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Università di Pisa and INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy

(Received 9 August 2022; accepted 17 January 2023; published 31 January 2023)

The topological susceptibility of 2D CPN−1 models is expected, based on perturbative computations, to
develop a divergence in the limit N → 2, where these models reduce to the well-known nonlinear O(3) σ
model. The divergence is due to the dominance of instantons of arbitrarily small size and its detection by
numerical lattice simulations is notoriously difficult, because it is logarithmic in the lattice spacing. We
approach the problem from a different perspective, studying the behavior of the model when the volume is
fixed in dimensionless lattice units, where perturbative predictions are turned into more easily checkable
behaviors. After testing this strategy for N ¼ 3 and 4, we apply it to N ¼ 2, adopting at the same time a
multicanonic algorithm to overcome the problem of rare topological fluctuations on asymptotically small
lattices. Our final results fully confirm, by means of purely nonperturbative methods, the divergence of the
topological susceptibility of the 2D CP1 model.
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I. INTRODUCTION

The 2D CPN−1 models are quantum field theories that
play an important role in the study of the nonperturbative
properties of gauge theories, as they share many intriguing
features with 4DYang-Mills theories, such as confinement,
the existence of a nontrivial topological structure, and the
related dependence on the topological parameter θ [1–3].
These theories are amenable to being treated exactly by
analytic means in certain regimes but have also been
extensively explored by means of Monte Carlo (MC)
simulations on the lattice, since they constitute the perfect
theoretical laboratory to test new numerical methods in
view of an application to the more complicated physical
gauge theories.
At large N, CPN−1 models admit a 1=N expansion which

is similar to the ’t Hooft large-N expansion of QCD.
These models, however, admit an analytic solution in
this regime, and the large-N limit of the vacuum energy
EðθÞ iswell knownboth analytically and numerically [4–14].

An important difference between 2D CPN−1 models and
4D SUðNÞ Yang-Mills theories emerges in the opposite,
small-N limit. Indeed, in the N → 2 limit, where the
theory becomes equivalent to the nonlinear O(3) σ model
(which has been widely studied both analytically and
numerically in the literature [15–38]), a pathological behav-
ior emerges, which has no analog in the Yang-Mills case,
where instead the approach from small to large N is much
smoother [12,39–41].
The semiclassical picture predicts a divergence of the

topological susceptibility χ for N ¼ 2, which survives the
renormalization procedure. Various studies have already
tried to check this prediction by lattice numerical simu-
lations, and, while there is a general consensus that the
prediction is verified, the issue is not completely settled.
For example, while various works about the nonlinear O(3)
σ model found numerical evidence supporting that χ is
divergent in the continuum limit (see, e.g., Refs. [33,37]), a
recent investigation [42] from some of the authors of the
present paper, considering both direct simulations at N ¼ 2

and the N → 2 limit of CPN−1 models, pointed out some
difficulties in making a definite statement.
The main difficulty can be related to the fact that the

divergence is of ultraviolet (UV) origin; i.e., it is related to
the presence of semiclassical solutions with nonzero
topological charge (instantons) at arbitrarily small scales.
As a consequence, lattice studies need to check the
emergence of a divergent behavior as the lattice spacing
a → 0: This task can be ambiguous, since the behavior
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could be barely distinguishable from a badly convergent
behavior in a wide range of lattice spacings. For instance,
even for N ¼ 3 the finiteness of χ could be definitely
established only recently (see, e.g., Ref. [42], where two
different strategies led to consistent results).
The purpose of the present study is to develop a novel

strategy, in order to make the problem better defined and
reach more definite conclusions. In practice, we will
approach the continuum limit, keeping the ratio between
the UV and the infrared (IR) cutoffs fixed, i.e., working
at fixed volume in lattice units and then considering
the same procedure for different values of the dimension-
less volume, a strategy which resembles some aspects of
the determination of the step scaling beta function on the
lattice (see, e.g., Ref. [43] for a recent review on the
topic). As we will discuss in more detail in the following,
within this framework the original divergent behavior of
the topological susceptibility is turned into a convergent
(as opposed to vanishing) continuum limit, which is
much easier to check numerically, as indeed we will
manage to do.
A drawback of this strategy is that one is forced to study

volumes of arbitrarily small size in physical units, where
topological fluctuations are extremely rare and a precise
determination of the topological susceptibility could
require an unfeasible statistics. This problem is easily
solved by adopting a multicanonical algorithm [44], which
has been recently employed to face the same issue in
Refs. [45–48]. The general idea is to add a bias potential to
the action, so that the probability of visiting suppressed
topological sectors is enhanced; the MC averages with
respect to the original distribution are then obtained by
means of an exact standard reweighting procedure.
This paper is organized as follows. In Sec. II, we give a

brief review about 2D CPN−1 models and their topological
properties. In Sec. III, we describe our numerical setup and
our strategy to compute the continuum limit of χ on
asymptotically small lattices, including a description of
the adopted multicanonical algorithm. In Sec. IV, we
present and discuss our numerical results, including also
an application of the same method to N ¼ 3 and 4, in order
to check consistency with previous results in the literature
for these models [10,42,49,50]. Finally, in Sec. V, we draw
our conclusions.

II. CONTINUUM THEORY

The Euclidean action of 2D CPN−1 models can be written
in terms of a matter field zðxÞ, a complex N-component
scalar field satisfying z̄ðxÞzðxÞ ¼ 1, and of an auxiliary
nonpropagating U(1) gauge field Aμ. In the presence of the
topological term, the action reads

SðθÞ ¼
Z

d2x

�
N
g
D̄μz̄ðxÞDμzðxÞ − iθqðxÞ

�
; ð1Þ

where g is the ’t Hooft coupling,Dμ ¼ ∂μ þ iAμ is the U(1)
covariant derivative, and

Q ¼
Z

d2xqðxÞ ¼ 1

2π
ϵμν

Z
d2x∂μAνðxÞ ∈ Z ð2Þ

is the integer-valued topological charge.
The θ-dependent vacuum energy density, using the path-

integral formulation of the theory, is given by

EðθÞ ¼ −
1

V
log

Z
½dz̄�½dz�½dA�e−SðθÞ; ð3Þ

where V is the 2D space-time volume. Assuming that EðθÞ
is an analytic function of θ around θ ¼ 0, one can Taylor
expand it around this point; at leading order, one has [3,12]

EðθÞ − Eð0Þ ¼ 1

2
χθ2 þOðθ4Þ; ð4Þ

where χ is the topological susceptibility:

χ ¼ 1

V
hQ2i

����
θ¼0

: ð5Þ

To better understand the origin of the divergence of χ in
the N → 2 limit, it is useful to recall that, in the semi-
classical approximation, the path integral is evaluated by
integrating fluctuations around instanton solutions, and it is
reduced to an ordinary integral of the instanton density. At
leading order, the instanton density of CPN−1 models is
given, as a function of the instanton size, by [51]

dIðρÞ ∝ ρN−3: ð6Þ

For N ¼ 2, dIðρÞ ∼ 1=ρ; i.e., it develops an UV divergence
for ρ → 0. This means that the divergence of χ in this case
can be traced back to the proliferation of small-size
instantons with vanishing size ρ → 0, whose density grows
proportionally to 1=ρ.

III. NUMERICAL METHODS

In this section, we discuss various aspects related to the
discretization of the models and of the observables, in
particular, those related to topology and to the employed
numerical strategies.

A. Discretization details

We discretized space-time through a square lattice with
L2 sites and periodic boundary conditions and the θ ¼ 0
continuum action (1) through the tree-level Symanzik-
improved lattice action [9]
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SL ¼ −2NβL
X
x;μ

fc1Re½ŪμðxÞz̄ðxþ μ̂ÞzðxÞ�

þ c2Re½Ūμðxþ μ̂ÞŪμðxÞz̄ðxþ 2μ̂ÞzðxÞ�g; ð7Þ

where c1 ¼ 4=3 and c2 ¼ −1=12 are improvement coef-
ficients, βL ≡ 1=gL is the inverse bare coupling, zðxÞ are
the matter fields, satisfying z̄ðxÞzðxÞ ¼ 1, and UμðxÞ are
U(1) gauge link variables. Symanzik improvement cancels
out logarithmic corrections to the leading continuum
scaling [52], improving convergence toward the continuum
limit.
In this limit, approached taking βL → ∞, a vanishing

lattice spacing a → 0 can be traded for a divergent lattice
correlation length ξL ≡ ξ=a ∼

a→0
1=a. In order to fix a, in this

work we chose the second moment correlation length ξ,
defined in the continuum theory as

ξ2 ≡ 1R
GðxÞd2x

Z
GðxÞ jxj

2

4
d2x; ð8Þ

where GðxÞ denotes the two-point connected correlation
function of the projector PijðxÞ≡ ziðxÞz̄jðxÞ:

GðxÞ≡ hPijðxÞPijð0Þi −
1

N
: ð9Þ

A lattice discretization of Eq. (8) can be obtained from the
Fourier transform G̃LðpÞ of GLðxÞ, which is the lattice
counterpart of Eq. (9) [53]:

ξ2L ¼ 1

4sin2ðπ=LÞ
�

G̃Lð0; 0Þ
G̃Lð2π=L; 0Þ

− 1

�
: ð10Þ

B. Topology on the lattice and smoothing

There are several possible discretizations QL of the
topological charge (2), all yielding the same continuum
limit for the topological susceptibility and other quantities
relevant to θ dependence, when discretization effects are
properly taken care of. Generally speaking, lattice defi-
nitions are related to the continuum one by [54,55]

QL ¼ ZQðβLÞQ; ð11Þ

where ZQðβLÞ is a finite multiplicative renormalization
factor. For this reason, lattice discretizations of Q are, in
general, not integer valued. The most simple discretization
can be defined in terms of the plaquette ΠμνðxÞ≡
UμðxÞUνðxþ μ̂ÞŪμðxþ ν̂ÞŪνðxÞ as

Qplaq ¼
1

2π

X
x

Im½Π12ðxÞ�: ð12Þ

However, it is possible to work out geometric discreti-
zations of the topological charge [9,16], which always

result in integer values for every configuration, i.e.,
definitions with ZQ ¼ 1. In particular, we adopted the
geometric definition that can be built from the link
variables UμðxÞ [9]:

QU ¼ 1

2π

X
x

Imflog ½Π12ðxÞ�g ∈ Z: ð13Þ

Although QU has ZQ ¼ 1, renormalization effects are
still present when computing χ because of dislocations
[10,56]. Dislocations are UV fluctuations of the back-
ground gauge field that make establishing the winding
number of the configuration ambiguous. The net effect is
that dislocations result in an additive renormalization when
computing the lattice topological susceptibility [57,58].
Such renormalization diverges in the continuum limit and,
thus, must be removed.
Dislocations being the result of UV fluctuations at the

scale of the lattice spacing, computing the geometric charge
on smoothed configurations is sufficient to remove their
unphysical contribution while preserving the background
topological structure of the gauge fields. Indeed, smoothing
brings a configuration closer to a local minimum of the
action, thus dumping UV fluctuations while, at the same
time, preserving the physical topological signal.
Many different smoothing algorithms have been pro-

posed in the literature, such as stout smearing, gradient
flow, or cooling, all giving consistent results when properly
matched with each other (see Refs. [59,60] for more
details). For this reason, we chose cooling for its numerical
cheapness. This method consists in a sequence of ncool steps
in which the configuration approaches a local minimum of
the action by iteratively aligning both link variables UμðxÞ
and site variables zðxÞ to their relative local force. Since the
choice of the action that is locally minimized during
cooling is irrelevant [60], we adopted the unimproved
one for this purpose, meaning that the local forces along
which the UμðxÞ and zðxÞ fields are aligned are computed
from the action in Eq. (7) with c1 ¼ 1 and c2 ¼ 0. In the
end, thus, we define

QL ¼ QðcoolÞ
U ;

a2χ ¼ hQ2
Li

L2
: ð14Þ

It is worth mentioning that smoothing methods act as
diffusive processes, thus modifying the UV behavior of the
fields below a smoothing radius rs which is proportional to
the square root of the amount of smoothing performed (e.g.,
to

ffiffiffiffiffiffiffiffiffi
ncool

p
in our case). When χ is finite, the choice of ncool is

not critical, because the physical topological signal is
well separated from the length scale rs introduced by
the smoothing procedure. As a consequence, in such cases
χ exhibits a plateau upon increasing ncool above a certain
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threshold, and no residual dependence on ncool is observed
on continuum-extrapolated results.
The pathological case of the CP1 model is, instead,

different in this respect, since we exactly aim at probing the
sensitivity of χ to the contribution of small instantons,
which are, however, smoothed away below rs [see
Ref. [33], where the dependence of the topological sus-
ceptibility of the nonlinear O(3) σ model on the gradient
flow time is discussed]. In particular, in our setup where
L ¼ l=a is kept fixed as a → 0, the quantity

ffiffiffiffiffiffiffiffiffi
ncool

p
=L ¼

rs=l is a relevant parameter, and we expect the continuum
limit of χ to depend on its value. Thus, we will extrapolate
our results toward rs=l → 0 in order to ensure that no
relevant contribution coming from small length scales
is lost.
Concerning updating algorithms, CPN−1 models at small

N do not require any particular strategy to decorrelate the
topological charge [42], contrary to the large-N case, which
is plagued by a severe topological critical slowing down
[13,14,39,61–64]. As a matter of fact, CPN−1 models at
small N are dominated by small instantons, which are more
easily decorrelated by means of local field updates. Thus,
we will adopt local updating algorithms such as over-
relaxation (OR) and over-heat-bath (HB) [9]. An issue is,
however, represented by the dominance of theQ ¼ 0 sector
on small physical volumes, which is discussed in more
detail in Sec. III E.

C. Continuum limit at fixed volume in lattice units

The expectation value of a generic observable O scales
toward the continuum limit according to

hOiLðξLÞ ¼ hOicont þ cξ−2L þ oðξ−2L Þ; ð15Þ

where finite lattice spacing corrections to continuum
scaling are expressed as inverse powers of 1=ξL.
However, the continuum scaling of topological observables
is modified at small N, due to the presence of small-size
topological fluctuations.
Such modifications have been worked out in Ref. [42],

assuming the perturbative computation of the instanton size
distribution dIðρÞ ∝ ρN−3 and that topological fluctuations
are dominated by a noninteracting gas of small-size
instantons and anti-instantons. Under these assumptions,
the number of (anti-)instantons nI (nA) is distributed as a
Poissonian with hnIi ¼ hnAi ∝ l2

R
ρmax
ρmin

ρN−3dρ, where the
integral is taken from a UV scale ρmin, proportional to
the lattice spacing a, to an IR scale ρmax, proportional to the
correlation length ξ. Then,

hQ2i ∝ hðnI − nAÞ2i ¼ 2hnIi ∝ l2
Z

ρmax

ρmin

ρN−3dρ; ð16Þ

and, thus,

ξ2χ ¼ ξ2
hQ2i
l2

∝
�
ρN−2
max − ρN−2

min ; ðN > 2Þ;
logðρmax

ρmin
Þ; ðN ¼ 2Þ: ð17Þ

From Eq. (17), taking into account that ρmin ∝ a and
ρmax ∝ ξ, one can predict the following behaviors for the
topological susceptibility when the continuum limit is
approached at fixed physical lattice volume V ¼ l2 (hence,
on lattices satisfying L=ξL ≫ 1):

ξ2χðxÞ ¼ A2 logðB2xÞ þ C2x2 þOðx4Þ ðN ¼ 2Þ;
ξ2χðxÞ ¼ A3 þ B3xþ C3x2 þOðx4Þ ðN ¼ 3Þ;
ξ2χðxÞ ¼ AN þ CNx2 þOðx4Þ ðN ≥ 4Þ;

where x ¼ 1=ξL ∝ a. Hence, for the CP1 model, the
divergence of the topological susceptibility should appear
as a logarithm of the UV cutoff 1=a, which may be difficult
to distinguish from a regular power-law behavior in a.
To overcome this issue, we investigate the continuum

limit of χ in the small-N limit performing lattice simu-
lations at fixed volume in lattice units, i.e., fixing L ¼ l=a.
Using this approach, we have the following predictions:

ξ2χ ¼ ξ2
hQ2i
l2

∝

(
aN−2½ðLRÞN−2 − 1� ðN > 2Þ;
logðLRÞ ðN ¼ 2Þ; ð18Þ

where R is an effective parameter accounting for the ratio
between the maximum and the minimum instanton sizes
which can live on the same lattice, which is expected in this
case to be proportional to l ¼ aL (since L ≪ ξL), i.e.,
ρmax=ρmin ≡ L=R, with R independent of L. We stress that
Eq. (18) has been obtained by multiplying hQ2i=l2 for the
squared correlation length ξ2 obtained on large physical
volumes (i.e., in the limit L=ξL ≫ 1), so that the only
dependence on L of the continuum limit of ξ2χ comes from
χ alone.
These semiclassical considerations point out that, when

the continuum topological susceptibility computed on
lattices with L=ξL ≫ 1 is finite, the continuum limit of χ
at fixed L is expected to vanish as a for N ¼ 3 or as a2 for
N ¼ 4; cf. Eq. (18). This is due to the fact that, when a → 0
at fixed L, the physical lattice size vanishes proportionally
to a, and any topological fluctuation on physical scales
disappears.
On the other hand, if the continuum limit of χ taken at

fixed L=ξL ≫ 1 is logarithmically divergent, as predicted
by semiclassical computations, we expect to approach a
constant and finite value for χ when, instead, the continuum
limit is taken at fixed L; cf. again Eq. (18). In this case,
topological fluctuations damped because of the decreasing
IR cutoff are exactly balanced, as a → 0, by new topo-
logical fluctuations appearing at arbitrarily small UV
scales. This means that, with this strategy, the divergent
continuum limit of χ predicted by semiclassical
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computations is mapped into a nonvanishing finite con-
tinuum limit, which should be more amenable to be tested
by numerical methods.

D. Determining ξL close to the continuum limit

As we stressed above, the values of ξL needed for our
determination of ξ2χ ¼ ξ2La

2χ are those that would be
obtained in the infinite volume limit, i.e., on lattices of size
L such that L=ξL ≫ 1. This is barely feasible within the
framework of our numerical strategy, aimed at reaching
very large values of ξL but keeping L fixed; i.e., we would
need to perform additional simulations on unfeasible large
lattices for a reliable numerical determination of ξL.
To overcome this problem, we will first look for the onset

of the asymptotic scaling region where ξL scales as
predicted by the two-loop perturbative beta function [2]:

−a
dβ−1L
da

¼ −
β−2L
2π

�
1þ β−1L

πN

�
ð19Þ

and then make use of such scaling to extend the determi-
nation of ξL within this region.
Integrating Eq. (19) to obtain the running of the quantity

2πβLðaÞ, it is possible to obtain the dynamically generated

scale of the lattice theory (7) ΛðSymÞ
L in lattice units [9]:

ΛðSymÞ
L ¼ 1

a
½ð2πβLÞ2=N expf−2πβLg�≡ 1

a
fðβLÞ: ð20Þ

The latter equation can be turned into a perturbative
expression for the mass gap M≡ ξ−1 by multiplying both
sides for ξ:

ΛðSymÞ
L =M ¼ ξLfðβLÞ: ð21Þ

Equation (21) being the result of a perturbative computa-

tion, we expect the ratio M=ΛðSymÞ
L to approach a con-

stant value plus Oð1=βLÞ corrections in the asymptotic
region βL → ∞. Assuming such corrections to be negli-
gible, Eq. (21) allows one to compute ξL at arbitrarily large
values of the bare coupling once its value ξ⋆L for a certain
coupling β⋆L is fixed:

ξLðβLÞ ¼ fðβ⋆LÞ
ξ⋆L

fðβLÞ
: ð22Þ

In the following, ξL will be first determined numerically on
large lattices (satisfying L=ξL ≫ 1) and for a feasible range
of values of βL; then, by matching results to asymptotic
scaling prediction in Eq. (21), we will choose a β⋆L for
which Eq. (22) is reliable and determine ξL accordingly for
larger values of βL. More details about our choice of β⋆L and
on the check of the stability of ξL varying this choice can be
found in Appendix A.

E. Dominance of the Q= 0 sector
and multicanonical algorithm

Another drawback of working at fixed L is the domi-
nance of the Q ¼ 0 sector, which introduces the necessity
of collecting unfeasible statistics to achieve a precise
computation of the topological susceptibility on asymp-
totically small lattice volumes. In order to better clarify
this statement we remark that, according to Eq. (18), even if
χ diverges for N ¼ 2 as expected from the semiclassical
approximation, hQ2i is expected to vanish, for fixed L, as
1=ξ2L in the continuum limit. If hQ2i ≪ 1, thenPðQ ¼ 0Þ ≫
PðjQj ¼ 1Þ ≫ PðjQj ¼ 2Þ ≫ � � �; in this regime, the vari-
ance of the topological charge distribution PðQÞ can be
approximated as

hQ2i ¼ Vχ ≃
PðjQj ¼ 1Þ
PðQ ¼ 0Þ ; ð23Þ

i.e., to compute χ, we need to estimate with great precision a
vanishing probability to visit jQj ¼ 1 sectors. This requires
a growing and unfeasible numerical effort, since we need a
sufficient number of fluctuations of Q to obtain hQ2i with a
given target precision.
In order to overcome this problem, we will adopt the

multicanonical algorithm. This approach was recently
employed in the context of 4D gauge theories to enhance
topological fluctuations at finite temperature; see, e.g.,
Refs. [45,47]. The main idea behind the multicanonic
approach is to modify the probability distribution of the
topological charge PðQÞ → PmcðQÞ ¼ PðQÞwðQÞ, where
wðQÞ is a known Q-dependent weight function, in order to
enhance the probability of visiting suppressed topological
sectors. Since the relative error on Eq. (23) scales as the
inverse of the square root of the number of jQj ¼ 1 events
∼NmeasPðjQj ¼ 1Þ, enhancing PðjQj ¼ 1Þ with respect to
PðQ ¼ 0Þ by a known factor of w1=w0 reduces the relative
error on χ by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w1=w0

p
.

In analogy with lattice QCD simulations [45–47], we
introduce the weights wðQÞ by adding a topological
potential V topoðQmcÞ to the lattice action:

SL → SL þ V topoðQmcÞ ⇒ wðQÞ ¼ e−V topoðQmcÞ; ð24Þ

where Qmc is a suitable discretization of the topological
charge, which does not necessarily need to coincide with
the one that is used to measure it.
Expectation values with respect to the original distribu-

tion are then exactly recovered by the following standard
reweighting procedure:

hOi ¼ hOeV topoðQmcÞimc

heV topoðQmcÞimc

: ð25Þ

We stress that the relation in Eq. (25) among expectation
values computed with and without the bias potential is
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exact; thus, any choice for V topoðQmcÞ will in the end give
the correct result for hOi. Therefore, this strategy does not
introduce any further source of uncertainty. For this reason,
the discretization of the topological chargeQmc and the bias
potential V topo can be chosen with some arbitrariness.
However, the choice of V topoðQmcÞ can affect the

efficiency of the algorithm, and, in particular, one would
like to avoid possible issues due to a poor overlap between
the starting and the biased path-integral distributions. This
could happen, e.g., if V topo is too strong. In that case, a sort
of spontaneous breaking of the CP symmetry occurs [47],
meaning that configurations with Q ≠ 0 occur with over-
whelming frequency with respect to Q ¼ 0 ones and that
hQi ≠ 0, thus disrupting importance sampling and leading
to uncontrolled effects on the correct estimation of stat-
istical errors in the evaluation of the ratio of expectation
values in Eq. (25).
However, such pathological cases can be easily avoided

by tuning the topological potential through short test runs,
ensuring that importance sampling is not disrupted. In
particular, if the MC evolution of the topological charge is
still dominated by the Q ¼ 0 sector, the symmetry proper-
ties of the distribution are preserved (i.e., hQi ¼ 0), and
Q ≠ 0 sectors (which are those giving contribution to the
averages of interest) are explored more frequently, and then
reweighted, which enhances (rather than disrupts) impor-
tance sampling for the observables of interest. The estimate
of the statistical error on Eq. (25), which proceeds usually
through a bootstrap analysis, will then be reliable if the
number of tunnelings in and out of the Q ¼ 0 topological
sector is statistically significant, as is always the case in our
simulations. The tuning of the potential was done following
the procedure outlined in Ref. [47]. More details about our
choices for Qmc and V topo and about our implementation of
the multicanonical algorithm can be found in Appendix B.

IV. NUMERICAL RESULTS

In this section, we will first discuss results for the
topological susceptibility for N ¼ 4 and N ¼ 3, showing
that our strategy gives compatible results with previous
findings in the literature [10,42,49,50]. Then, we show the
behavior of ξ2χ in the continuum limit at fixed L for N ¼ 2,
established adopting the multicanonic algorithm. Finally,
we conclude our study by comparing results achieved at
fixed L with those obtained at fixed physical vol-
ume (L=ξL ≫ 1).

A. Results for N = 4 and N = 3

In order to calibrate our strategy, we first consider the
cases N ¼ 4 and 3, for which we expect from semiclassical
computations, and we actually know from previous lattice
results [10,42,49,50], that the topological susceptibility is
finite.

Therefore, according to Eq. (18), we expect to observe a
vanishing continuum limit

ξ2χðxÞ ∼
x→0

xc; x ¼ 1=ξL; ð26Þ

where c ¼ 2 for N ¼ 4 and c ¼ 1 for N ¼ 3.
Following the strategy discussed in Sec. III C, we

performed lattice simulations, keeping the volume fixed
in lattice units on lattices with L ¼ 50, exploring several
values of βL, and reaching values of ξL of the order of
∼103. Our MC updating step in this case consisted of four
lattice sweeps of OR and one lattice sweep of HB updating
steps: In the following, we will simply call this combination
“standard MC step.” The computation of the topological
susceptibility in lattice units via Eq. (14) was performed
every ten MC steps and after ncool ¼ 50 cooling steps,
while ξL was computed via Eq. (22).
In Table I, we report a complete summary of the

parameters of the performed simulations for N ¼ 4 and
3 along with the generated statistics and the obtained results
for ξL, a2χ, and ξ2χ.

TABLE I. Summary of simulation parameters and results
obtained for N ¼ 4, 3 and L ¼ 50. The correlation length ξL
is computed according to Eq. (22) with β⋆L ¼ 1.35 and 1.455 for
N ¼ 4, 3, respectively (see Appendix A for more details).
Reported values of χ are computed after ncool ¼ 50 cooling
steps. Statistics is expressed in millions (M), and measures are
taken every ten standard MC steps (¼ 4 OR þ1 HB lattice
updating sweeps).

N βL ξL × 10−3 a2χ × 109 ξ2χ × 103 Statistics

4 1.35 0.08262(70) 283.0(2.7) 1.932(38) 52M
1.40 0.11108(94) 89.3(1.5) 1.102(27)
1.45 0.1494(13) 28.55(87) 0.638(22)
1.50 0.2012(17) 7.80(43) 0.316(18)
1.55 0.2709(23) 2.88(27) 0.211(20)
1.60 0.3651(31) 0.98(17) 0.130(22)
1.65 0.4922(42) 0.42(11) 0.102(27)
1.70 0.6639(56) 0.107(54) 0.047(24)
1.75 0.8959(76) 0.031(19) 0.025(15)

3 1.50 0.12765(68) 529.1(4.1) 8.62(11) 25M
1.55 0.17099(92) 223.8(2.7) 6.54(10)
1.60 0.2292(12) 90.8(1.7) 4.77(10)
1.65 0.3074(16) 38.4(1.1) 3.62(11)
1.70 0.4126(22) 15.66(73) 2.67(13)
1.75 0.5541(30) 6.87(47) 2.11(15)
1.80 0.7445(40) 2.78(15) 1.54(8) 102M
1.85 1.0009(54) 1.18(10) 1.18(10)
1.90 1.3461(72) 0.501(76) 0.91(14) 76M
1.95 1.8114(97) 0.146(37) 0.48(12)
2.00 2.438(13) 0.083(40) 0.50(24)
2.05 3.284(18) 0.025(11) 0.27(12) 128M
2.10 4.424(24) 0.0156(83) 0.31(16)
2.15 5.963(32) 0.0094(70) 0.33(25)
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We start our discussion from the CP3 model. We extrapo-
lated the quantity ξ2χ toward the continuum limit, fitting the
ξL dependence of ξ2χ according to the fit function

fðxÞ ¼ a0 þ a1xc; x ¼ 1=ξL; ð27Þ

where c is a free exponent.
In order to check that the continuum limit is indeed

vanishing, we considered two cases: the case when a0 is
treated as a free parameter and the one when a0 is fixed to
zero. In the former case, our data turn out to be well
compatible with a vanishing continuum limit, as the best
fit yields χ̃2=d:o:f: ¼ 6.6=6 and a0 ¼ 1.4ð1.3Þ × 10−5,
which is compatible with zero within its statistical error.
Moreover, the exponent c ¼ 1.96ð6Þ turns out to be
compatible with 2, which is in agreement with the semi-
classical prediction in Eq. (26) and with results of Ref. [42].
Also, fixing a0 ¼ 0 gives a very good description of our
data, as the best fit gives χ̃2=d:o:f: ¼ 7.8=7 and a com-
patible exponent c ¼ 1.91ð4Þ. In Fig. 1, we show such
continuum extrapolations for N ¼ 4 considering all avail-
able determinations in Table I.
Varying the fit range, the value of ncool used to compute

QL, or the coupling β⋆L used to fix ξL did not result in any
appreciable variation of our final results. We can, thus,
conclude that our findings are perfectly compatible with
previous results in the literature pointing out a finite
continuum limit for χðN ¼ 4Þ (see, e.g., Refs. [10,42,50]).
We now repeat the same analysis for N ¼ 3. The

continuum extrapolation of ξ2χ data for N ¼ 3 according
to fit function (27) is depicted in Fig. 1. The best fit in the
whole available range yields a0 ¼ ð−2� 10Þ × 10−5,
c ¼ 0.98ð4Þ, and χ̃2=d:o:f: ¼ 4.4=11. Also, performing

the best fit fixing a0 ¼ 0 perfectly describes our data,
giving c ¼ 0.99ð2Þ and χ̃2=d:o:f: ¼ 4.4=12.
Again, we observe no dependence of our continuum-

extrapolated results on the choice of ncool, of β⋆L, or of the fit
range. Therefore, also in this case, our strategy gives
compatible results both with semiclassical expectations
and with previous numerical results in the literature for
χðN ¼ 3Þ (see, e.g., Refs. [42,49]).

B. Results for the topological susceptibility of the CP1

model from the multicanonic algorithm

In order to precisely assess the continuum behavior of
ξ2χðN ¼ 2Þ, we pushed our investigation on the L ¼ 50

lattice up to ξL as large as ∼106. Reliably computing the
susceptibility for such fine lattice spacings is an unfeasible
task with standard methods due to the dominance of the
Q ¼ 0 sector previously explained, while it was made
possible by the adoption of the multicanonic algorithm,
which allowed us to largely improve the number of fluctua-
tions of QL observed during MC simulations. Illustrative
examples for βL ¼ 2.50 and 3.00 are shown in Fig. 2.
This has, in turn, allowed us to largely reduce the

computational power needed to determine χ with a given

FIG. 1. Continuum extrapolation of ξ2χ for N ¼ 4 (top) and
N ¼ 3 (bottom). Solid and the dashed lines represent, respec-
tively, best fits obtained using fit function (27) setting a0 ¼ 0 and
treating it as a free parameter. Determinations obtained for
different values of ncool have been slightly shifted to improve
readability. Full points in 1=ξL ¼ 0 represent continuum-extrapo-
lated determinations.

FIG. 2. Evolution of the geometric charge QL computed after
ncool ¼ 50 cooling steps for N ¼ 2 obtained with the standard
and the multicanonic algorithm.
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precision. As an example, let us consider our largest βL, for
which hQ2i ∼ 10−9 (cf. Fig. 3). Using Eq. (23) and
assuming that the error on χ scales as the inverse of the
square root of NmeasPðjQj ¼ 1Þ, we can estimate that, to
reach the same ∼2% relative error on the susceptibility
achieved with the multicanonical algorithm, with the
standard algorithm we would have needed a statistics larger
by about a factor of ∼100; i.e., we gained 2 orders of
magnitude in terms of computational power.
For this reason, we adopted the multicanonic algorithm

for βL ≥ 2.20, i.e., for ξL ≳ 3 × 103, where hQ2i ≲ 10−5. A
summary of all the performed simulation and the obtained
results for N ¼ 2 is reported in Table II.

To extrapolate our finite-ξL determinations toward the
continuum limit, we consider again the fit function ansatz
in Eq. (27), and we perform a best fit of all available data
for ξ2χ as a function of 1=ξL, considering both fixed a0 ¼ 0
and a0 as a free parameter.
While in the latter case such a best fit provides a very

good description of our numerical results, giving

a0 ¼ 0.031ð2Þ;
c ¼ 0.20ð2Þ;

χ̃2=d:o:f: ¼ 8.0=16;

the best fit performed fixing a0 ¼ 0 yields a χ̃2=d:o:f: ¼
42.7=17, thus clearly providing a bad description of our
data. Narrowing the fit range by, e.g., excluding the point at
the smallest value of ξL (βL ¼ 1.70) does not improve the
result, as we still obtain χ̃2=d:o:f: ¼ 32.6=16. On the other
hand, the quality of the fit with a0 free remains very good,
as excluding the point for our smallest ξL yields a0 ¼
0.031ð3Þ with χ̃2=d:o:f: ¼ 7.5=15. A comparison between
the continuum limits taken at fixed L in the whole available
range is displayed in Fig. 4.
It is interesting to observe that the best fit with a0 free

yields χ̃2=d:o:f: ≃ 0.5, i.e., smaller than 1. A possible
explanation is that, all values of ξL being obtained from
the same two-loop scaling equation, results for ξ2χ at

FIG. 3. Behavior of hQ2
Li, measured after ncool ¼ 50 cooling

steps, as a function of 1=ξL for N ¼ 2 and L ¼ 50.

TABLE II. Summary of simulation parameters and results obtained for N ¼ 2 and L ¼ 50. The correlation length
ξL is computed according to Eq. (22) with β⋆L ¼ 1.70 (see Appendix A for more details). Reported values of χ are
computed after ncool ¼ 50 cooling steps. Statistics is expressed in millions or billions (M or G, respectively), and
measures are taken every ten standard MC steps (¼ 4 ORþ1 HB lattice updating sweeps) or every ten multicanonic
steps (see Appendix B for more details).

N Algorithm βL ξL × 10−3 a2χ × 109 ξ2χ × 103 Statistics

2 Standard 1.70 0.17991(78) 2207.4(4.8) 71.45(64) 51M
1.75 0.2393(10) 1205.7(3.6) 69.03(63)
1.80 0.3185(14) 652.6(2.7) 66.21(64)
1.85 0.4243(18) 359.0(2.0) 64.62(66)
1.90 0.5656(25) 196.7(1.5) 62.92(72)
1.95 0.7545(33) 107.6(1.1) 61.24(82)
2.00 1.0072(44) 58.15(57) 58.99(77) 102M
2.05 1.3453(58) 31.59(34) 57.17(79) 153M
2.10 1.7980(78) 17.63(20) 57.00(82) 256M
2.15 2.404(10) 9.50(12) 54.90(83) 410M

Multicanonic 2.20 3.217(14) 5.086(59) 52.64(76) 81M
2.25 4.307(19) 2.864(35) 53.12(79) 133M
2.30 5.768(25) 1.516(18) 50.43(75) 266M
2.35 7.729(34) 0.849(11) 50.73(79) 595M
2.40 10.362(45) 0.4576(56) 49.13(74) 566M
2.45 13.897(60) 0.2475(30) 47.80(71) 640M
2.50 18.645(81) 0.1346(16) 46.78(70) 1G
2.80 109.643(48) 0.003448(68) 41.45(89) 7G
3.00 359.6(1.6) 0.0003093(69) 39.98(96) 16G
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different values of βL are slightly correlated; thus, our result
for the χ̃2=d:o:f: is actually underestimated.
To check if this explanation is reasonable, we repeated

the best fits previously discussed computing the error on
ξ2χ without considering the error on ξL, so that the
mentioned correlation becomes irrelevant in the evaluation
of the χ̃2=d:o:f: Treating a0 as a free parameter, we obtain

a0 ¼ 0.033ð2Þ with χ̃2=d:o:f: ¼ 17=16, i.e., a perfectly
agreeing result but with an Oð1Þ reduced chi squared.
The best fit with fixed a0 ¼ 0 is instead further dis-
proved, as it yields an even larger reduced chi squared:

χ̃2=d:o:f: ¼ 104=17.
In summary, these results point out that ξ2χ behaves in

the continuum limit in perfect agreement with the semi-
classical prediction; cf. Eq. (18).
In order to check that all systematics are under control,

we repeated this analysis, varying the number of cooling
steps ncool, changing the value of β⋆L, and narrowing the fit
range. While again we observe that the latter two choices
do not produce any appreciable change in the obtained
result for a0 ≠ 0, as any observed variation of this param-
eter is much smaller compared to its statistical error, we
observe a systematic drift of our continuum extrapolations
for ξ2χ as ncool is increased (see Fig. 5).
Naively, one could think that taking the continuum limit

at a fixed value of ncool ¼ ðrs=aÞ2 would result in a
vanishing smoothing radius. However, since we took
a → 0, fixing L ¼ l=a, the quantity ncool=L2 ¼ ðrs=lÞ2 is
kept constant in our continuum extrapolation and does not
disappear from the game. The fact that ξ2χ decreases
increasing ncool can be easily understood in these terms:
ncool fixes rs in lattice spacing units, and, hence, results
should eventually become independent of ncool for a theory

with no UV divergences. However, because of the diver-
gent small-instanton density and of the fixed ratio between
the UV and the IR cutoffs

ffiffiffiffiffiffiffiffiffi
ncool

p
=L ¼ rs=l, the fraction of

topological signal which is smoothed away becomes
eventually finite and independent of the lattice spacing
but increases as rs=l increases.
In order to provide the correct final result for ξ2χðN ¼ 2Þ

including the full UV contribution, the correct thing to do is
to extrapolate continuum results toward the ncool → 0 limit.
To do so, we extrapolated our continuum determinations
for ξ2χ assuming the following scaling function:

ξ2χ

�
ncool
L2

�
¼ ξ2χ

�
ncool
L2

¼ 0

�
þ A

ncool
L2

: ð28Þ

This fit function is justified on the basis of the argument
explained in Ref. [65]. Such argument is, strictly speaking,
proven within the gradient flow formalism. However, since
it has been shown that performing ncool cooling steps is
numerically equivalent to flow for a time τflow ¼ kncool
with k constant [e.g., τflow ¼ ncool=3 in the 4D SU(3) pure-
gauge theory with the Wilson action] [59], we expect this
argument to also apply in our case.
In the continuum theory, any operator Osmooth computed

on smoothed fields can be expressed in terms of operators
computed on the nonsmoothed ones by the operator
product expansion formalism. The leading-order contribu-
tion is simply given byO computed on nonsmoothed fields
(apart from a multiplicative renormalization constant), and
higher-order contributions coming from contaminating
higher-dimensional operators are suppressed as suitable
compensating powers of the amount of smoothing per-
formed. In the case of the topological susceptibility, the

FIG. 5. Zero-cooling extrapolation of continuum-extrapolated
results for ξ2χðncoolÞ for N ¼ 2 and L ¼ 50 obtained for
ncool ¼ 20, 30, 40, 50 (full points). Determination for ncool ¼
10 has been excluded from the fit (empty point). The square full
point at ncool ¼ 0 represents our zero-cooling extrapolation
according to fit function (28) without keeping into account
correlations among determinations of ξ2χ for different values
of ncool. For the final result, see the text and Table IV.

FIG. 4. Continuum extrapolation of ξ2χ for N ¼ 2, L ¼ 50, and
ncool ¼ 50. Solid and the dashed lines represent, respectively, best
fits obtained using fit function (27) setting a0 ¼ 0 and treating it
as a free parameter. The full point in 1=ξL ¼ 0 represents the
nonvanishing continuum-extrapolated determination.
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relevant operator to be considered is just the topological
charge density qðxÞ, since χ ¼ R

d2xhqðxÞqð0Þi. In this
case, the renormalization constant appearing in front of the
leading-order term is just 1 because of the nonrenormaliz-
ability of the topological charge in the continuum theory,
while the next-to-leading-order term is suppressed as
ncool ∝ r2s [65]. This justifies the ansatz given in Eq. (28).
The result of the best fit of our data with ansatz (28) is

shown in Fig. 5. A linear term in ncool nicely describes our
data for ncool > 10 (χ2=d:o:f: ¼ 0.32=2). Including ncool ¼
10 instead yields a much larger χ2=d:o:f: ¼ 7.4=3, thus
providing a worse description of our data. Excluding
further points (e.g., ncool ¼ 20, 30) gives compatible results
within the errors with the one obtained excluding
ncool ¼ 10, thus justifying our choice for the fit range.
Our final zero-cooling extrapolation turns out to be
ξ2χðncool ¼ 0Þ ¼ 0.054ð4Þ, i.e., clearly different from zero.
The latter result has been obtained by performing the
continuum extrapolation at fixed ncool followed by the
ncool=L2 → 0 limit on Oð1000Þ bootstrap resamplings
extracted for each value of ξL, each one of the same size
of the corresponding original dataset.

C. Checking the L dependence
and the thermodynamic limit

In Sec. IV B, we have shown that our results for the
topological susceptibility are compatible with the log-
divergent continuum limit predicted by semiclassical argu-
ments. Our numerical evidence has been obtained on
lattices with fixed L ¼ 50, i.e., with vanishing volume in

the continuum limit, and is based on the ansatz, stemming
from perturbative computations, reported in Eqs. (17) and
(18). Therefore, as a last step along our investigation, it is
useful to check the dependence on L appearing in this
ansatz and, moreover, that results are consistent with those
obtained in standard simulations approaching the thermo-
dynamic limit, i.e., for fixed l ¼ La and L ≫ ξL, such as
those reported in our previous study in Ref. [42].
As already discussed in Sec. III C, we have the following

prediction [see Eq. (17)]:

ξ2χ ¼ C log

�
ρmax

ρmin

�
; ð29Þ

where ρmax (ρmin) are the maximum (minimum) instanton
size that can be observed on the given lattice. On a small
lattice with fixed L ≪ ξL, we expect ρmax ∝ L, while on a
large lattice with L ≫ ξL we expect ρmax to be fixed by
some physical IR cutoff, and, hence, ρmax ∝ ξL in lattice
spacing units. Regarding ρmin, instead, we expect it to be
proportional to the lattice spacing, with a proportionality
constant independent of L as long as L ≫ 1. Putting these
considerations together, we expect

ξ2χðξLÞ ∼
ξL→∞

C log
�
ξL
R

�
; L ≫ ξL; ð30Þ

ξ2χðLÞ ∼
ξL→∞

C log

�
L
R

�
; L ≪ ξL; ð31Þ

TABLE III. Summary of simulation parameters and results obtained for N ¼ 2 and L ¼ 100, 200. The correlation
length ξL is computed according to Eq. (22) with β⋆L ¼ 1.70. Reported values of χ are computed after ncool ¼ 50
cooling steps. Statistics is expressed in millions (M), and measures are taken every ten standard MC steps (¼ 4 OR
þ1 HB lattice updating sweeps).

L ¼ 100 L ¼ 200

N βL ξL a2χ × 109 ξ2χ × 103 Statistics a2χ × 109 ξ2χ × 103 Statistics

2 1.70 0.17991(78) 3912(10) 126.6(1.2) 9M 5620(22) 181.9(1.7) 2M
1.75 0.2393(10) 2149.1(7.9) 123.0(1.2) 3097(16) 177.3(1.8)
1.80 0.3185(14) 1193.5(5.9) 121.1(1.2) 1717(12) 174.2(2.0)
1.85 0.4243(18) 652.9(4.4) 117.5(1.3) 948.5(9.4) 170.7(2.3)
1.90 0.5656(25) 365.9(3.4) 117.1(1.5) 525.0(6.9) 168.0(2.7)
1.95 0.7545(33) 198.9(2.5) 113.3(1.7) 282.9(5.4) 161.0(3.4)
2.00 1.0072(44) 108.3(1.9) 109.9(2.2) 160.4(4.1) 162.7(4.4)
2.05 1.3453(58) 61.0(1.5) 110.4(2.8) 88.5(2.3) 160.1(4.4)
2.10 1.7980(78) 33.81(56) 109.3(2.0) 37M 48.2(1.2) 155.8(4.2) 4M
2.15 2.404(10) 18.23(39) 105.4(2.4) 27.57(87) 159.4(5.2) 8M
2.20 3.217(14) 10.01(21) 103.6(2.4) 75M 14.40(43) 149.0(4.7)
2.25 4.307(19) 5.61(16) 104.0(3.1) 9.28(43) 172.0(8.2) 15M
2.30 5.768(25) 3.08(12) 102.5(4.2) 4.43(26) 147.5(8.6)
2.35 7.729(34) 1.745(93) 104.3(5.6) 2.53(22) 151(13)
2.40 10.362(45) 0.955(72) 102.6(7.8) 1.30(12) 139(13)
2.45 13.897(60) 0.542(48) 104.6(9.3) 0.767(86) 148(17)
2.50 18.645(81) 0.355(47) 123(16) 0.458(74) 159(26)
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where R and R̄ are two effective parameters which are
different in the two cases, while the prefactor C is expected
(and we will actually check) to be the same, since it just
comes from the (unknown) prefactor of the instanton
density dIðρÞ ∝ 1=ρ.
To extract C from finite L results, thus, we need to study

the L dependence of the finite continuum limit of
ξ2χðN ¼ 2Þ. For this reason, we also performed simula-
tions for L ¼ 100 and L ¼ 200. The only difference
compared to the L ¼ 50 investigation discussed above is
that, for these lattices, we do not employ the multicanonical
algorithm, since the logarithmic UV divergence is assumed
a priori; hence, we do not need extremely precise data to
disprove a convergent behavior. In Table III, we summarize
the parameters of the simulations performed for L ¼ 100
and 200.
The computation of ξ2χ for L ¼ 100, 200 has been done

following the same lines as Sec. IV B. First, we extrapolate
our results toward the continuum limit at fixed value of
ncool. Continuum extrapolations at fixed ncool ¼ 20, 50 for
L ¼ 100, 200 are shown in Fig. 6. As a further consistency
check, we also verified that the free exponent c appearing in

the fit function in Eq. (27) was compatible within the errors
in all cases; cf. Table IV.
Then, we extrapolate such continuum determinations

toward the zero-cooling limit. Again, our results for
L ¼ 100, 200 are nicely described by a linear function in
ncool=L2; cf. Fig. 7. Our final results for ξ2χðncool=L2 ¼ 0Þ,
for L ¼ 50, 100, and 200, are collected in Table IV.
Finally, we performed a best fit of our results for

ξ2χðncool=L2 ¼ 0Þ as a function of the fixed lattice size
L according to Eq. (31) to determine the prefactor C.
Our data are very well described by a log-divergent

function of the lattice size L, as shown in Fig. 8, and we
obtain

C ¼ 0.074ð11Þ; ð32Þ

FIG. 6. Extrapolation toward the continuum limit of ξ2χ for
N ¼ 2 and L ¼ 100, 200 for ncool ¼ 20, 50. Dashed lines
represent best fits obtained using fit function (27). The full point
in 1=ξL ¼ 0 represents the nonvanishing continuum-extrapolated
determination.

TABLE IV. Double-extrapolated results for ξ2χðLÞ (1=ξL → 0

followed by ncool=L2 → 0) and determinations of the exponent c
appearing in fit function (27).

L ξ2χðncool=L2 ¼ 0Þ Exponent c

50 0.054(4) 0.20(2)
100 0.109(9) 0.35(14)
200 0.15(2) 0.39(20)

FIG. 7. Zero-cooling extrapolation of continuum-extrapolated
results for ξ2χðncoolÞ for N ¼ 2 and L ¼ 100, 200 obtained for
ncool ¼ 20; 30;…; 100 (full points). Determinations for ncool ¼
10 have been excluded from the fit (empty point). The square full
point at ncool ¼ 0 represents our zero-cooling extrapolation
according to fit function (28) without keeping into account
correlations among determinations of ξ2χ for different values
of ncool. For the final result, see the text and Table IV.

FIG. 8. Best fit of ξ2χðncool=L2 ¼ 0Þ as a function of L
according to Eq. (31). Best fit gives χ̃2=d:o:f: ¼ 0.23=1.
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R ¼ 24ð3Þ: ð33Þ

It is now interesting to compare these results with those of
Ref. [42], obtained in the thermodynamic limit L=ξL ≫ 1.
Extrapolating the results for L=ξL ≳ 12 reported in that

work toward the continuum limit, and according to the
divergent fit function in Eq. (30) plus Oðξ−2L Þ corrections,
we obtain

C ¼ 0.074ð2Þ; ð34Þ

R̄ ¼ 4.7ð3Þ: ð35Þ

As expected, while the constants R and R̄ are different, the
prefactors C of the logarithms turn out to be in perfect
agreement among each other.
In Fig. 9, we show the L=ξL ≫ 1 determinations for ξ2χ

of Ref. [42] along with their best fit according to Eq. (30)
plus Oðξ−2L Þ corrections. On top of these, we plot the curve
C logðξL=RÞ þ logðR=R̄Þ, using the value of C in Eq. (32),
i.e., coming from the logarithmic best fit of the fixed-L
results obtained in this work, reported in Table IV. The two
curves collapse on top of each other.
In conclusion, the comparison carried out in this sub-

section provides solid numerical evidence that results
obtained by fixed L simulations contain information which
is consistent, as for the UV behavior of the topological
susceptibility, with what would be obtained in the thermo-
dynamic infinite volume limit.

V. CONCLUSIONS

The purpose of the present study was that of providing
numerical evidence for the predicted divergent behavior in

the continuum limit of the topological susceptibility of the
CP1 model. The same problem has been considered by
several past studies; the novelty of the present investigation
is to approach the continuum limit at fixed volume in
dimensionless lattice units: This maps a logarithmically
divergent behavior, which can be barely distinguishable
from a badly convergent behavior over a wide range of
lattice spacings, into a convergent behavior with a non-
vanishing continuum limit, which is more amenable to be
checked numerically with a well-defined conclusion.
After checking that this method reproduces the results

obtained with standard strategies for the CP2 and the CP3

theories, we applied it to our target model, implementing at
the same time a multicanonical algorithm in order solve the
problem of rare fluctuations of the topological charge on
asymptotically small lattices. The use of the multicanonical
algorithm revealed essential, since it reduced the computa-
tional effort by up to 2 orders of magnitude for the smallest
explored lattice spacings.
Our results show that the continuum limit of the

topological susceptibility of the CP1 model obtained at
fixed L, and after extrapolation to zero-cooling steps, is
indeed nonvanishing, as predicted by semiclassical com-
putations. Moreover, repeating the same computation for
different values of L, we observe that the obtained non-
vanishing determinations of ξ2χ grow proportionally to
logL, with a prefactor consistent with previous lattice
results: That provides evidence that our investigation at
fixed L is perfectly consistent with what would be obtained
in the thermodynamic infinite volume limit; however, it
permits one, at the same time, to definitely disprove the
possibility of a convergent behavior for χ.
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APPENDIX A: ASYMPTOTIC SCALING CHECK

To check if our assumption of being in the asymptotic
scaling region is correct, we consider the quantity

M=ΛðSymÞ
L ≡ ½ξLfðβLÞ�−1, which is expected to be con-

stant plusOð1=βLÞ corrections for βL → ∞. For N ¼ 2, the
exact value of M in the continuum is known and can be
expressed in terms of the dynamically generated scale of

the Symanzik theory ΛðSymÞ
L by combining results of

Refs. [9,23]:

FIG. 9. Results for ξ2χ reported in Ref. [42] for L=ξL ≫ 1 and
ncool ¼ 20. The dashed line represents best fit of these data
according to fit function fðxÞ ¼ −C logðR̄xÞ þ C2x2, where x ¼
1=ξL and the result for C is reported in Eq. (34). The solid line
represents the curve gðxÞ ¼ −C logðRxÞ þ logðR=R̄Þ, where x ¼
1=ξL and C is reported in Eq. (32). The shadowed area represents
the error band on gðxÞ.
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M

ΛðSymÞ
L

ðN ¼ 2Þ
����
exact

≃ 21.7: ðA1Þ

To test asymptotic scaling for CP1, CP2, and CP3 models,
we consider results for ξL as a function of βL of Ref. [42].
Furthermore, we also added higher-ξL data to this analysis,
which are reported in Table V.
For N ¼ 3 and 4, we chose the lattice size requiring that

L=ξL ≳ 12, which is enough to ensure that finite size
effects are well under control. For N ¼ 2, instead, we
computed ξL for several lattice sizes and extrapolated it
toward the thermodynamic limit by fitting its L dependence
according to

ξLðLÞ ¼ ξð∞Þ
L ð1 − ae−bL=ξLÞ; ðA2Þ

where ξð∞Þ
L is the desired quantity and a and b are addi-

tional fit parameters. In Fig. 10, we display the quantity

M=ΛðSymÞ
L ¼ ½ξLfðβLÞ�−1 as a function of 1=βL for, respec-

tively, the CP1, CP2, and CP3 models.

For N ¼ 4 and 3, the quantity M=ΛðSymÞ
L reaches a

plateau asymptotically. Thus, we choose β⋆LðN ¼ 4Þ ¼
1.35 and β⋆LðN ¼ 3Þ ¼ 1.455 to fix ξL via Eq. (22). For
N ¼ 2, despite the wider range of 1=βL explored, we
observe a slower approach to the asymptotic scaling regime
probably due to larger Oð1=βLÞ corrections in this case.
Nonetheless, we observe that the obtained results for ξL
using Eq. (22) do not show an appreciable dependence on
the choice of β⋆L, showing that our procedure to fix the scale
is solid even in this case. As an example, for N ¼ 2 and
βL ¼ 3.00 we have ξL ¼ 354.7ð1.5Þ if β⋆L ¼ 1.65 and ξL ¼
359.6ð1.6Þ if β⋆L ¼ 1.70; i.e., the two determinations agree
within ∼2.2 standard deviations. Therefore, we choose
β⋆LðN ¼ 2Þ ¼ 1.70 to fix the scale in this case.

APPENDIX B: MULTICANONICAL
ALGORITHM DETAILS

The topological bias potential was chosen according to
the same functional form adopted in Ref. [47]:

V topoðxÞ ¼
(
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBxÞ2 þ C

p
; if jxj ≤ Qmax;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBQmaxÞ2 þ C

p
; if jxj > Qmax:

ðB1Þ

Here, B, C, and Qmax are free parameters that can be
calibrated through short preliminary runs to improve the
performances of the multicanonic algorithm. The employed
values of B varied between ∼5 and ∼10 for βL ∈ ½2.2; 3�,
while the choice of C andQmax turned out to be not critical;
thus, we used C ¼ 0.05 and Qmax ¼ 12 for all βL. An
illustrative example of the functional form in Eq. (B1) is
shown in Fig. 11.
Our implementation of the multicanonic algorithm

follows the lines of Ref. [45]. First, we generate a candidate
new lattice configuration by performing a standard updat-
ing step and ignoring theQ-dependent bias potential. Then,

TABLE V. Simulation summary of the additional runs per-
formed to check asymptotic scaling for N ¼ 2, 3, and 4.

N βL L ξL L=ξL

2 1.70 360 141.93(26) 2.5
500 162.13(63) 3
600 170.17(66) 3.5
700 174(1) 4
800 177(1) 4.5

1024 179.81(87) 5.7
1450 181(2) 8
∞ 179.91(78) ∞

3 1.32 562 44.75(29) 12.5
1.455 1250 98.19(53) 12.4

4 1.20 436 34.03(18) 12.7
1.30 766 61.76(34) 12.5
1.35 1030 82.62(70) 12.5

FIG. 10. Check of the asymptotic scaling of ξL for the CP1,
CP2, and CP3 models. The figures show the behavior of

M=ΛðSymÞ
L ¼ ½ξLfðβLÞ�−1 as a function of the inverse coupling

1=βL. For N ¼ 2, the dotted line displays the exact analytic result

for the continuum limit of M=ΛðSymÞ
L ðN ¼ 2Þ in Eq. (A1).
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we accept the updated configuration by performing a
standard Metropolis test:

p ¼ min f1; exp ð−ΔV topoÞg;

where

ΔV topo ≡ V topoðQðnewÞ
mc Þ − V topoðQðoldÞ

mc Þ

is the variation of the bias potential before and after the
update. After running some preliminary simulations, we
found that the optimal implementation to have higher
Metropolis acceptances was to perform the Metropolis test
after each single-link update UμðxÞ instead of performing it
after a whole standard MC step (i.e., after five sweeps of the

whole lattice). Moreover, we also found that proposing
single-site and single-link updates stochastically was more
effective to obtain higher Metropolis acceptances than
performing lattice sweeps.
It is easy to verify that, for any starting updating step,

our choice respects detailed balance for the original
distribution. Moreover, when considering the path-inte-
gral probability distribution obtained with the modified
action in Eq. (24), our multicanonical updating step with
the addition of the Metropolis test respects detailed
balance, too.
Finally, regarding the topological charge discretization

Qmc, our choice isQmc ¼ QU, i.e., the geometric definition
in Eq. (13) computed without performing any cooling step.
This choice allows one to avoid the full computation ofQmc
(necessary to compute the Metropolis probability) every
time an update of a link variable UμðxÞ is proposed, as with
this choice one can directly compute ΔQmc ¼ QðnewÞ

mc −
QðoldÞ

mc in terms of the new link and its relative staples.
With this setup, we obtained mean Metropolis accep-

tances larger than 90%, and we found that a multicanonical
MC step required an ≈85% larger numerical effort com-
pared to a standard MC step. After taking into account such
overhead, we found that the multicanonic algorithm
allowed to gain up to 2 orders of magnitude in terms of
computational power compared to the standard algorithm
when hQ2i ≪ 1.
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