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W boson mass shift, dark matter, and (g—2), in a scotogenic-Zee model
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We present a singly charged scalar extension of the scotogenic model, the scotogenic-Zee model, which
resolves the recently reported deviations in the W boson mass as well as lepton g — 2. The model admits a
scalar or a fermionic dark matter while realizing naturally small radiative neutrino masses. The mass
splitting of ~100 GeV, which is required by the shift in W boson mass, among the inert doublet fields can
be evaded by its mixing with the singlet scalar, which is also key to resolving the (g — 2), anomaly within
lo. We establish the consistency of this framework with dark matter relic abundance while satisfying
constraints from charged lepton flavor violation, direct detection, and collider bounds. The model gives
predictions for the lepton flavor violating T — ¢y processes that will be testable in upcoming experiments.
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I. INTRODUCTION

The CDF Collaboration at Fermilab [1] reported a
precision measurement of W boson mass, M§PF =
(80.4335 +£0.0094) GeV, which is in tension with the
Standard Model (SM) prediction, MM = (80.357 &
0.004) GeV [2], with an excess at the 7o level that may
be an indication of new physics beyond the SM. The
new result from the CDF Collaboration, with a much
reduced uncertainty, has a higher precision than the Particle
Data Group (PDG) world average of MY>Y = (80.377 &
0.012) GeV [3], which takes into account the W mass
measurements from LEP [4], Tevatron [5] (CDF [6] and DO
[7]), and the LHCb Collaboration [8]. The PDG average,
which is in agreement with the SM prediction, disagrees
with the CDF Run-II result. It has been shown that the
improvement in parton density functions [9] and perturba-
tive matrix elements [10,11] cannot account for this
discrepancy. However, the discrepancy may be due to
high-twist power corrections within the SM that are not
normally considered in perturbative calculations [12,13].
This work proceeds under the assumption that the new CDF
measurement will be validated as the correct result for the
W boson mass.
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Some possible explanations to the W boson mass shift
can arise at tree level [14-29] or at loop level [30-46],
along with the prospect of reconciling one or more
discrepancies [47-69], such as flavor anomalies and dark
matter. Various other papers [11,70-99] also examined the
consequences of the CDF My, anomaly on new physics
scenarios.

Independently, the Muon (g—2) Collaboration at
Fermilab [100] confirmed the long-standing discrepancy in
the anomalous magnetic moment (AMM) of muon meas-
urement at BNL in 2006 [101] at a combined 4.2¢ deviation,1
Aap® = (2.51 +0.59) x 107?, from the SM prediction (see
Ref. [103] and the references therein). In addition to these
recent anomalies, astrophysical and cosmological observa-
tions [104—106] present compelling evidence for the exist-
ence of dark matter (DM), for which the SM fails to provide
an explanation. Moreover, one of the major shortcomings of
the SM is its inability to explain the origin of nonzero
neutrino mass substantiated by several experiments [107].

In this work we show that a simple extension of
the scotogenic model [108] with a charged singlet (the
scotogenic-Zee model) can simultaneously address all the
previously mentioned puzzles. Our novel scotogenic-Zee
model” is the simplest model that furnishes a direct link

'Recent results from the BMW Collaboration [102] agree with
the experimental measurement within 1.66.

>The scalar content is the same as the inert Zee model
[109,110], with only right-handed neutrinos, in contrast to
vectorlike singlets and doublets. The scotogenic-singlet model
[111] is a neutral scalar extension of the scotogenic model.
Neither model can resolve the discrepancy in (g —2), [112].
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between neutrino mass generation, dark matter, and the
AMM of the muon and also provides an upward mass
shift in the W boson that is in agreement with the CDF
measurement. Additionally, the presumed anomaly in the
AMM of the electron [113—115] can also be addressed
within the same framework. We explore the parameter
space of the scotogenic-Zee model spanned by both the
bosonic and fermionic DM candidates while being con-
sistent with the current experimental constraints.

The rest of the paper is organized as follows. In Sec. II we
give a brief description of the scotogenic-Zee model while
discussing the neutrino mass generation and the scalar sector.
In Secs. I1I and IV we respectively introduce and examine a
resolution to the W mass shift and AMM phenomenology in
the model. Section V discusses DM phenomenology for both
the scalar and fermionic DM candidates. Lastly, we integrate
the three puzzles (W-mass shift, lepton g — 2, and DM) with
neutrino mass generation and lepton flavor violating (LFV)
constraints and invoke a highly predictive flavor texture in
Sec. VI before concluding in Sec. VIL

II. MODEL

The proposed scotogenic-Zee model is a simple charged
singlet ST (1, 1; —) extension of the scotogenic [108] model
that contains Majorana singlet fermions Ng (1,0;—) and
the scalar doublet (7, 7°) =#n(2,1/2;—) under the gauge
group SU(2), x U(1)y x Z,. All the new particles are odd
under Z,, while the SM particles are even, guaranteeing the
stability of the DM candidate; the lightest among the new
neutral Z,-odd particles. The charged scalar singlet S* not
only gives corrections to the anomalous magnetic moment
of the muon and electron through mixing with the charged
doublet but also serves as a portal to generate the correct
relic abundance for fermionic DM.

The effective Yukawa Lagrangian in the extended model
can be written as

_EY D Yijl_‘LiﬁNRj +fij2Rl-S_NRj =+ H.c. (1)

The Z, symmetry, being exact, prevents #° from obtaining
a nonzero vacuum expectation value (VEV), and neutrinos
remain massless at tree level. Moreover, the SM Higgs £ is
decoupled from the new CP-even [Re(") ~ H] and -odd
[Im(#°) ~ A] scalars. The tree-level scalar potential of the
model is given by

V= B+ BSS i A (R 2 ()
s D))+ A )0 )+ B+ He)
PR (5S4 b)) + Aslrin)(57S7)

n g {eapd™n’S™ + Hoc.). 2)

The charged scalars {#", ST} mix, giving rise to the mass
eigenstates {H, H; }. The masses of the scalar fields in
the physical basis are given by

2

v
m%:j’]vz’ m%{(A)Zﬂﬁ_"?(’% +/14Z|:/15),
1
m%,? = 5(#2 +ps £ \/(ﬂz — p3)* + 2 0?%), (3)

where p, = p2 + %1% and p3 = 3 + 2 0% Here p, s, 4,

and y are the bare-mass terms, quartic couplings, and cubic
coupling, respectively. The mixing angle between the
charged scalar fields is defined as

V2
sin 20 = % 4)
—m
H; Hy

with the VEV v ~ 246 GeV. In this work, we comply with
the perturbative and vacuum stability conditions [116,117]
constraining the scalar couplings. We also have ensured
that our parameter space does not drive the mass parameters
,u% and y% to negative values; negative bare-mass terms can
lead the inert doublet or the charged singlet to attain a
nonzero VEV, thereby breaking the Z, symmetry [118].
Such Z, parity violation not only destabilizes the DM
candidates but also allows unacceptably large tree-level
neutrino masses. These arise from the renormalization
group (RG) evolution of the bare-mass terms and might
pose a serious problem when the coupling of the inert
scalars to heavy neutrinos are of O(1). As will be discussed
in the following sections, the coupling of 77 to Ny, is small
enough to avoid breaking the Z, symmetry. On the other
hand, the coupling between S™ and Npg, is taken to be
O(1). Thus, in order for the model to be valid above the
electroweak (EW) scale (such that the Z, symmetry is
preserved), it is important to check that the RG evolution
preserves not only 7 > 0 but also y§ > 0. The trilinear
coupling u gives positive contributions to the RG evolution
of the new scalar mass-squared parameters, thereby helping
prevent the breaking of the model symmetries. Note that it
is also essential to ensure that u is not much larger than the
scalar masses, as it can result in a deeper minimum than the
SM one [119,120]. The Majorana mass term %MN,_NiNi

along with the scalar quartic term % {(¢'5)? + H.c.} breaks
the lepton number by two units while generating the one-
loop neutrino mass [see Fig. 1 (top sketch)] M., which is
expressed as

(Mv)ij = ZyikAletj’
k

M 2 2
= Ng [ 2 " 5—log m;
167° [my — My, ~ My,

Ay — (my < my)|. (5)
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FIG. 1. Top sketch: radiative neutrino mass generation at one
loop. Bottom sketch: dominant correction to AMMSs arising
through the chiral enhancement. The cross represents the mass
insertion, whereas ¢ = e(u) for the electron (muon) AMM.

Here the lightest mass eigenstates { H, A} and N; can serve
as viable bosonic and fermionic DM candidates, respec-
tively. It is important to point out that unlike the scotogenic
model, where My can be arbitrarily small at the canonical
seesaw scale of 10° GeV or the Yukawa coupling Y,
the (g—2), in the model requires the scale to be in the
(sub-)TeV range along with O(0.1-1.0) Yukawa coupling.
Thus, a successful explanation of m, ~0.1 eV would
naturally require my to be nearly degenerate with m,.

III. CORRECTION TO THE W BOSON MASS

The shift in W boson mass [121] can be evaluated as a
function of the oblique parameters S, T, and U [122,123]
that quantify the deviation of a new physics model from
the SM through radiative corrections arising from shifts in
gauge boson self-energies. The oblique parameters in our
model get corrections from the extended Higgs sector
which is same as in the Zee model [124] except for the
Z, charge preventing the mixing with the SM Higgs
doublet. Therefore, we use the expressions for S, 7" and
U given in Ref. [125] under the alignment limit [126]. Note
that the corrections to U at one-loop level is suppressed
compared to S and 7.

With the new precision measurement of My by CDF,
some electroweak (EW) observables are expected to suffer
from this deviation. We incorporate the global EW fit [15]
with the new CDF data to quote the 2¢ allowed ranges of
oblique parameters. We confirm the necessity of mass
splitting in 2HDM [35,36] to accommodate the recent CDF
results and show that the introduction of the charged singlet
scalar allows the components of the doublet field to be
degenerate in certain regions for a specific choice of sin @

sin 8=0.2
m my; = 0.5 TeV
1500, ™ Mk =1.0TeV
m my; =2.0TeV
>
[0)
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1600
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1200
3
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.
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20S&T
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200
200 400 600 800 1000 1200 1400 1600
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FIG. 2. Top panel: the mass splitting between the components
of the doublet scalar required by the new CDF measurement of W
boson mass using 2¢ ranges for S and T from Ref. [15]. Bottom
panel: the 2¢ band allowed by the CDF measurement, in contrast
to the PDG world average [3.,40].

and m Hy» as can be seen from Fig. 2 (top) (for more detail
see Fig. 5). The splitting 657, = my+ — my depends on the
mixing angle, for instance, it can be at most ~140 GeV for
sin@ = 0.2. In spite of explaining the CDF W mass shift,
the proposed model remains consistent with the previous
experiments resulting in the PDG world average of the W
boson mass. It can be seen in Fig. 2 (bottom panel) that a
region consistent with the older experiments opens up more
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parameter space in the model, even allowing for degeneracy
between the doublet fields in the entire range of allowed
parameter space for particular values of sinf and m -

IV. ANOMALOUS MAGNETIC MOMENT

The charged scalar contributions to the anomalous
magnetic moment at one loop [127] shown in Fig. 1
(bottom sketch) are

Ht m% 2 ain2 2 2
Aayt =qea (1Yzi]* sin* 0 + |f ;] cos® 0)Gmp . 2]
w

My
LU Re(Y,,ﬂ,»fj;l.)siHZHG[mHT,1]), (6)
mye

where

xf(x —1)dx

1
GM.e| = /) myx? 4+ (M? = my)x + My, (1 - x) 7

and Aa;[2+ = Aagl+ (0 — 5+ 0). The dominant contribu-
tion to Aa, comes from the Majorana neutrino mass
enhancement, aided by the mixing of the charged scalar
mediators as shown in Fig. 1 (bottom sketch). The sign of
the product of the Yukawa couplings and the mixing angle
can be chosen independently. This in turn allows for the
simultaneous explanations of Aa, (£ = e, p). Moreover,
Aa,, provides an upper limit on the mass of the Majorana
neutrino (charged scalar) on the order of 15 (6.5) TeV with
f,Y ~O(1). The mass limit is relaxed in the case of Aa,.

Note that the Yukawa couplings and the masses of
charged scalars are severely restricted by the charged
lepton flavor violating processes such as radiative decay
¢ — €y [128]; such processes are enhanced in our model
by the mass insertion of Majorana neutrinos. Moreover,
although trilepton decays such as u — 3e do not occur at
tree level, they arise at one loop with large branching ratios
[129]. The same is also true for u — e conversion in the
nuclei. We impose these constraints in our parameter scan.

V. DM PHENOMENOLOGY

In addition to explaining the W boson mass shift and
Aay, the proposed model can easily accommodate both the
scalar (lightest of H and A) and fermionic (lightest among
N;) dark matter candidates (y). We consider both scenarios
and analyze the parameter space by implementing the
model in SARAH [130] and numerically evaluating the relic
abundance using the software micrOMEGAs [131]. The
relic density of DM is achieved through the standard
thermal freeze-out mechanism.

For the case of the Majorana fermion as a DM (y = N)
candidate, the annihilation channel which determines
the observed relic abundance is DM self-(co)annihilation
into charged leptons ¢ f; (light neutrinos v,2;) through

t-channel processes mediated by the Z,-odd scalars H;
(H, A) via the Yukawa coupling Y and/or f. The neutrino
oscillation data determine the flavor structure of Y, making
it natural to select a relatively small Y and a heavy doublet
scalar 7~ O(TeV) such that the LFV constraints are
relaxed. Thus, we choose f; ~O(1) (i=1, 2) and
degenerate N; to maximize the contribution to annihilation
mode yy — ¢¢ via ST; the allowed parameter space in the
mass plane can be seen in Fig. 3 (top panel) along with
the region resolving muon AMM for a specific choice
of k = Y*fsin€ = 0.015.

Fermionic DM
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FIG. 3. The allowed parameter space for fermion (top panel)

and neutral scalar (bottom panel) dark matter candidate to
simultaneously explain the AMM of the muon and the W boson
mass shift. The green (orange) band satisfies the correct relic
abundance [(g — 2)ﬂ] for a fixed x = Y*fsin6. The choice of
scalar mass provides an upward W boson mass shift, as expected
from the CDF measurements. The purple band (top panel) is the
exclusion region from the pp — ¢~ + E signature obtained
by recasting supersymmetric slepton searches at the LHC [132]
and from chargino production searches at LEP [133,134] (bottom
panel). The blue dash-dotted lines (top panel) show the direct
detection cross section lower bounds [135,136] from the LZ
Collaboration experiment [137] for different quartic couplings 4,
and our choice of Yukawa coupling f = 1.5.
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Note that in Fig. 3 the effects of coannihilation are
not taken into account for fermionic DM. The coannihi-
lation between fermionic DM and the charged scalar H3
becomes important when the mass difference is small:
(mpz —my)/my < 0.1 [138]. This dominates over the

annihilation processes mainly when f < 1, a parameter
space not favorable for our work to incorporate (g —2),
and satisfy LFV. Thus, we simply avoid coannihilation by
taking a larger mass splitting.

Although fermionic DM does not contribute to tree-level
direct detection cross sections, it can arise at one-loop order
via photon Z and Higgs penguin diagrams involving
charged scalars and charged leptons in the loop [136].
The relevant dimension-6 operators for Majorana DM
direct detection are the ones with the bilinears yy, yysy,
and yy"ysy. In the model presented here, both Yukawa
couplings f and Y give rise to such diagrams. As previously
mentioned, the Yukawa coupling Y needs to be small. Thus,
the dominant contribution comes from the coupling f ~
O(1) of Eq. (1) with the right-handed charged lepton ¢
and the charged scalar S* in the loop. In this case, the Z
penguin contribution is suppressed due to the absence
of axial-vector coupling to £». Photon mediated processes
can lead to an anapole operator [139] of the form Of, =
(xr*vsx)(qr,q). where q represents the quark flavor
eigenstates. Anapole contributions, however, are momen-
tum and velocity suppressed in the nonrelativistic limit
[140]. We find that the cross section from the anapole
contribution for the DM masses in our framework is at
most O(1075) cm? [136,141], which is well beyond the
current sensitivity. The dominant contribution, therefore,
appears from the Higgs penguin diagram leading to spin-
independent direct detection from the operator Ofs =
m,(7x)(g@q). The corresponding Wilson coefficient is
dependent not only on the Yukawa coupling f but also
on the quartic coupling 4,. This contribution can therefore
be suppressed by choosing a small A;, allowing for f
coupling to be >1. The allowed parameter space with the
current bounds [137] for direct detection cross sections
[135,136] is shown in Fig. 3 (top panel) for different
choices of 1; and a fixed Yukawa coupling f = 1.5.

In the case of scalar dark matter, which we choose to be
the CP-even H = y (nearly degenerate3 with A and 45 < 0),
DM can annihilate to W*W~, ZZ, v,v, hh, £¢,and gq. The
low mass regime suffers a strong constraint from LEP
[133,134,143] which can be satisfied if one assumes that
m,>Myz/2, my+ > My /2, and my+ +m, > M. For larger
DM mass, it predominantly annihilates to a pair of WTW~
and ZZ, for which the allowed region is m, 2 500 GeV and
the mass splitting &+ =my+ —m, <30GeV, as shown in
Fig. 3 (bottom panel). This can be relaxed by making the

*The mass splitting is on the order of O(100) keV [142] to
evade direct detection.

Higgs quartic coupling =1, a choice strongly constrained by
the direct detection bound [137,144—147].

In this work we take the quartic couplings Az + 44 +
As < 1 to automatically satisfy the direct detection bound
obtained from the scalar DM interacting with the nucleus at
tree level through the SM Higgs boson. Moreover, it is
favored to take the couplings Y;; small and My ~ O(TeV)
to be consistent with the neutrino fit, which implies that the
DM analysis is indistinguishable from the known inert
doublet model (IDM). It turns out that the CDF measure-
ment requires mass splitting among the inert doublet fields
of O(100) GeV, thus disfavoring the scalar DM candidates
in the scotogenic IDM. However, the mixing between the
charged scalars in this model allows the components of the
doublet field to be degenerate (cf. Fig. 2), thereby admitting
the CP-even H to be a viable DM candidate, as shown in
Fig. 3 (bottom panel).

The direct detection cross section can arise at one loop
from vertices like HHZZ, HHWW, HZA, and HWHli
driven by the gauge coupling. These contributions can be as
important as the tree-level processes. In the model pre-
sented here, the quartic couplings that give rise to tree-level
direct detection are chosen to be small; thus, its contribu-
tion in comparison to the loop effect is negligible. For
the masses m, > 500 GeV required to explain the total
observed relic density within the model [see Fig. 3 (bottom
panel)], we find that the one-loop cross section is ~1.1 x
10740 cm? (see Refs. [148—150] for details). This evades
the current experimental bound [137,144—147] but will be
sensitive to upcoming experiments [151,152].

VI. NEUTRINO FIT/ LEPTON FLAVOR
VIOLATION

The neutrino mass formula of Eq. (5), lepton g — 2, and the
dark matter analysis have close-knit correlation through
Yukawa couplings, Majorana fermions, and new scalars.
As previously stated, (g —2), sets an upper bound on the
masses of the Majorana fermions and the charged scalars with
/.Y ~O(1). Moreover, the maximum splitting among the
doublet fields is restricted by the shift in W boson mass,
thereby forcing the parameter space to the region my ~ my,
which is crucial in explaining the observed neutrino oscil-
lation data.

In order to check the consistency with the neutrino
oscillation data and efficiently probe the model with LFV
observables, we adopt Casas-Ibarra parametrization [153]
to rewrite the Yukawa matrix Y of Eq. (5) in terms of
neutrino mass parameters,

Y = U\ M{®RIVAT, (8)

where R is an arbitrary complex orthogonal matrix. The
neutrino oscillation parameters are scanned within the 2¢
allowed ranges [154] to obtain the Yukawa matrix.
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FIG. 4. Scattered plot assuming the fermionic DM with the same
parameter space as given in Fig. 3 (top panel). Colored shaded
regions are the current exclusion limits [155], whereas dash-dotted
lines represent the future projected sensitivities [156]. The orange
(green) dots correspond to solutions that resolve Aa, (Aa, ,) and
satisfy the observed relic density as well as neutrino oscillation
observables within their 20 measured values [154].

As mentioned earlier, the product of Yukawa couplings
Y ifs: can explain (g — 2),; however, these couplings are
constrained by LFV processes. To facilitate a direct
correlation between the observed relic density and both
the muon and the electron (g—2), we consider two
(degenerate) stable DM candidates with their respective
Yukawa couplings of O(1). This also allows more param-
eter space for the DM mass m,, and mediator mass m Hf> 38

shown in Fig. 3 (top panel). With such a choice of a large
fii (i = 1, 2), the mass enhancement to £; — £y severely
restricts the parameter space. Such a chirally enhanced
contribution can be suppressed with a suitable choice of
Yukawa couplings and masses of the Majorana fermions.
For instance, chirally enhanced u — ey can be evaded
with the choice of Y1, = Y, ~0 or Yy f11 = =Y,/ for
My, = My, (= m,). We then check the consistency of our
fit by computing the branching fractions of #; — ¢y and
¢; — 3¢; process at one-loop level and make testable
predictions for fermionic DM (see Fig. 4). In the case of
scalar DM, since the Yukawa coupling f does not play any
role in relic abundance, there is more freedom in the choice

of parameters and it yields no sizable predictions. It is
important to note that a single Majorana fermionic DM
candidate by itself can successfully resolve (g — 2) . With
fui ~O(1). This would open up the parameter space with
much weaker constraints arising from LFV processes.
However, such a choice would not lead to direct correlation
between (g — 2), and DM, and also does not lead to a LFV
prediction.

VII. CONCLUSIONS

In light of recent experimental results confirming a 4.2¢
discrepancy in the measurement of (g — 2) , and a possible
7o excess in the mass of the W boson, it is imperative to
investigate new physics contributions for clarification.
We propose the scotogenic-Zee model, a simple charged
singlet extension of the scotogenic model, to show a direct
correlation between these anomalies and the observed
neutrino oscillation data, as well as the dark matter relic
abundance. We explore the parameter space spanned by
both the bosonic and fermionic dark matter candidates and
provide a coherent resolution to electron and muon AMMs
and My, anomaly while evading dangerous LFV processes
like 4 — ey and ¢ — 3e. In contrast to the inert doublet/
scotogenic models, where the small mass splitting among
the doublet fields required for the observed relic density is
disfavored by the CDF measurement, the scalar DM
candidate in our model survives due to the presence of
the extra charged singlet, which is essential in resolving
Aay,. This model predicts large rates for LFV processes
7 — ¢y which can be tested in future experiments.
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APPENDIX: OBLIQUE PARAMETERS

Here we provide additional plots in the model to show
the allowed parameter space consistent with the upward
CDF W mass shift.
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FIG. 5. Mixing angle € as a function of the charged scalar mass m H for different mass splittings (left panel) 6+ = m HY — My and
(right panel) the mass splitting 65+ as a function of neutral scalars for different choices of charged singlet scalar mass explaining the
upward shift in My, reported in the CDF measurements, which is consistent with the 2¢ ranges of S and 7.
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