.04� 0.05
[14]. We restrict ourselves to NP scenarios in which a
deviation of at most 3% from unity is allowed, which could
be tested in the future. Even if the effects of LFUV NP are
small in the ratios of decay rates, larger effects may be
visible in the angular distributions.
In this paper, we discuss various solutions to explain the

ΔAFB anomaly. The framework we use is based on a
Monte Carlo generator to simulate a realistic experimental
environment. Hence, in this work, we describe a newly
developed Monte Carlo (MC) event generator tool [33] to
allow simulations of the NP signatures in B → D�lν
arising due to the interference between SM and NP
amplitudes. We employ our MC tool primarily to study
semileptonic decays with a muon and electron in the final
state. We assume that the electron decay mode is well
described by the SM, but allow for NP contributions in the
muon mode. Using this MC tool we generate results for
three distinct scenarios with different NP couplings that are
consistent with current data and can explain the ΔAFB
anomaly, while remaining consistent with other constraints.
Furthermore, using MC simulations we demonstrate that

Δ-type observables, such as ΔAFB and ΔS5, eliminate most
QCD uncertainties from form factors and allow for clean
measurements of NP. We introduce correlated observables
that improve the sensitivity to NP. We also discuss
prospects for improved observables sensitive to NP cou-
plings with the expected 50 ab−1 of Belle II data, which
seems to be ideally suited for this class of measurements.
These measurements may also be possible at LHCb and
other hadron collider experiments. We provide both inte-
grated observables, for the benefit of current experimental
analyses, and distributions of the observables as a function
of q2. We also suggest experimental requirements on q2 and
on laboratory lepton momenta to optimize sensitivity to NP
and reduce systematics.
The layout of the remainder of this article is as follows.

In Sec. II, we discuss the theoretical basis of the full angular
distribution for B̄ → D�l−ν̄ in an effective theory frame-
work. In Secs. III–V, we present the implementation of our
NP MC tool, the signatures of and sensitivity to NP,
respectively; finally, we conclude in Sec. VI.

II. THEORY

In the study of NP in charged-current semileptonic B
decays it is useful to adopt an EFT framework. In an EFT
description of the b → cl−ν̄ decays, one writes down all
possible dimension-six four-quark operators at the scale of
the b-quark mass. The effective Hamiltonian that describes
SM and NP effects can be expressed as

Heff ¼
GFVcbffiffiffi

2
p f½ð1þ gLÞc̄γαð1 − γ5Þbþ gRc̄γαð1þ γ5Þb�μ̄γαð1 − γ5Þνμ

þ ½gSc̄bþ gPc̄γ5b�μ̄ð1 − γ5Þνμ þ gTc̄σαβð1 − γ5Þbμ̄σαβð1 − γ5Þνμg þ H:c:; ð1Þ
where the factors gX, X ¼ L, R, S, P, and T, are coupling constants that describe NP effects. As indicated earlier, we have
only included LH neutrinos in this EFT, however, we have allowed for both LH and RH NP couplings.
Based on the effective Hamiltonian of Eq. (1), one can express the decay amplitude for the process B̄ → D�ð→ DπÞlν̄

as [20,34],

M ¼ 4GFVcbffiffiffi
2

p fhDπjc̄γμ½ð1þ gLÞPL þ gRPR�bjB̄iðl̄γμPLνÞ

þ hDπjc̄ðgSLPL þ gSRPRÞbjB̄iðl̄PLνÞ þ gThDπjc̄σμνbjB̄iðl̄σμνPLνÞg; ð2Þ
where PR;L ¼ ð1� γ5Þ=2. This decay amplitude contains several hadronic matrix elements that describe the B̄ → D� → Dπ
transitions through LH and RH scalar and vector currents, as well as a tensor current. The D� → Dπ decay is mediated
solely by the strong force, so that

hDπjD�ðk; ϵÞi ¼ ϵ · ðpD − pπÞ; ð3Þ
where pDðπÞ is the four-momentum of theDðπÞ, k ¼ pD þ pπ is the four-momentum of theD� and ϵ is its polarization. Note
that these satisfy the on-shell condition k · ϵ ¼ 0.
The remaining parts of the hadronic matrix elements that appear in Eq. (2) are (see, for example, [35])

hD�ðk; ϵÞjc̄γμbjB̄ðpÞi ¼ −iεμνρσϵ�νpρkσ
2Vðq2Þ

mB þmD�
; ð4Þ
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hD�ðk; ϵÞjc̄γμγ5bjB̄ðpÞi ¼ ϵ�μðmB þmD� ÞA1ðq2Þ − ðpþ kÞμðϵ� · qÞ
A2ðq2Þ

mB þmD�

− qμðϵ� · qÞ
2mD�

q2
½A3ðq2Þ − A0ðq2Þ�; ð5Þ

hD�ðk; ϵÞjc̄γ5bjB̄ðpÞi ¼ −ðϵ� · qÞ 2mD�

mb þmc
A0ðq2Þ; ð6Þ

hD�ðk; ϵÞjc̄σμνbjB̄ðpÞi ¼ εμνρσ

�
−ϵρ�ðpþ kÞσT1ðq2Þ þ ϵρ�qσ

m2
B −m2

D�

q2
½T1ðq2Þ − T2ðq2Þ�

þ2
ϵ� · q
q2

pρkσ
�
T1ðq2Þ − T2ðq2Þ −

q2

m2
B −m2

D�
T3ðq2Þ

��
; ð7Þ

where p is the four-momentum of the B meson, q
represents the four-momentum of the lepton-neutrino pair,
while mBðD�Þ represents the mass of the BðD�Þ meson.
Here, V; A0; A1; A2; A3; T1; T2, and T3 are the relevant form
factors for a B̄ → V transition. The BGL [36], CLN [37],
and HQET [38] parametrizations for these form factors are
given in Appendix B. For the Levi-Civita tensor, εμνρσ , we
use the convention ε0123 ¼ þ1.
For easy comparison with similar literature in the

field, below we present an alternative notation and
its connection to the notation used in this article.
Following the presentation in Ref. [30], the effective
Lagrangian that describes b → cl−ν̄ transitions can be
written as

L ¼ −
4GFffiffiffi

2
p

X
i

CiOi þ H:c:; ð8Þ

where i ¼ VL; VR; SL; SR, and T, and Ci represents the
Wilson coefficient (WC) corresponding to the operator Oi.
Note the negative sign added to this Lagrangian in order to
obtain the correct sign for the SM term [see, for example,
Eq. (20.90) in [39] with errata in [40]]. The WCs can be

easily converted into the NP coupling constants that appear
in Eq. (1) as follows.

CVL
¼ 1þ gL; CVR

¼ gR; CSL ¼ gS − gP;

CSR ¼ gS þ gP; CT ¼ gT: ð9Þ

Note that only CVL
has both SM and NP parts while all

other WCs are NP only. Furthermore, for a B̄ → V
transition, where V denotes a vector meson, the scalar
matrix element hVjq̄bjBi ¼ 0. As a consequence, the
following condition must be imposed,

CSR þ CSL ¼ 2gS ¼ 0: ð10Þ
Thus, there are only four independent NP parameters that
can be used to describe the decay B̄ → D�l−ν̄ process,
namely, gL, gR, gP, and gT . We will use the gi parameters to
describe the results and plots presented in this article.
One can now express the differential decay distribution

for B̄ → D�ð→ DπÞl−ν̄ as a function of four kinematic
variables—q2 and three helicity angles θ�; θl, and χ (see
Fig. 1 for a schematic diagram defining these angles)—in
the following form.

d4Γ
dq2d cos θ�d cos θldχ

¼ 9

32π
½ðIs1 sin2 θ� þ Ic1 cos

2 θ�Þ þ ðIs2 sin2 θ� þ Ic2 cos
2 θ�Þ cos 2θl:

þ I3 sin2 θ� sin2 θl cos 2χ þ I4 sin 2θ� sin 2θl cos χ þ I5 sin 2θ� sin θl cos χ

þ ðIc6 cos2 θ� þ Is6 sin
2 θ�Þ cos θl þ I7 sin 2θ� sin θl sin χ

þ I8 sin 2θ� sin 2θl sin χ þ I9 sin2 θ� sin2 θl sin 2χ�; ð11Þ

where the 12 coefficients Iðs;cÞi ðq2Þ (i ¼ 1;…; 9) can
be expressed in terms of eight helicity amplitudes that in
turn depend on the NP parameters gL, gR, gP, and gT .
For brevity, the exact dependence of the coefficient

functions, Iðs;cÞi is given in Appendix A. The distribution

for the CP-conjugate process is obtained with the fol-
lowing transformation, θl → π − θl and χ → π þ χ.
The various helicity amplitudes transform as ASP →
−ĀSP, At → −Āt, A0ð;TÞ → Ā0ð;TÞ, Ajjð;TÞ → Ājjð;TÞ,
A⊥ð;TÞ → −Ā⊥ð;TÞðA�ð;TÞ → Ā∓ð;TÞÞ leading to the angular
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coefficients transformations IðaÞ1;2;3;4;7 → ĪðaÞ1;2;3;4;7 and

IðaÞ5;6;8;9 → −ĪðaÞ5;6;8;9.
2 Note that if one writes A ¼ jAjeiϕþiδ,

then Ā ¼ jAje−iϕþiδ, where ϕ is the CP-violating weak
phase and δ is the CP-conserving strong phase.
The full phase space for the B̄ → D�l−ν̄ decay is

obtained by varying the kinematic variables over their
allowed ranges which are as follows: m2

l ≤ q2 ≤m2
B−m2

D� ,
0 ≤ θD�;l ≤ π, and 0 ≤ χ ≤ 2π. One can now construct
several observables by integrating the distribution of
Eq. (11) over one or more of these kinematic variables.
The first of these is the differential decay distribution as a
function of q2, constructed by integrating over the full
range of allowed values for all three helicity angles.

dΓ
dq2

¼ 1

4
½3Ic1 − Ic2 þ 2ð3Is1 − Is2Þ�: ð12Þ

Next, one can construct double-differential decay distribu-
tions as functions of q2 and one other angle variable at a
time, obtained by integrating over the other two angles.

d2Γ
dq2d cos θ�

¼ 3

4

dΓ
dq2

½2FD�
L ðq2Þ cos2 θ� þ FD�

T ðq2Þ sin2 θ��;

ð13Þ

d2Γ
dq2d cos θl

¼ dΓ
dq2

�
1

2
þ AFB cos θl þ

1 − 3F̃l
L

4

3cos2θl − 1

2

�
; ð14Þ

d2Γ
dq2dχ

¼ 1

2π

dΓ
dq2

ð1þ S3 cos 2χ þ S9 sin 2χÞ; ð15Þ

where FD�
LðTÞðq2Þ is the longitudinal (transverse) polariza-

tion of theD�, AFB is the charged-lepton forward-backward
asymmetry, and S9 is a triple-product asymmetry. The
coefficient functions that appear in Eq. (15) can be

expressed in terms of the angular coefficients, Iðs;cÞi , as
follows.

FD�
L ðq2Þ ¼ 1 − FD�

T ðq2Þ ¼ 3Ic1 − Ic2
3Ic1 − Ic2 þ 2ð3Is1 − Is2Þ

; ð16Þ

AFBðq2Þ ¼
3

2

2Is6 þ Ic6
3Ic1 − Ic2 þ 2ð3Is1 − Is2Þ

; ð17Þ

F̃l
Lðq2Þ ¼

Ic1 − 3Ic2 þ 2ðIs1 − 3Is2Þ
3Ic1 − Ic2 þ 2ð3Is1 − Is2Þ

; ð18Þ

S3ðq2Þ ¼
4I3

3Ic1 − Ic2 þ 2ð3Is1 − Is2Þ
; ð19Þ

S9ðq2Þ ¼
4I9

3Ic1 − Ic2 þ 2ð3Is1 − Is2Þ
: ð20Þ

Note that there are additional observables that can be
extracted from data by performing asymmetric integrals
over more than one angles. We discuss some such observ-
ables in Sec. IV.

III. NEW-PHYSICS IMPLEMENTATION
IN EVTGEN

We implement the preceding discussion in the EvtGen
MC simulation framework as the new BTODSTARLNUNP
decay model. This NP generator, BTODSTARLNUNP, can
run either in a standalone mode or be integrated into a
software framework of a B-physics experiment. The model
includes SM contributions, various NP parameters as well
as their interference. The model takes the NP parameters
δCVL

≡ gL, CVR
, CSL , CSR , and CT as inputs. The user

specifies the NP parameters keeping in mind that the scalar
coefficients (CSL; CSR) are related to each other by Eq. (10).
Each of these parameters can take complex values as inputs
and are entered in the user decay file. The default value for
each parameter has been set to zero so that when no value is
specified for these parameters the code returns SM results.
Below we present an example of a user decay file to
illustrate the usage of the NP MC generator.

## first argument is cartesian(0) or
polar(1) representation of NP coefficients
which
## are three consecutive numbers {id, Re

(C), Im(C)} or {coeff id, |C|, Arg(C)}
## id==0 \delta C_VL—left-handed vector

coefficient change from SM
## id==1 C_VR—right-handed vector

coefficient
## id==2 C_SL—left-handed scalar

coefficient
## id==3 C_SR—right-handed scalar

coefficient
## id==4 C_T—tensor coefficient

Decay B0

2Our convention is similar to the LHCb convention for the
B0 → K�0lþl− decay where θl is defined as the angle between
K�0ðK̄�0Þ and μþðμ−Þ for the B0ðB̄0Þ decay leading to the
transformations IðaÞ1;2;3;4;5;6 → ĪðaÞ1;2;3;4;5;6 and I7;8;9 → −Ī7;8;9 for
CP conjugation with χ → 2π − χ [41]. Alternatively, when θl
is defined as the angle between K�0ðK̄�0Þ and the lepton l− for
the B0ðB̄0Þ decay while χ is the angle between the K�π∓ and the
lþl− planes in both cases, the angular coefficients transform as
IðaÞ1;2;3;4;7 → ĪðaÞ1;2;3;4;7 and IðaÞ5;6;8;9 → −ĪðaÞ5;6;8;9 for the CP-conjugate
process with θl → θl − π and χ → −χ [42,43]. Note that, in all of
these conventions, including ours, the d4ðΓþΓ̄Þ

dq2d cos θ�d cos θldχ
distribu-

tion for the untagged decay retains the contribution from the
“true” CP-violating terms [44,45].
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## B0 -> D*- e+ nu_e is generated with the
Standard Model only
1 D*- e+ nu_e BTODSTARLNUNP;
Enddecay

Decay anti-B0
## anti-B0 -> D*+ mu- anti-nu_mu is gen-

erated with the addition of New Physics
1 D*+ mu- anti-nu_mu BTODSTARLNUNP 0 0

0.06 0 1 0.075 0 2 0 −0.2 3 0 0.2;
Enddecay
End

To generate NP the user inputs several arguments in the
user decay file. The first of these specifies whether the
remaining arguments are to be entered in Cartesian (0) or
polar (1) coordinate system. Next, the user enters sets
of three values. The first specifies the type of NP coupling
(δCVL

; CVR
; CSL ; CSR , and CT), while the second and third

represent the real and imaginary parts in Cartesian coor-
dinates, or magnitude and complex phase in polar coor-
dinates. In the above example we have shown how the
user can generate events for the SM as well as for a specific

NP scenario which in our case is NP scenario 2. A complete
version of the NP MC tool with an implementation
of the BTODSTARLNUNP decay model can be found
in Ref. [46].

IV. SIGNATURES OF NEW PHYSICS

The ratios of branching fractions as well as the differ-
ential q2 distributions have limited sensitivity to NP for
b → clν, l ¼ e, μ, which receive tree-level contributions
in the SM and are hence unsuppressed. In contrast, angular
observables have much better sensitivity to the interference
between SM and NP. The optimal sensitivity to NP can be
obtained by studying these angular observables as func-
tions of q2. We will examine four angular asymmetries as
functions of q2 to make predictions for our NP scenarios,
AFB, S3, S5, and S7. AFB and S3 are previously defined in
Sec. II, while S5 and S7 are the coefficients of
sin θl sin 2θ� cos χ and sin θl sin 2θ� sin χ, respectively.
These asymmetries can be constructed from the full angular
distribution of Eq. (11) through asymmetric integrals
shown below.

AFBðq2Þ ¼
�
dΓ
dq2

�
−1
�Z

1

0

−
Z

0

−1

�
d cos θl

d2Γ
d cos θldq2

; ð21Þ

S3ðq2Þ ¼
�
dΓ
dq2

�
−1
�Z

π=4

0

−
Z

π=2

π=4
−
Z

3π=4

π=2
þ
Z

π

3π=4
þ
Z

5π=4

π
−
Z

3π=2

5π=4
−
Z

7π=4

3π=2
þ
Z

2π

7π=4

�
dχ

d2Γ
dq2dχ

; ð22Þ

S5ðq2Þ ¼
�
dΓ
dq2

�
−1
�Z

π=2

0

−
Z

π

π=2
−
Z

3π=2

π
þ
Z

2π

3π=2

�
dχ

�Z
1

0

−
Z

0

−1

�
d cos θ�

d3Γ
dq2d cos θ�dχ

; ð23Þ

S7ðq2Þ ¼
�
dΓ
dq2

�
−1
�Z

π

0

−
Z

2π

π

�
dχ

�Z
1

0

−
Z

0

−1

�
d cos θ�

d3Γ
dq2d cos θ�dχ

: ð24Þ

To extract these asymmetries from data, we calculate
the integrals in Eqs. (21)–(24) from binned distributions
of the appropriate angular variables. For example, con-
sider S5. This distribution involves asymmetric integrals
over both cos θ� and χ. For a given bin of q2, we first
divide the events into χ bins of size π=2. In each of these
bins, we then divide the events into cos θ� bins of size 1.
This gives us 8 bins corresponding to the various terms
of Eq. (23), which we will label Ni with i ¼ 1; 2;…; 8.
To find the value of S5 for a given q2 bin, we then
combine the Ni’s in the same way as the integrals in
Eq. (23), normalized by

P
8
i¼1Ni.

When generating our predictions, we used ΔAFB ¼
AFBðB→D�μνÞ−AFBðB→D�eνÞ, ΔS3¼S3ðB→D�μνÞ−
S3ðB→D�eνÞ, and ΔS5¼S5ðB→D�μνÞ−S5ðB→D�eνÞ,
where the electron mode has been generated with the SM

only while the muon mode contains both SM and NP
contributions. These are Δ-type observables as defined
above, which eliminate most of the QCD uncertainties in
the form factors, allowing for a clean measurement of
LFUV NP. The asymmetry S7 is always zero in the SM,
and therefore was not recast into the form of a Δ
observable. The NP dependences of AFB, S3, S5, and
S7 are given in Table II. Note that these dependencies
have different weights, which are dependent on q2. For
all theory plots presented here, we have only used
uncorrelated central values of the form-factor parameters
as listed in Tables VI and VII. We verify that the Δ
variables have minimal dependence on form factors. As a
test, we consider BGL [36], CLN [37], and HQET [38]
form-factor parametrizations. There are also other form-
factor models [47,48]. Unless otherwise stated, we use
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the CLN parametrization of the hadronic form factors as
the default in our plots.

V. NEW-PHYSICS SENSITIVITY AND RESULTS

The q2 distribution alone has little sensitivity to NP, as
shown in Fig. 2. On the other hand, angular asymmetries
as functions of q2 are quite sensitive to NP couplings. In
particular, the angular asymmetries in the angle θl and χ
can be promising probes of NP as shown in Fig. 2. In
this figure, we have used the CLN parametrization to test
that our Monte Carlo generator correctly implements the
theoretical expressions. However, the angular asymme-
tries remain quite sensitive to form-factor uncertainties.
As an example, the uncertainty in the predictions for Aμ

FB
in the SM with four different form-factor parametriza-
tions is shown below. To address this issue we consider
differences between angular asymmetries in the muon
and electron channels using Δ observables. Later in this
section, using ΔAFB as an example, we show that the
predictions for the Δ observables are robust against form-
factor uncertainties using the same four form-factor
parametrizations. In the SM the form-factor uncertainties
cancel effectively in the Δ observables while with NP the
cancellation is slightly less effective as the NP violates
lepton universality.
From our initial scan, we cannot reproduce the exper-

imental-ΔAFB anomaly with a single NP coupling. Instead,
we consider scenarios with several NP couplings. In order

to match ΔAFB from Ref. [30], we require a gR NP
coupling. In order to maintain the LFU BR constraint
we also need to add a gL NP coupling that is comparable to
gR. In addition, it is also possible to include a gP
contribution, but in order to satisfy the constraints it must
be imaginary. We also found that negative or complex
values for gL and gR are ruled out by these constraints.
Figure 3 shows the region of parameter space in the gL − gR
plane that is excluded by BðB→D�μνÞ

BðB→D�eνÞ ¼ 1.00� 0.03ð0.06Þ in
red and the region in blue excludes ΔAFB ¼ 0.0349�
0.0089ð0.0178Þ when the error is taken in the 68%ð95%Þ
C.L. Further, we observe that an additional nonzero
imaginary pseudoscalar interaction strength produces an
upward shift in the allowed region of gR while gL remains
almost the same as shown in the right plot of Fig. 3. In this
section we provide results corresponding to the three
distinct NP scenarios indicated in Table III chosen with
the above constraints.
To optimize sensitivity, it is important to measure the Δ

observables as functions of q2. Using the benchmark
scenarios above, we show in Fig. 4 the predictions for
the Δ observables. As discussed earlier these observables
are sensitive to NP couplings and have much reduced
dependence on form-factor uncertainties. In the figure,
the SM expectations for these quantities are shown using
solid black curves. In addition to the two Δ observables,
ΔAFB and ΔS5, Fig. 4 also shows the q2 dependence
of the observable ΔS3 and S7. S7 represents an angular

TABLE II. Angular functions corresponding to angular observables AFB; S3; S5, and S7 alongside NP parameters
that contribute to each. The dependence on NP parameters has been separated into different orders of ml=

ffiffiffiffiffi
q2

p
.

Observable Angular function NP dependence ml suppression order

AFB cos θl Re½gTg�P� Oð1Þ
Re½ð1þ gL − gRÞð1þ gL þ gRÞ��

Re½ð1þ gL − gRÞg�P� Oðml=
ffiffiffiffiffi
q2

p
Þ

Re½gTð1þ gL − gRÞ��
Re½gTð1þ gL þ gRÞ��

j1þ gL − gRj2 Oðm2
l=q

2Þ
jgT j2

S3 sin2θ�sin2θl cos 2χ j1þ gL þ gRj2 Oð1Þ;Oðm2
l=q

2Þ
j1þ gL − gRj2

jgT j2
S5 sin 2θ� sin θl cos χ Re½gTg�P� Oð1Þ

j1þ gL − gRj2 Oð1Þ;Oðm2
l=q

2Þ
Re½ð1þ gL − gRÞg�P� Oðml=

ffiffiffiffiffi
q2

p
Þ

Re½gTð1þ gL − gRÞ��
Re½gTð1þ gL þ gRÞ��

jgT j2 Oðm2
l=q

2Þ
S7 sin 2θ� sin θl sin χ Im½gPg�T � Oð1Þ

Im½ð1þ gL þ gRÞg�P� Oðml=
ffiffiffiffiffi
q2

p
Þ

Im½ð1þ gL − gRÞg�T �
Im½ð1þ gL − gRÞð1þ gL þ gRÞ�� Oðm2

l=q
2Þ
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asymmetry in sin χ, where χ is the azimuthal angle between
the decay planes. This is a CP-odd triple-product asym-
metry, which is predicted to be identically zero in the SM
for any q2. We find that NP scenarios with an imaginary gP

are able to produce a small nonzero signal in the q2

distribution of S7 as shown in Fig. 4.
The observable S3 is the coefficient of cos 2χ term in the

angular distribution and can be extracted using the

FIG. 3. Allowed parameter space in gL and gR, with gP ¼ 0 and 0.6i. The two constraints used are that the branching ratio of the muon
and electron modes must be unity within 3%, and ΔAFB must be consistent with the value found in Ref. [30]. Nonzero values of gP
produce similar plots, with the allowed region in gR shifting upwards. This exercise also showed that imaginary values of gL and gR are
not consistent with these constraints.

FIG. 2. Distribution of B̄ → D�l−ν̄ events as functions of (clockwise from top left) q2, cos θ�, χ, and cos θl. Theory predictions are
shown for the SM (solid black curve) and for NP scenario 2 (dashed red curve). EvtGen data are shown for NP scenario 2 (solid red
histogram). Each plot is fully integrated over three of the four kinematic variables. The q2 range is divided into 23 equal bins, to reflect
the expected resolution of experimental measurements. The angular bins are chosen to be sufficiently fine to compare MC data to the
theory. The cos θ ranges are divided into 15 equal bins, and the χ range, being twice as large as the θ ranges, is divided into twice as
many bins.
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asymmetric integral defined in Eq. (22). Although ΔS3 is
close to zero in the SM, NP can produce a nonzero ΔS3 in
the q2 range as shown in the lower left plot of Fig. 4. In
Fig. 5, using ΔAFB as an example, we show that the
predictions for theΔ observables are largely independent of
form-factor parametrization and the uncertainties of the
form-factor parameters.
Note that due to lepton mass and helicity effects,ΔAFB is

negative in the low q2 region even in the SM. In fact, at the
lower momentum transfer threshold, i.e., in the limit
q2 → m2

l, the forward-backward asymmetry Al
FB → −1

which is seen as a large dip in the q2 distribution as shown
in Fig. 5. Hence, for the best experimental sensitivity to NP,

we advocate a necessary low q2 cut of 1.14 GeV2 on such
observables in order to predict them unambiguously.
In addition, in order to improve systematic uncertainties

from lepton identification efficiencies, we recommend
using the same laboratory momentum cutoff for both
l ¼ e and μ channels (see, for example, [49]). In order
to define the detector acceptance we will represent the
magnitude of the transverse momentum of particle x in the
lab frame by jp⃗T;xj and the ratio of the z component of
the momentum over the total momentum as cos α. We
use the Belle II acceptances of jp⃗T;lj > 0.8 GeV for the
lepton momenta, jp⃗T;πj > 0.1 GeV for the slow pion
momenta, and −0.866 < cos α < 0.956 for all final state
particles. The theoretical predictions and uncertainties
for these observables integrated over the range of q2 ∈
½1.14 GeV2; ðmB −mD� Þ2� using the BGL parametrization
are displayed in Table IV both for the SM and the specific
NP scenarios listed in Table III. One can see that the
theoretical uncertainties are less than ∼5% for both the
SM and NP predictions of all integrated observables
except hΔS3i which has a ∼15% uncertainty. We also
show the variation of the expected statistical uncertainties
as a function of the total integrated luminosity for present

TABLE III. Values of NP coefficients for three distinct NP
scenarios considered in this paper and used for generating the
results presented in this section.

gL gR gP

Scenario 1: 0.06 0.075 0.2i
Scenario 2: 0.08 0.090 0.6i
Scenario 3: 0.07 0.075 0

FIG. 4. ΔAFB, ΔS5, ΔS3, and S7 plotted as functions of q2 for different values of NP coefficients. Here we have used the CLN
parameterizations of the form factors. The NP parameters were chosen so that the ratio of semileptonic branching fractions is constrained
to be within 3% of unity, as well as the ΔAFB for the full q2 range is within the interval 0.0349� 0.0089. EvtGen data for NP scenario 2
(gL ¼ 0.08, gR ¼ 0.09, gP ¼ 0.6i) generated with 107 events (anticipated Belle II statistics) are shown as points with error bars. Theory
curves are presented for all three NP scenarios: Scenario 1 is dot-dashed blue, scenario 2 is dashed red, and scenario 3 is dotted blue.
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and future experimental datasets in Fig. 6 using MC
simulations.
Initially, experiments will measure integrated Δ observ-

ables. As statistics improve, they will proceed to coarse-
binned measurements, as shown, for example, in Fig. 7. At
high statistics, unbinned fits to angular observables will be
performed, as shown, for example, in Fig. 4.
Furthermore, from Fig. 4 we see that NP couplings

produce correlated signatures of deviations from the SM in
multiple Δ observables, such as ΔAFB and ΔS5. As shown
in Fig. 8, the size of the effect on Δ observables is
determined primarily by gR. In this plot, we have varied
the NP parameter gL between 0 and 0.2 for fixed values of
gR. In the presence of NP there are strong correlations
between theΔ observablesΔAFB,ΔS5, andΔS3. Therefore,
if an experimental signal in ΔAFB is observed, it should be
accompanied by an observation of nonzero ΔS5 and ΔS3.
Conversely, if a nonzero ΔS5 is observed, there must also
be a nonzero ΔAFB. In the absence of a tensor coupling, a
correlation with ΔS3 is also required.

For the benchmark scenarios described above, we have
also checked the constraints from the longitudinal polari-
zation fraction of the D� meson, FL, and another angular
observable F̃L, which are proportional to the coefficients of
the cos2 θ� and cos2 θl terms in the angular distribution,
respectively. These quantities were extracted for the first
time by [30] using the binned CP-averaged differential
decay distribution data provided by Belle [10]. They obtain
a CP-averaged SM prediction for the integrated hΔFLi and
hΔF̃Li to be ð5.43� 0.36Þ × 10−4 and ð−5.20� 0.30Þ ×
10−3 respectively. By fitting the data, they also report
hΔFLiexp ¼ −0.0065� 0.0059 and hΔF̃Liexp ¼−0.0107�
0.0142. We have verified that our benchmark values
satisfy these experimental bounds within a 1σ confidence
interval.

FIG. 5. Aμ
FB (left plot) in the SM and ΔAFB ¼ Aμ

FB − Ae
FB (right plot) for different form-factor parametrizations. The left plot shows the

SM predictions for various form-factor parametrizations, while the right plot demonstrates the effects of form-factor uncertainties on
ΔAFB in NP scenario 1 (gL ¼ 0.06, gR ¼ 0.075, and gP ¼ 0.2i). The solid black curve in the right plot represents the SM prediction for
both CLN and HQET (2/1/0) parametrizations. Note that the vertical scale of the right plot is approximately a factor of 10 smaller than
that of the left plot. Note also the large negative value at the low q2 limit. A cutoff of 1.14 GeV2 is chosen to avoid this. Note that for the
SM and NP 3, hS7i is exactly zero and are not distinguishable.

TABLE IV. Theoretical predictions of integrated ΔAFB, ΔS3,
ΔS5, and S7 for SM and each NP scenario using the BGL form-
factor parametrization with estimated theoretical uncertainties.
Note that for SM and NP 3, hS7i is exactly zero as all associated
couplings are real.

hΔAFBi % hΔS3i % hΔS5i % hS7i ×10−3
SM: −0.23� 0.02 0.052þ0.004

−0.002 0.044� 0.005 0
NP 1: 2.7� 0.1 0.87þ0.12

−0.07 2.21þ0.08
−0.09 0.56þ0.03

−0.04
NP 2: 2.8� 0.1 1.27þ0.13

−0.09 2.25þ0.08
−0.10 1.69þ0.09

−0.10
NP 3: 2.8� 0.1 0.83þ0.12

−0.04 2.24þ0.08
−0.09 0

FIG. 6. Expected statistical uncertainties for the four observ-
ables at 1, 5, 50, and 250 ab−1 of Belle II data. These expected
uncertainties were found using the BTODSTARLNUNP MC
simulation.

BHUBANJYOTI BHATTACHARYA et al. PHYS. REV. D 107, 015011 (2023)

015011-10



FIG. 7. Coarse-binned distributions of ΔAFB and ΔS5 versus q2. The horizontal axis spans the allowed range for q2 which has been
divided into three bins. The vertical lines at 4 and 8 GeV2 indicate the other edges of these bins. The central values are calculated from
theory, and the error bars indicate statistical uncertainties taken from MC simulation with an integrated luminosity of 50 ab−1. The NP1
and NP3 predictions have been offset from the center of each bin for clarity.

FIG. 8. Correlations between hΔAFBi, hΔS3i, and hΔS5i in NP scenarios. For each point, gL is varied between 0 and 0.2 (light to dark
in the color scale as depicted in the bar legend; applies for each value of gR), with gR ¼ 0, 0.1, or 0.2, which are representative values in
the allowed range, and gP ¼ 0. All points for which only gL is nonzero return the SM values of the three observables.
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VI. CONCLUSIONS

Motivated by the ΔAFB anomaly in B̄ → D�þμ−ν̄ decay,
which could be a sign of physics beyond the StandardModel
[30], we have developed a new Monte Carlo new physics
(NP) generator tool for B → D�lνl with l ¼ e, μ, τ in the
EvtGen framework [46]. The full theoretical description for
the effective basis we use to parametrize NP as well as the
different angular asymmetries has been comprehensively
discussed in this article. We used this tool to examine
signatures of NP, which are consistent with current data
and with the hints of NP in B → D�μνμ assuming that the
decay B → D�eνe is well described by the SM. We found
that the angular asymmetries, AFB; S5; S3, and S7, which can
be extracted from the fully reconstructed angular distribu-
tion, are sensitive to new physics. With current experimental
constraints, we show the part of the gi NP parameter space
that is still allowed (see Fig. 3).
We introduce the Δ observables, which are obtained by

taking the differences between the observables for the muon
and the electronmodes, in order to avoid theory uncertainties
due to form factors, which might obscure signals of NP. We
suggest experimental requirements on q2 and lepton
momenta in order to increase sensitivity to NP and reduce
systematics.We identifyΔAFB andΔS5 as themost powerful
probes of NP with little sensitivity to form-factor uncertain-
ties; this is shown in Fig. 5. We also observe that correlated
signatures of NP in multiple observables such as ΔAFB and
ΔS5 are required to confirm the presence of NP (see Fig. 4.)
Therefore, if a NP signal for ΔAFB is observed in future
experiments, it must be accompanied by a corresponding
signal in ΔS5 both in the integrated variable and the q2

distribution. We calculate integrated observables and plot
coarse binned expectations for ΔAFB and ΔS5, as well as
correlations between the two. The NP signatures described
here are ideally suited for Belle II at 1, 5, 50, and 250 ab−1

and might also be explored at hadron collider experiments.
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APPENDIX A: ANGULAR COEFFICIENTS

The angular distribution of B̄ → D�l−ν̄ presented in

Eq. (11) contains 12 coefficients labeled Iðs;cÞi with
i ¼ 1;…; 9. The full list of angular coefficients are pre-
sented below as functions of eight helicity amplitudes,
ASP;At;A0;Ajj;A⊥;A0T;Ajj;T , and A⊥;T . These helicity
amplitudes depend on hadronic form factors as well as NP
coefficients. The form of the eight helicity amplitudes are
given in Appendix B.

Iðs;cÞi ¼ G2
FjVcbj2ðq2 −m2

lÞ2jpD� j
192π3m2

Bq
2

BðD� → DπÞĨðs;cÞi ; ðA1Þ

Ĩc1 ¼ 4

�
jASPj2 þ

m2
l

q2
jAtj2

�
þ 2

�
1þm2

l

q2

�
ðjA0j2 þ 16jA0;T j2Þ þ 8

mlffiffiffiffiffi
q2

p fRe½AtA�
SP� − 4Re½A0A�

0;T �g; ðA2Þ

Ĩs1 ¼
�
3

2
ðjAjjj2 þ jA⊥j2Þ þ 8ðjAjj;T j2 þ jA⊥;T j2Þ

�
− 16

mlffiffiffiffiffi
q2

p fRe½AjjA�
jj;T � þ Re½A⊥A�⊥;T �g

þm2
l

q2

�
1

2
ðjAjjj2 þ jA⊥j2Þ þ 24ðjAjj;T j2 þ jA⊥;T j2Þ

�
; ðA3Þ

Ĩc2 ¼ −2
�
1 −

m2
l

q2

�
fjA0j2 − 16jA0;T j2g; ðA4Þ
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Ĩs2 ¼
1

2

�
1 −

m2
l

q2

�
fðjAjjj2 þ jA⊥j2Þ − 16ðjAjj;T j2 þ jA⊥;T j2Þg; ðA5Þ

Ĩ3 ¼ −
�
1 −

m2
l

q2

�
fðjAjjj2 − jA⊥j2Þ − 16ðjAjj;T j2 − jA⊥;T j2Þg; ðA6Þ

Ĩ4 ¼
ffiffiffi
2

p �
1 −

m2
l

q2

�
f16Re½A0;TA�

jj;T � − Re½A0A�
jj�g; ðA7Þ

Ĩ5 ¼ 2
ffiffiffi
2

p �
ðRe½A0A�⊥� þ 4Re½Ajj;TA�

SP�Þ þ
m2

l

q2
ð16Re½A0;TA�⊥;T � − Re½AjjA�

t �Þ

þ mlffiffiffiffiffi
q2

p ð4Re½Ajj;TA�
t � − 4Re½A0A�⊥;T � − 4Re½A0;TA�⊥� − Re½AjjA�

SP�Þ
�
; ðA8Þ

Ĩc6 ¼ 32Re½A0;TA�
SP� þ

mlffiffiffiffiffi
q2

p f32Re½A0;TA�
t � − 8Re½A0A�

SP�g − 8
m2

l

q2
Re½A0A�

t �; ðA9Þ

Ĩs6 ¼ −4Re½AjjA�⊥� þ 16
mlffiffiffiffiffi
q2

p fRe½AjjA�⊥;T � þ Re½Ajj;TA�⊥�g − 64
m2

l

q2
Re½Ajj;TA�⊥;T �; ðA10Þ

Ĩ7 ¼ −8
ffiffiffi
2

p
Im½ASPA�⊥;T � − 2

ffiffiffi
2

p
Im½A0A�

jj� þ 2
ffiffiffi
2

p m2
l

q2
Im½AtA�⊥�

þ 2
ffiffiffi
2

p mlffiffiffiffiffi
q2

p f4Im½A0A�
jj;T � − 4Im½AjjA�

0;T � − 4Im½AtA�⊥;T � − Im½A⊥A�
SP�g; ðA11Þ

Ĩ8 ¼ −
ffiffiffi
2

p �
1 −

m2
l

q2

�
Im½A⊥A�

0�; ðA12Þ

Ĩ9 ¼ 2

�
1 −

m2
l

q2

�
Im½AjjA�⊥�; ðA13Þ

where jpD� j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
D� ; q2Þ

p
=ð2mBÞ represents the magnitude of the D� 3-momentum, and λða; b; cÞ ¼

a2 þ b2 þ c2 − 2ab − 2bc − 2ca.

APPENDIX B: HELICITY AMPLITUDES AND FORM FACTORS

The 12 angular coefficients needed to construct the full angular distribution of Eq. (11) were presented in Appendix A.
These angular coefficients depend on eight helicity amplitudes that can be further expressed in terms of NP coefficients
(gP, gL, gR, and gT) and hadronic form factors. We list the helicity amplitudes below [35,50].

ASP ¼ −gP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
D� ; q2Þ

p
mb þmc

A0ðq2Þ; ðB1Þ

A0 ¼ −
ð1þ gL − gRÞðmB þmD� Þ

2mD�
ffiffiffiffiffi
q2

p
�
ðm2

B −m2
D� − q2ÞA1ðq2Þ −

λðm2
B;m

2
D� ; q2Þ

ðmB þmD� Þ2 A2ðq2Þ
�
; ðB2Þ

At ¼ −ð1þ gL − gRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
D� ; q2Þ

p
ffiffiffiffiffi
q2

p A0ðq2Þ; ðB3Þ

A� ¼ð1þ gL − gRÞðmB þmD� ÞA1ðq2Þ ∓ ð1þ gL þ gRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
D� ; q2Þ

p
mB þmD�

Vðq2Þ; ðB4Þ
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A0;T ¼ gT
2mD�ðm2

B −m2
D� Þ ððm

2
B −m2

D� Þðm2
B þ 3m2

D� − q2ÞT2ðq2Þ − λðm2
B;m

2
D� ; q2ÞT3ðq2ÞÞ; ðB5Þ

A�;T ¼ gT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
D� ; q2Þ

p
T1ðq2Þ � ðm2

B −m2
D�ÞT2ðq2Þffiffiffiffiffi

q2
p : ðB6Þ

The angular coefficients requiring vector and/or tensor type contributions may also require the amplitudes to be expressed in
the transversity basis as follows.

Ajj;T ¼ ðAþð;TÞ þA−ð;TÞÞ=
ffiffiffi
2

p
; ðB7Þ

A⊥;T ¼ ðAþð;TÞ −A−ð;TÞÞ=
ffiffiffi
2

p
: ðB8Þ

The above helicity amplitudes depend on the seven hadronic form factors listed below.

Vðq2Þ ¼ mB þmD�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p hVðwðq2ÞÞ; ðB9Þ

A1ðq2Þ ¼
ðmB þmD� Þ2 − q2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p ðmB þmD� Þ hA1
ðwðq2ÞÞ; ðB10Þ

A2ðq2Þ ¼
mB þmD�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
�
hA3

ðwðq2ÞÞ þmD�

mB
hA2

ðwðq2ÞÞ
�
; ðB11Þ

A0ðq2Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
�ðmB þmD� Þ2 − q2

2mD�
hA1

ðwðq2ÞÞ−m2
B −m2

D� þ q2

2mB
hA2

ðwðq2ÞÞ−m2
B −m2

D� − q2

2mD�
hA3

ðwðq2ÞÞ
�
; ðB12Þ

T1ðq2Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p ½ðmB þmD� ÞhT1
ðwðq2ÞÞ − ðmB −mD� ÞhT2

ðwðq2ÞÞ�; ðB13Þ

T2ðq2Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
�ðmB þmD� Þ2 − q2

mB þmD�
hT1

ðwðq2ÞÞ− ðmB −mD� Þ2 − q2

mB −mD�
hT2

ðwðq2ÞÞ
�
; ðB14Þ

T3ðq2Þ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
�
ðmB −mD� ÞhT1

ðwðq2ÞÞ − ðmB þmD� ÞhT2
ðwðq2ÞÞ−2m

2
B −m2

D�

mB
hT3

ðwðq2ÞÞ
�
; ðB15Þ

where the recoil angle, wðq2Þ can be expressed as is
wðq2Þ ¼ ðm2

B þm2
D� − q2Þ=2mBmD� . The above expres-

sions depend on several lepton and meson masses that
are used as input parameters. In our calculations we use the
values of meson and lepton masses given in Table V. We

have also used the following values for the quark masses,
mb ¼ GeV and mc ¼ GeV.
Note that the above form factors still depend on several

additional functions of q2, namely, hV , hA1
, hA2

, hA3
, hT1

,
hT2

, hT3
, R1, R2, and R3. There are several ways of

parametrizing these functions using heavy quark effective
theory (HQET). Two such parametrizations are presented in
Appendix C.

APPENDIX C: PARAMETRIZATIONS OF THE
HADRONIC FORM FACTORS

The hadronic form factors described in Appendix B
depend on several form factors that appear as functions of
q2 in HQET. At present there are several ways of para-
metrizing these functions. Although each parametrization

TABLE V. Input values used for meson and lepton masses
taken from the Particle Data Group [51]. Numbers in parentheses
represent the errors in the last two digits.

Masses Value (MeV)

mB0 5279.63(20)
mD�þ 2010.26(05)
me 0.5109989461(31)
mμ 105.6583745(24)
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gives a slightly different value for the underlying function,
a conclusive identification of the best way to parametrize
these functions still eludes us. This problem adds to the
theoretical uncertainties associated with the determinations
of some of the NP observables discussed in this article.
A commonly used parametrization for the HQET form

factors, first presented by Caprini, Lellouch, and Neubert
(CLN) in Ref. [37] is given below.

hVðwÞ ¼ R1ðwÞhA1
ðwÞ; ðC1Þ

hA2
ðwÞ ¼ R2ðwÞ − R3ðwÞ

2rD�
hA1

ðwÞ; ðC2Þ

hA3
ðwÞ ¼ R2ðwÞ þ R3ðwÞ

2
hA1

ðwÞ; ðC3Þ

hT1
ðwÞ ¼ 1

2ð1þ r2D� − 2rD�wÞ

×

�
mb −mc

mB −mD�
ð1 − rD� Þ2ðwþ 1ÞhA1

ðwÞ

−
mb þmc

mB þmD�
ð1þ rD� Þ2ðw − 1ÞhVðwÞ

�
; ðC4Þ

hT2
ðwÞ ¼ ð1 − r2D�Þðwþ 1Þ

2ð1þ r2D� − 2rD�wÞ
�
mb −mc

mB −mD�
hA1

ðwÞ

−
mb þmc

mB þmD�
hVðwÞ

�
; ðC5Þ

hT3
ðwÞ ¼ −

1

2ð1þ rD� Þð1þ r2D� − 2rD�wÞ

×

�
2
mb −mc

mB −mD�
rD�ðwþ 1ÞhA1

ðwÞ

þ mb −mc

mB −mD�
ð1þ r2D� − 2rD�wÞðhA3

ðwÞ

− rD�hA2
ðwÞÞ− mb þmc

mB þmD�
ð1þ rD� Þ2hVðwÞ

�
;

ðC6Þ

where rD� ¼ mD�=mB and the w dependencies are
expressed as

hA1
ðwÞ ¼ hA1

ð1Þ½1 − 8ρ2D�zþ ð53ρ2D� − 15Þz2
− ð231ρ2D� − 91Þz3�; ðC7Þ

R1ðwÞ ¼ R1ð1Þ − 0.12ðw − 1Þ þ 0.05ðw − 1Þ2; ðC8Þ

R2ðwÞ ¼ R2ð1Þ þ 0.11ðw − 1Þ − 0.06ðw − 1Þ2; ðC9Þ

R3ðwÞ ¼ 1.22 − 0.052ðw − 1Þ þ 0.026ðw − 1Þ2: ðC10Þ

The parameter z is related to the recoil angle w through
zðwÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi

wþ 1
p

−
ffiffiffi
2

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p Þ. The values of
hA1

ð1Þ, R1ð1Þ, R2ð1Þ, and ρ2D� , listed in Table VI, were
taken from Ref. [35].
Yet another way of parametrizing the HQET form factors

is to express them in terms of the leading Isgur-Wise (IW)
function ξðwÞ [52] and subleading IW terms, which
represents higher order power corrections to the leading
IW function as

hXðwÞ ¼ ξðwÞĥXðwÞ; ðX ¼ V; A1; A2; A3; T1; T2; T3Þ;
ðC11Þ

where

ĥXðwÞ¼ ĥX;0þ εaδĥX;αs þ εbδĥX;mb
þ εcδĥX;mc

þ ε2cδĥX;m2
c
:

ðC12Þ

Here, εa, εb, εc denote the expansion coefficients corre-
sponding to the higher order corrections in αs and 1=mb;c,
respectively, which were worked out by [37,53] using
heavy quark symmetry.
The leading term in (C12) is

ĥX;0 ¼
�
1 for X ¼ A1; A3; T1;

0 for X ¼ A2; T2; T3:
ðC13Þ

The αs corrections are given as

δĥV;αs ¼
1

6zcbðw − wcbÞ
½4zcbðw − wcbÞΩwðwÞ þ 2ðwþ 1Þðð3w − 1Þzcb − z2cb − 1ÞrwðwÞ

−12zcbðw − wcbÞ − ðz2cb − 1Þ log zcb� þ VðμÞ; ðC14Þ

TABLE VI. Input values of parameters needed for the CLN
parametrization of form factors used here were taken from [35].

Parameter Value

hA1
ð1Þ 0.908� 0.017

ρ2D� 1.207� 0.026
R1ð1Þ 1.403� 0.033
R2ð1Þ 0.854� 0.020
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δĥA1;αs ¼
1

6zcbðw − wcbÞ
½4zcbðw − wcbÞΩwðwÞ þ 2ðw − 1Þðð3wþ 1Þzcb − z2cb − 1ÞrwðwÞ

−12zcbðw − wcbÞ − ðz2cb − 1Þ log zcb� þ VðμÞ; ðC15Þ

δĥA2;αs ¼
−1

6z2cbðw − wcbÞ2
½ð2þ ð2w2 − 5w − 1Þzcb þ 2wð2w − 1Þz2cb þ ð1 − wÞz3cbÞrwðwÞ

− 2zcbðzcb þ 1Þðw − wcbÞ þ ðz2cb − ð4wþ 2Þzcb þ 3þ 2wÞzcb log zcb�; ðC16Þ

δĥA3;αs ¼ δĥA1;αs þ
1

6zcbðw − wcbÞ2
½2zcbðzcb þ 1Þðwcb − wÞ þ ð2z3cb þ z2cbð2w2 − 5w − 1Þ

þzcbð4w2 − 2wÞ − wþ 1ÞrwðwÞ − ðz2cbð2wþ 3Þ−zcbð4wþ 2Þ þ 1Þ log zcb�; ðC17Þ

δĥT1;αs ¼
1

3zcbðw − wcbÞ
½2zcbðw − wcbÞΩwðwÞ þ 2zcbðw2 − 1ÞrwðwÞ − 6zcbðw − wcbÞþð1 − z2cbÞ log zcb� þ TðμÞ; ðC18Þ

δĥT2;αs ¼
wþ 1

3zcbðw − wcbÞ
½ð1 − z2cbÞrwðwÞ þ 2zcb log zcb�; ðC19Þ

δĥT3;αs ¼
1

3zcbðw − wcbÞ
½ðzcbw − 1ÞrwðwÞ − zcb log zcb�; ðC20Þ

where

zcb ¼
mc

mb
; wcb ¼

1

2
ðzcb þ z−1cb Þ; w�ðwÞ ¼ w�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
; ðC21Þ

rwðwÞ ¼
logwþðwÞffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 − 1
p ; ðC22Þ

ΩwðwÞ ¼
w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ½2Li2ð1 − w−ðwÞzcbÞ − 2Li2ð1 − wþðwÞzcbÞ

þ Li2ð1 − w2þðwÞÞ − Li2ð1 − w2
−ðwÞÞ� − wrwðwÞ log zcb þ 1: ðC23Þ

Here Li2ðxÞ ¼
R
0
x dt logð1 − tÞ=t is the dilogarithm func-

tion and VðμÞ, TðμÞ are scale factors given as

VðμÞ ¼ −
2

3
ðwrwðwÞ − 1Þ logmbmc

μ2
; ðC24Þ

TðμÞ ¼ −
1

3
ð2wrwðwÞ − 3Þ logmbmc

μ2
: ðC25Þ

In our calculations we choose the scale μ ¼ 4.2 GeV. The
1=mb;c corrections in Eq. (C12) are given as

δĥV;mb
¼ L̂1ðwÞ − L̂4ðwÞ; ðC26Þ

δĥV;mc
¼ L̂2ðwÞ − L̂5ðwÞ; ðC27Þ

δĥA1;mb
¼ L̂1ðwÞ −

w − 1

wþ 1
L̂4ðwÞ; ðC28Þ

δĥA1;mc
¼ L̂2 −

w − 1

wþ 1
L̂5ðwÞ; ðC29Þ

δĥA2;mb
¼ 0; ðC30Þ

δĥA2;mc
¼ L̂3ðwÞ þ L̂6ðwÞ; ðC31Þ

δĥA3;mb
¼ L̂1ðwÞ − L̂4ðwÞ; ðC32Þ

δĥA3;mc
¼ L̂2ðwÞ − L̂3ðwÞ þ L̂6ðwÞ − L̂5ðwÞ; ðC33Þ

δĥT1;mb
¼ L̂1ðwÞ; ðC34Þ

δĥT1;mc
¼ L̂2ðwÞ; ðC35Þ

δĥT2;mb
¼ −L̂4ðwÞ; ðC36Þ

δĥT2;mc
¼ L̂5ðwÞ; ðC37Þ

δĥT3;mb
¼ 0; ðC38Þ

δĥT3;mc
¼ 1

2
ðL̂6ðwÞ − L̂3ðwÞÞ; ðC39Þ
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where the L̂ðwÞ functions read

L̂1ðwÞ ¼ −4ðw − 1Þχ̂2ðwÞ þ 12χ̂3ðwÞ; ðC40Þ

L̂2ðwÞ ¼ −4χ̂3ðwÞ; ðC41Þ

L̂3ðwÞ ¼ 4χ̂2ðwÞ; ðC42Þ

L̂4ðwÞ ¼ 2ηðwÞ − 1; ðC43Þ

L̂5ðwÞ ¼ −1; ðC44Þ

L̂6ðwÞ ¼ −
2ð1þ ηðwÞÞ

wþ 1
: ðC45Þ

The corrections of order 1=m2
c are included via the

subleading reduced IW functions l̂1−6ðwÞ as [38,54]

δĥV;m2
c
¼ l̂2ðwÞ − l̂5ðwÞ; ðC46Þ

δĥA1;m2
c
¼ l̂2ðwÞ −

w − 1

wþ 1
l̂5ðwÞ; ðC47Þ

δĥA2;m2
c
¼ l̂3ðwÞ þ l̂6ðwÞ; ðC48Þ

δĥA3;m2
c
¼ l̂2ðwÞ − l̂3ðwÞ − l̂5ðwÞ þ l̂6ðwÞ; ðC49Þ

δĥT1;m2
c
¼ l̂2ðwÞ; ðC50Þ

δĥT2;m2
c
¼ l̂5ðwÞ; ðC51Þ

δĥT3;m2
c
¼ 1

2
ðl̂3ðwÞ − l̂6ðwÞÞ: ðC52Þ

The IW functions are expressed, in general, as expan-
sions about w ¼ 1 as

fðwÞ ¼
X
n¼0

fðnÞ

n!
ðw − 1Þn; ðC53Þ

with f ¼ ξ; η; χ̂2; χ̂3 and l̂i. One can further relate the
kinematic variable w with the expansion variable z as

wðzÞ ¼ 2

�
1þ z
1 − z

�
2

− 1: ðC54Þ

One can then expand the IW functions up to any order in z as

fðwÞ ¼ fð0Þ þ 8fð1Þzþ 16ðfð1Þ þ 2fð2ÞÞz2 þ 8

3
ð9fð1Þ þ 48fð2Þ þ 32fð3ÞÞz3 þ � � � :ðhigher ordersÞ: ðC55Þ

The authors of Ref. [55] have performed a simultaneous fit of the HQET parameters and the CKM element Vcb by
considering an expansion of the IW functions up to order NNLO (3/2/1) and NNLO (2/1/0), where

NNLOð3=2=1Þ∶ ξðwÞ up to z3; χ̂2;3ðwÞ; ηðwÞ up to order z2 and l̂i up to order z; ðC56Þ

NNLOð2=1=0Þ∶ ξðwÞ up toz2; χ̂2;3ðwÞ; ηðwÞ up to order z and l̂i up to order z0: ðC57Þ

The fitted value of the parameters for the above two
scenarios from Ref. [55] are given in Table VII.
The other alternate way of parametrizing the form factors

is due to Boyd, Grinstein, and Lebed (BGL) [36]. Both the
CLN and BGL form-factor coefficients are constrained
from the same dispersive bounds. However, unlike CLN,
they do not employ HQET relations to reduce the number
of form-factor parameters and are hence, more general. The
form factors F i ≡ ff; g;F 1;F 2g are expressed as series
expansions in z as

F iðzÞ ¼
1

PiðzÞϕiðzÞ
XN
j¼0

aF i
j zj; ðC58Þ

where z is related to the recoil angle w as in Eq. (C54) and
PiðzÞ ¼

Q
p

z−zp
1−zzp

are called the Blaschke factors that help

eliminate poles at z ¼ zp at the Bc resonances given by

zp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ −M2

p

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t−

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ −M2

p

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t−
p ; t� ¼ ðmB �mD�Þ2:

ðC59Þ

The pole mass (Mp) for the different types of reso-
nances are listed in Table VIII. The outer functions ϕi
are given as

ϕf ¼
4rD�

m2
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

6πχT
1þð0Þ

r ð1þ zÞð1− zÞ3=2
½ð1þ rD� Þð1− zÞþ 2

ffiffiffiffiffiffiffi
rD�

p ð1þ zÞ�4 ;

ðC60Þ

ϕg ¼ 16r2D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

3πχ̃T1−ð0Þ
r ð1þ zÞ2ð1− zÞ−1=2

½ð1þ rD�Þð1− zÞþ 2
ffiffiffi
r

p ð1þ zÞ�4 ;

ðC61Þ
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ϕF 1
¼ 4rD�

m3
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

6πχT
1þð0Þ

r

×
ð1þ zÞð1 − zÞ5=2

½ð1þ rD� Þð1 − zÞ þ 2
ffiffiffiffiffiffiffi
rD�

p ð1þ zÞ�5 ; ðC62Þ

ϕF 2
¼ 8

ffiffiffi
2

p
r2D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nI

πχ̃L
1þð0Þ

r

×
ð1þ zÞ2ð1 − zÞ−1=2

½ð1þ rD� Þð1 − zÞ þ 2
ffiffiffiffiffiffiffi
rD�

p ð1þ zÞ�4 : ðC63Þ

The various relevant inputs for computing the outer
functions are listed in Table IX. The form-factor coeffi-
cients aF i

j satisfy the weak unitarity constraints given by

XN
j¼0

ðagjÞ2 < 1;
XN
j¼0

ðafj Þ2 þ ðaF 1

j Þ2 < 1;

XN
j¼0

ðaF 2

j Þ2 < 1: ðC64Þ

In addition to this, they are also subject to two kinematic
constraints, one each at zero and maximum recoil, respec-
tively, given by

F 1ð1Þ ¼ mBð1 − rD� Þfð1Þ; ðC65Þ

F 2ðwmaxÞ ¼
1þ rD�

m2
Bð1þ wmaxÞð1 − rD� ÞrD�

F 1ðwmaxÞ: ðC66Þ

In our analysis, we consider the fitted values of the form-
factor parameters from [12]. Lastly, for completion, we
would like to list the relations between the BGL form
factors and the hadronic form factors [56]:

g ¼ 2

mB þmD�
V; ðC67Þ

f ¼ðmB þmD�ÞA1; ðC68Þ

F 1 ¼ mBðmB þmD� Þðw − rD� ÞA1 −
2mBmD� ðw2 − 1Þ

1þ rD�
A2;

ðC69Þ

F 2 ¼ 2A0: ðC70Þ

The form-factor dependences on q2 for the various types
of parametrizations are shown in Fig. 9.

TABLE VII. Values of input parameters needed for the HQET
(3=2=1) and HQET (2=1=0) parametrizations of the hadronic
form factors taken from [55].

Parameter HQET (3=2=1) HQET (2=1=0)

ξð0Þ 1 1
ξð1Þ −0.93� 0.10 −1.10� 0.04
ξð2Þ þ1.35� 0.26 þ1.57� 0.10
ξð3Þ −2.67� 0.75 � � �
χ̂ð0Þ2

−0.05� 0.02 −0.06� 0.02

χ̂ð1Þ2
þ0.01� 0.02 −0.06� 0.02

χ̂ð2Þ2
−0.01� 0.02 � � �

χ̂ð0Þ3
0 0

χ̂ð1Þ3
−0.05� 0.02 −0.03� 0.01

χ̂ð2Þ3
−0.03� 0.03 � � �

ηð0Þ þ0.74� 0.11 þ0.38� 0.06
ηð1Þ þ0.05� 0.03 þ0.08� 0.03
ηð2Þ −0.05� 0.05 � � �
l̃ð0Þ
1

þ0.09� 0.18 þ0.50� 0.16

l̃ð1Þ
1

þ1.20� 2.09 � � �
l̃ð0Þ
2

−2.29� 0.33 −2.16� 0.29

l̃ð1Þ
2

−3.66� 1.56 � � �
l̃ð0Þ
3

−1.90� 12.4 −1.14� 2.34

l̃ð1Þ
3

þ3.91� 4.35 � � �
l̃ð0Þ
4

−2.56� 0.94 þ0.82� 0.47

l̃ð1Þ
4

þ1.78� 0.93 � � �
l̃ð0Þ
5

þ3.96� 1.17 þ1.39� 0.43

l̃ð1Þ
5

þ2.10� 1.47 � � �
l̃ð0Þ
6

þ4.96� 5.76 þ0.17� 1.15

l̃ð1Þ
6

þ5.08� 2.97 � � �

TABLE VIII. The pole masses corresponding to different types
of Bc resonances as listed in [57].

Form factor Type Pole masses Mp (GeV)

g 1− 6.329,6.920,7.020
f;F 1 1þ 6.739,6.750,7.145,7.150
F 2 0− 6.275,6.842,7.250

TABLE IX. Relevant inputs for the outer functions taken
from [57].

Form factor Type

nI 2.6
χT
1þð0Þ GeV−2 3.894 × 10−4

χ̃T1−ð0Þ GeV−2 5.131 × 10−4

χ̃L
1þð0Þ 1.9421 × 10−2

BHUBANJYOTI BHATTACHARYA et al. PHYS. REV. D 107, 015011 (2023)

015011-18



FIG. 9. Form-factor dependence on q2 for three different form-factor parametrizations. The shaded band show the region with the 1σ
upper and lower limits of the form-factor parameters listed in Tables VI and VII are considered without any correlation. For the HQET
form factors, we show only the 2=1=0 scenario following the analysis presented in Ref. [55]. Here, T̃3ðq2Þ is defined
as T̃3ðq2Þ ¼ T3ðq2Þq2=ðm2

B −m�
D
2Þ.
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