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We compute the topological susceptibility slope χ0, related to the second moment of the two-point
correlator of the topological charge density, of 2d CPN−1 models for N ¼ 5, 11, 21 and 31 from lattice
Monte Carlo simulations. Our strategy consists in performing a double limit: first, we take the continuum
limit of χ0 at fixed smoothing radius in physical units; then, we take the zero-smoothing-radius limit. Since
the same strategy can also be applied to 4d gauge theories and full QCD, where χ0 plays an intriguing
theoretical and phenomenological role, this work constitutes a step toward the lattice investigation of this
quantity in such models.
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I. INTRODUCTION

The space of gauge field configurations with finite
Euclidean action can be divided in disconnected sectors
characterized by an integer number, the topological charge

Q ¼
Z

ddxqðxÞ ∈ Z; ð1Þ

where d is the space-time dimension and qðxÞ is the
topological charge density, which is a local function of
the gauge fields. Many intriguing nonperturbative
properties of 4d non-Abelian gauge theories, as well as
many phenomenological aspects of the Standard
Model (and beyond), are related to the topology of gauge
fields.
A particularly interesting topological quantity to con-

sider is the two-point correlation function of qðxÞ [1–9]:

G̃ðp2Þ≡
Z

ddxeip·xGðxÞ; ð2Þ

where GðxÞ is the Euclidean space-time correlator

Gðx − yÞ≡ hqðxÞqðyÞi ¼ hqðx − yÞqð0Þi: ð3Þ

In Fourier space, the two-point correlator is a function of
p2 ≡ pμpμ, being qðxÞ a CP-odd operator, and it is

customary to Taylor expand it around p2 ¼ 0 in powers
of p2:

G̃ðp2Þ ¼
X∞
n¼0

ð−1ÞnG2np2n; ð4Þ

where the expansion coefficients G2n are proportional to
the even moments of the correlator GðxÞ:

G2n ≡ 1

dnð2nÞ!
Z

ddxjxj2nGðxÞ: ð5Þ

The leading-order coefficient of the expansion in Eq. (4)
is nothing but the integral of GðxÞ, which is equal to the
well-known topological susceptibility

χ ≡ lim
V→∞

hQ2i
V

; ð6Þ

as it can be easily derived from the translation invariance of
the correlator:

G̃ð0Þ ¼ G0 ¼
Z

ddxhqðxÞqð0Þi

¼ lim
V→∞

1

V

Z
ddxddyhqðxÞqðyÞi

¼ lim
V→∞

hQ2i
V

¼ χ:

The object of investigation of the present paper is,
instead, the next-to-leading-order term in the momentum
expansion of G̃ðp2Þ, the so-called topological susceptibility
slope χ0:
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χ0 ≡ −
dG̃ðp2Þ
dp2

����
p2¼0

¼
Z

ddx
jxj2
2d

hqðxÞqð0Þi: ð7Þ

This quantity is extremely interesting from a theoretical
and from a phenomenological point of view. In SUðNÞ
pure-gauge theories, the susceptibility slope controls the
internal consistency of the Witten-Veneziano mechanism
[10–12]. More precisely, for theWitten-Veneziano equation
for the η0 mass to be valid, jχ0j ≪ χ=m2

η0 must hold in the
large-N limit. In QCD, instead, the value of the suscep-
tibility slope in the chiral limit (which is expected to be
nonvanishing, unlike the chiral limit of χ) is related to the
“spin content” of the proton via the so-called U(1)
Goldberger-Treiman relation [13–17].
However, in spite of its interesting theoretical and

phenomenological role, the computation of χ0 has been
quite disregarded for what concerns the lattice approach,
especially if compared with the topological susceptibility,
which has been widely investigated by numerical
Monte Carlo (MC) simulations both in pure-gauge theories

]4,18–38 ] and in full QCD [32,39–48], but also in lower-
dimensional toy models [49–60].
As a matter of fact, while a prediction for χ0 is available

in QCD from chiral perturbation theory [61] and from the
QCD sum rule [16,62–64] [which also provides an esti-
mation of χ0 in the pure SU(3) gauge theory [16,63] ], only
preliminary attempts to compute it from the lattice can be
retrieved in the literature; cf. Refs. [65–68].
The goal of the present work is thus to fill a gap in the

lattice literature by making progress in the numerical
computation of χ0. To this end, we start our investigation
from the simpler framework offered by large-N 2d CPN−1

models [4,69–71], which are interesting quantum field
theories that have been extensively used as a theoretical
laboratory for QCD. On one hand, they are much cheaper to
simulate on the lattice with Monte Carlo methods. On the
other hand, they offer the possibility to obtain analytical
results about topological quantities in the large-N limit
through the 1=N expansion, which can be compared to
lattice determinations.
Since the methods that will be applied to these models to

compute χ0 are rather general and can be applied also to
SUðNÞ pure Yang-Mills or to full QCD, the main purpose
of this work is to show the feasibility and the solidity of our
numerical strategies to obtain χ0 from lattice simulations.
Therefore, this paper constitutes a step toward a deeper
investigation of χ0 from the lattice also in 4d gauge theories.
This paper is organized as follows. In Sec. II we briefly

recall the continuum definition of CPN−1 models and the
available analytic predictions for the 1=N expansion of χ0.
In Sec. III we outline our lattice setup and MC algorithms,
as well as our numerical strategies to compute χ0. In Sec. IV

we show our results for χ0 for N ¼ 5, 11, 21 and 31 and we
compare them with large-N analytic predictions. Finally, in
Sec. V we draw our conclusions and discuss future out-
looks of this work.

II. CONTINUUM 2d CPN − 1 MODELS AND THE
ANALYTIC 1=N EXPANSION OF χ 0

The continuum Euclidean action of 2d CPN−1 models
can be written as [69,70]

S½z; A� ¼
Z

d2x

�
N
g
D̄μz̄ðxÞDμzðxÞ

�
; ð8Þ

where the complex scalar field z ¼ ðz1;…; zNÞ is an N-
component vector with unit norm z̄z ¼ 1 and where Dμ ≡
∂μ þ iAμ is the ordinary U(1) covariant derivative. The field
AμðxÞ is a nonpropagating U(1) gauge field which can be
integrated out and expressed in terms of z [4,70], but this
formulation is more convenient for the purpose of the
lattice discretization. Finally, the coupling constant g is the
’t Hooft coupling, and it is kept constant as N is varied.
The integer-valued topological charge, instead, reads

[69,70]

Q ¼
Z

d2xqðxÞ ¼ 1

2π
ϵμν

Z
d2x∂μAνðxÞ ∈ Z; ð9Þ

where qðxÞ is the topological charge density, which is used
to define χ0 as in Eq. (7).
In the large-N limit, it is possible to perform an analytic

computation of the susceptibility slope within the frame-
work of the 1=N expansion. In Ref. [72], the leading-order
(LO) and the next-to-leading-order (NLO) terms in the 1=N
expansion were computed:

χ0 ¼ −
3

10π

1

N
þ e02

1

N2
þO

�
1

N3

�
; ð10Þ

where the NLO coefficient is e02 ≃ 1.53671.

III. NUMERICAL SETUP

In this section we discuss our numerical setup by
outlining the adopted discretizations for the main quantities
of interest, the adopted MC algorithms and the strategies
we followed to compute the topological susceptibility
slope χ0.

A. Lattice discretization

We discretize (8) on a square periodic lattice (we will
discuss other boundary conditions later) with L2 sites and
lattice spacing a by means of the OðaÞ tree-level
Symanzik-improved lattice action [50]:
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SL ¼ −2NβL
X
x;μ

fc1Re½ŪμðxÞz̄ðxþ μ̂ÞzðxÞ�

þc2Re½Ūμðxþ μ̂ÞŪμðxÞz̄ðxþ 2μ̂ÞzðxÞ�g; ð11Þ

where βL is the lattice bare coupling and where we
introduced site variables zðxÞ satisfying z̄ðxÞzðxÞ ¼ 1

and U(1) link variables UμðxÞ satisfying ŪμðxÞUμðxÞ ¼
1 as well (no sum on μ is implied). The choice of the
improved lattice action allows one to exactly cancel out
logarithmic corrections to the leading-orderOða2Þ behavior
of the finite-lattice-spacing corrections to the continuum
limit, improving convergence.
Lattice configurations are updated by means of the

standard overrelaxation (OR) and over-heat-bath (HB)
[50] local algorithms. In particular, our standard updating
step is made of four lattice sweeps of OR, followed by one
sweep of HB. In the following, we will refer to this
combination as the “standard algorithm.”
The continuum topological charge (9) can be discretized

by several different definitions. In this work we will
consider the geometric definition built in terms of the
gauge links [50]:

QL ¼
X
x

qLðxÞ ¼
1

2π

X
x

Imflog ½Π01ðxÞ�g; ð12Þ

with ΠμνðxÞ≡UμðxÞUνðxþ aμ̂ÞŪνðxþ aμ̂ÞŪνðxÞ the pla-
quette and qLðxÞ the lattice topological charge density. This
definition has the property of always resulting in an integer
number: QL ∈ Z. However, it being affected by disloca-
tions [51,73], UV fluctuations at the scale of the lattice
spacing that can make identifying the correct winding
number ambiguous, it is customary to compute the lattice
topological charge after smoothing, using one’s favorite
algorithm, in order to dump short-distance fluctuations. We
postpone a more detailed discussion on smoothing methods
to Sec. III C, where we will cover this topic more
thoroughly in relation with χ0.
In order to fix the physical scale, we introduce the

second-moment correlation length

ξ2 ≡ 1R
GPðxÞd2x

Z
GPðxÞ

jxj2
4

d2x; ð13Þ

where GPðxÞ stands for the two-point connected correlator
of PijðxÞ≡ ziðxÞz̄jðxÞ:

GPðxÞ≡ hPijðxÞPijð0Þi −
1

N
: ð14Þ

Introducing the dimensionless quantity ξL ¼ ξ=a, it is
possible to compute it from the lattice as [74]

ξ2L ¼ 1

4sin2ðπ=LÞ
�

G̃ðLÞ
P ð0; 0Þ

G̃ðLÞ
P ð2π=L; 0Þ

− 1

�
; ð15Þ

where G̃ðLÞ
P ðpμÞ is the Fourier transform of GðLÞ

P ðxÞ, the
straightforward lattice definition of GPðxÞ.
In the continuum limit a → 0, approached by taking

βL → ∞, the correlation length expressed in lattice units
diverges as a. Thus, it is possible to trade the vanishing
lattice spacing limit for the ξL → ∞ one. Therefore, finite-
lattice-spacing corrections to the continuum expectation
value of a certain observable hOicont can be expressed as

hOilatðξLÞ ¼ hOicont þ
c
ξ2L

þ o

�
1

ξ2L

�
: ð16Þ

B. Topological freezing and parallel tempering
on boundary conditions

At large N and close to the continuum limit, it is well
known that standard updating algorithms suffer for a severe
topological critical slowing down [23,24,30,35,37,44,53,57].
This means that the autocorrelation time of the topological
charge, i.e., the number of updating steps needed to generate
two field configurations with uncorrelated values of Q,
rapidly growswhen ξL and/orN is large. Numerical evidence
suggests that this growth is exponential in N and ξL
[23,30,53,57]. This in practice results in the so-called
topological freezing; i.e., the Monte Carlo history of the
topological charge gets stuck in a fixed topological sector and
eventually no topological fluctuation is observed, requiring
unfeasible long simulations to achieve a proper sampling of
the path integral.
To deal with this computational problem we adopted the

parallel tempering on boundary conditions (PTBC) algo-
rithm to mitigate the effects of topological freezing.
Originally proposed by Hasenbusch [55] for 2d CPN−1

models (see also [58]) and recently implemented also for 4d
pure-gauge Yang–Mills theories [35,37], this algorithm has
proven to be extremely effective in mitigating the effects of
topological freezing at large N by reducing the autocorre-
lation time ofQ by up to several orders of magnitude. Here,
we use the same algorithmic setup of Ref. [58].
We consider Nr copies of the discretized theory outlined

in Sec. III A. Each replica differs from the others only for
the boundary conditions imposed on a small subregion of
the lattice D, called the defect. Away from the defect,
boundary conditions are periodic as usual. In practice, we
rewrite the lattice action (11) as

SðrÞL ¼ −2NβL
X
x;μ

fkðrÞμ ðxÞc1Re½ŪμðxÞz̄ðxþ μ̂ÞzðxÞ�

þ kðrÞμ ðxþ μ̂ÞkðrÞμ ðxÞc2
× Re½Ūμðxþ μ̂ÞŪμðxÞz̄ðxþ 2μ̂ÞzðxÞ�g;

LATTICE DETERMINATION OF THE TOPOLOGICAL … PHYS. REV. D 107, 014514 (2023)

014514-3



where the coefficients

kðrÞμ ðxÞ≡
�
cðrÞ; x ∈ D ∧ μ ¼ 0;

1; otherwise
ð17Þ

are used to effectively implement the chosen boundary
conditions on the defect. In particular, the coefficients cðrÞ
are chosen so as to interpolate among periodic boundaries
cð0Þ ¼ 1 and open boundaries cðNr − 1Þ ¼ 0. In our
setup, we chose a simple linear interpolation: cðrÞ ¼
1 − r=ðNr − 1Þ. The defect D is set on the μ ¼ 1 boundary
and is Ld sites long. A pictorial representation of the defect
and of the sites or links affected by its presence is depicted
in Fig. 1.
Each replica is evolved independently using the standard

algorithm earlier outlined. After the updates, field configu-
rations are swapped among adjacent copies ðr; rþ 1Þ, so
that the field configuration can diffuse from the periodic
replica to the open one and vice versa, in a random-walk
fashion. This way, the fast decorrelation of the topological
charge achieved in the replica with open boundaries is
transferred to the periodic copy, resulting in a strong
reduction of the autocorrelation time of Q. The advantage
of parallel tempering is that any physical observable can be
computed on the periodic replica, thus avoiding technical
complications related to finite size effects when computing
correlators in open lattices.
The efficiency of the algorithm can be further improved

by translating the periodic replica after the updates and the
swaps and by alternating updating sweeps over the full
lattice with updating sweeps over small sublattices centered
around the defect. These two ingredients allow one,
respectively, to move the position where new topological
excitations are created or annihilated and to increase the
number of topological fluctuations that are created or
annihilated (since they are mostly located in the neighbor-
hood of the defect).
The number of replicas Nr and the size of the defect Ld

are calibrated through short test runs in order to ensure that
no swap acceptance pðr; rþ 1Þ is smaller than ∼30%. In
all cases, this was sufficient to ensure that a single field
configuration uniformly explores all boundary conditions

and does a random walk among the two extremes of the
replica chain.

C. Computation of χ 0 from the lattice

As mentioned in the previous section, to properly define
the physical topological background of a lattice configu-
ration, smoothing methods such as cooling [73,75–80],
stout smearing [81,82] or gradient flow [83,84] need to
be employed to damp UV fluctuations. All choices
give consistent results when properly matched to each
other [80,85,86].
Such algorithms iteratively bring a configuration closer

to a local minimum of the lattice action and smooth gauge
fields up to a certain distance known as the smoothing
radius rs, which is proportional to the square root of the
amount of smoothing performed [83,84]. Since this
procedure only dumps UV fluctuations at length scales
≲rs, smoothing methods are expected to leave the
global topological content of the field configuration
unaltered.
As a matter of fact, lattice gluonic definitions of the

topological charge like (12) reach a plateau after a certain
amount of smoothing. Therefore, the choice of the number
of smoothing steps is not critical when one is interested in,
e.g., the global topological charge Q or the topological
susceptibility χ ∝ hQ2i.
The situation is different when dealing with objects like

the topological charge density correlator (3). Indeed, if on
one hand smoothing is necessary to correctly identify the
true topological background of a configuration, on the other
hand smoothing unavoidably modifies the short-distance
behavior of GðxÞ, which is only properly recovered in the
zero-smoothing limit. Therefore, to reliably compute topo-
logical quantities such as χ0, it is of the utmost importance
to ensure that no relevant physical contribution coming
from short-distance fluctuations is lost due to the smooth-
ing procedure.
For this reason, to extract the physical value of χ0 from

lattice field configurations, we follow the same strategy
applied also in Ref. [8] to compute the topological charge
density correlator: first, we perform the continuum limit
fixing the smoothing radius rs in physical units; then,
we extrapolate our results for finite rs toward the zero-
smoothing limit rs → 0.
In a 2d theory, χ0 is a dimensionless quantity that can be

discretized on a periodic lattice as

χ0L ≡ 1

4

�X
x

d2ðx; 0ÞqLðxÞqLð0Þ
	
; ð18Þ

where qLðxÞ is the lattice topological charge density in
Eq. (12) and dðx; yÞ is the shortest distance between lattice
sites x ¼ ðx0; x1Þ and y ¼ ðy0; y1Þ:

FIG. 1. Figure taken from Ref. [58]. The dashed line represents
the defect D; solid arrows represent links or product of links
appearing in the Symanzik action (11) which orthogonally cross
the defect line and get suppressed as factors of cðrÞ.
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d2ðx; yÞ ¼
X
μ¼0;1

d2μðx; yÞ;

d2μðx; yÞ ¼
� ðxμ − yμÞ2; jxμ − yμj < L=2;

½L − ðxμ − yμÞ�2; jxμ − yμj > L=2:
ð19Þ

We compute χ0L on the periodic replica after smoothing
the field configuration. To this end, we adopt cooling for its
numerical cheapness. A single cooling step is achieved
aligning, site per site and link by link, each variable zðxÞ
and UμðxÞ to their relative local force. Since the action that
is used to compute local forces during cooling needs not to
be the same used for the Monte Carlo sampling [86], we
adopt the nonimproved action to this end [i.e., action (11)
with c1 ¼ 1 and c2 ¼ 0].
To extrapolate finite-ξL results of χ0L toward the con-

tinuum limit at fixed smoothing radius, it is sufficient to
consider determinations obtained for the same value of

ncool
ξ2L

∝
�
rs
ξ

�
2

; ð20Þ

since the smoothing radius rs ∝ a
ffiffiffiffiffiffiffiffiffi
ncool

p
:

χ0L

�
ξL;

ncool
ξ2L

�
¼ χ0

�
ncool
ξ2L

�
þ cξ−2L þ oðξ−2L Þ; ð21Þ

where the coefficient c, in principle, may depend on the
value of ncool=ξ2L.
Finally, we extrapolate the continuum extrapolations

χ0ðncool=ξ2LÞ appearing in the rhs of Eq. (21) toward the
zero-cooling limit according to the law

χ0
�
ncool
ξ2L

�
¼ χ0 þ k

ncool
ξ2L

þ o

�
ncool
ξ2L

�
; ð22Þ

where χ0 in the rhs of Eq. (22) represents our final result for
the susceptibility slope.
To justify Eq. (22), we can rely on the argument given in

Ref. [8] for the Wilson flow. Within the gradient flow
framework, it is possible to express expectation values of
flowed operators in terms of expectation values of unflowed
operators via the operator product expansion (OPE). In the
OPE series, the contribution of higher-dimensional oper-
ators is compensated by suitable powers of the flow time
τflow. In particular, when considering qðxÞqð0Þ, the first
correction to the zero-flow result is expected to be linear in
τflow [8]. Since the numerical equivalence between gradient
flow and cooling and the existence of the linear propor-
tionality ncool ∝ τflow

1 [85] have been established, we
expect to observe a linear dependence of χ0ðncool=ξ2LÞ on
ncool=ξ2L [see also Ref. [60] for a similar discussion
concerning the linear zero-cooling extrapolation of
χðncoolÞ for the 2d CP1 model].

IV. RESULTS

In Table I we summarize all performed simulations,
along with the total collected statistics and the maximum
number of cooling steps computed for each simulation
point.

TABLE I. Summary of simulation parameters. The PTBC algorithm was employed for N ¼ 21, 31, while N ¼ 5, 11 were simulated
with the standard algorithm. Measures were taken every ten updating steps for the standard algorithm, and at each step for parallel
tempering runs. Total collected statistics is expressed in millions (M).

N βL L ξL L=ξL Nr Ld Max no. cooling steps Statistics (M)

5 1.00 200 13.419(37) 14.9 110 17.5
1.05 300 18.08(12) 16.6 200 6.9
1.10 400 24.65(21) 16.2 370 4.7

11 0.75 105 5.499(27) 19.1 120 3.5
0.77 140 6.369(67) 22.0 155 7.5
0.79 140 6.987(67) 20.0 195 7.5
0.848 220 9.90(12) 22.2 405 6.7

21 0.66 88 4.2129(78) 20.9 9 5 250 10.7
0.68 102 4.7561(99) 21.4 10 6 320 10.7
0.70 114 5.422(15) 21.0 11 6 415 5.9
0.718 128 6.030(13) 21.2 11 6 515 9.5
0.741 150 6.979(11) 21.4 11 6 690 22.4

31 0.58 72 2.8518(38) 25.2 10 4 110 24.0
0.60 82 3.2409(75) 25.3 10 4 140 8.7
0.62 92 3.6731(52) 25.0 10 4 180 7.2
0.715 172 6.585(37) 26.1 13 7 585 2.3

1For example, in the 4d SU(3) pure-gauge theory, the
correspondence ncool ¼ 3τflow holds adopting the Wilson gauge
action [85].

LATTICE DETERMINATION OF THE TOPOLOGICAL … PHYS. REV. D 107, 014514 (2023)

014514-5



Simulations for N ¼ 21 and 31 where carried on
adopting the PTBC algorithm, while for N ¼ 5 and 11
standard updating algorithms were sufficient to easily
decorrelate the topological charge. Illustrative examples
are shown in Fig. 2. In the top plot we show
the Monte Carlo history of the topological charge Q
for N ¼ 11 and βL ¼ 0.848. The integer charge Q is
obtained computing the geometric definition QL in
Eq. (12) after 30 cooling steps. In this case, the standard
algorithm allows a uniform exploration of different
topological sectors. In the bottom plot we show a
comparison between the Monte Carlo evolutions of Q
obtained with the PTBC algorithm and the standard one
for βL ¼ 0.741 at N ¼ 21. As it can be appreciated, while
the standard algorithm suffers for much longer autocor-
relation times, the PTBC algorithm allows much more
fluctuations of the topological charge during the same
Monte Carlo time.
This aspect is crucial to correctly compute χ0L. As a

matter of fact, although the topological charge density
fluctuates even in the Q ¼ 0 sector, the values obtained for
χ0L restricting to subensembles with fixed topological

charge are quite different from the one obtained by taking
the mean over the full ensemble, as can be observed
from Fig. 3.
For what concerns the magnitude of finite-size effects, in

the large-N limit two constraints have to be satisfied in
order to have them under control: L=ξL ≫ 1 and
ðL=ξLÞ2=N ≫ 1, as discussed in Ref. [87] (see also [58]
for a related discussion about this condition). In practice, it
is sufficient to ensure ðL=ξLÞ2=N ≳ 20 to have no signifi-
cant systematic error related to finite volume [57,58].
Satisfying this condition required L=ξL ≳ 15–25 for the
values of N we explored. We show an illustrative example
of the magnitude of finite size effects on χ0L for N ¼ 11
in Fig. 4.

FIG. 3. Results for χ0L computed on subensembles with fixed
topological chargeQ as a function of the topological background.
Horizontal line displays the result obtained averaging over the
full ensemble. Error bars are not visible at this scale. Plot refers to
N ¼ 21, βL ¼ 0.741, and ncool ¼ 200.

FIG. 2. Monte Carlo history of the topological charge Q. Plot
refers to N ¼ 11, βL ¼ 0.848 (top) and N ¼ 21, βL ¼ 0.741
(bottom). Monte Carlo time for the PTBC algorithm has been
expressed in units of standard updates by scaling for the number
of replicas. Shown time windows correspond to, respectively,
∼14% and ∼10% of the total collected statistics.

FIG. 4. Dependence of χ0L on the lattice size L for several values
of ncool. Plot refers to N ¼ 11 and βL ¼ 0.77. Points referring to
the same value of ncool have been slightly shifted.
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A. Double extrapolation—Example for N = 21

In this section we exemplify, for N ¼ 21, the procedure
followed to achieve the double extrapolation of χ0 toward
the continuum and the zero-cooling limit.
The first step is to extrapolate our data for χ0L computed

at fixed value of ncool=ξ2L toward the continuum limit
according to Eq. (21). We performed a linear fit in 1=ξ2L
considering the three largest correlation lengths available,
but we also checked that performing the best fit in the
whole available range gave exactly the same results within
errors if furtherOð1=ξ4LÞ corrections are taken into account;
cf. Fig. 5. We thus conclude that a linear fit in 1=ξ2L to the
three finest lattice spacings gives a solid continuum
extrapolation. As a side note, we observe that no significant
dependence on ncool=ξ2L of the magnitude of corrections to
the continuum limit is observed.

Once the continuum limit is taken, we can extrapolate
our continuum results toward the zero-cooling limit by
performing a linear best fit in ncool=ξ2L, according to
Eq. (22). As can be seen from Fig. 7, our χ0 continuum
extrapolations at finite smoothing radius are perfectly
described by a linear law in ncool=ξ2L ∝ ðrs=ξÞ2, in agree-
ment with our expectations. For the purpose of comparison,
in Fig. 6 we also report the LOþ NLO large-N analytic
prediction of Eq. (10).
Concerning the choice of the fit range in this case, the

lower bound was fixed to ncool=ξ2L ∼ 0.56, corresponding to
ncool ¼ 10 for the smallest explored correlation length. As a
matter of fact, we observed that ncool ≥ 10 is enough to
observe a plateau in the determinations of the topological
susceptibility at finite ξL as a function of ncool for all
simulated points; cf. Fig. 6. Therefore, this choice ensures
that we are correctly identifying the topological back-
ground of the configurations for all the values of ncool and
ξL employed in our analysis.
As for the upper bound of the fit range, we observe that

our results are in perfect agreement with a linear behavior in
a wide range of values of ncool=ξ2L, up to ncool=ξ2L ∼ 14; see
Fig. 7. This is nontrivial, as this value corresponds to
ncool ¼ 250 and ncool ¼ 690 for, respectively, the smallest
and largest ξL investigated at this value of N. Reducing the
fit range by choosing a smaller upper bound resulted in no
relevant change in the obtained extrapolation. In any
case, we incorporated any small variation observed into
our final error, displayed as a full point and a shaded area
in Fig. 8.
As a final remark, we recall that, in order to correctly

keep into account correlations among continuum extra-
polations obtained for different values of ncool=ξ2L, we
repeated the analysis described in this section for 5000
different bootstrap resamples for each ξL, each one having
the same size of the original sample. Thus, our results for

FIG. 5. Examples of extrapolation toward the continuum limit
ξL → ∞ of χL at fixed smoothing radius for N ¼ 21 and for three
values of ncool=ξ2L.

FIG. 6. Behavior of the topological susceptibility ξ2χ as a
function of ncool for three values of βL explored at N ¼ 21 (the
largest, the smallest and the middle one).

FIG. 7. Extrapolation toward the zero-cooling limit
ncool=ξ2L → 0 of χ0ðncool=ξ2LÞ for N ¼ 21 with a linear function
in ncool=ξ2L. The full point represents our final result.
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the double extrapolation for different fit ranges, shown in
Fig. 8, were estimated by observing the variation of the
double limit over such resamplings.

B. The large-N limit of χ 0

We repeat the analysis exemplified in the previous
section for N ¼ 5, 11, 31. Obtained results are reported
in Table II, while more details about the double extra-
polation for these values of N can be found in the
Appendix.
Our aim is now to compare our results with the large-N

behavior predicted via the analytic 1=N expansion in
Eq. (10). Such comparison is shown in Fig. 9. Although
our error bars are quite large (with our N ¼ 21 and 31
determinations being compatible with 0 within errors), it is
clear that our numerical results are in very good agreement
with the large-N analytic ones and approach the NLO
prediction already for N ≥ 11.
If we try a best fit of our data for Nχ0 with a polynomial

in 1=N, fixing the large-N limit to e01 ¼ −3=ð10πÞ,

Nχ0 ¼ e01 þ e02
1

N
þ e03

1

N2
; ð23Þ

we find e02 ¼ 1.44ð18Þ (analytic, 1.53671) by fitting up to
Oð1=NÞ terms in the range N ≥ 11, and e03 ¼ −5.9ð2.6Þ by
fitting up to Oð1=N2Þ terms in the range N ≥ 5 (with e02
staying within errors). Leaving e01 as a free parameters gives
perfectly compatible results but within larger error bars.
These best fits are displayed in Fig. 9 as dashed and
dotted lines.
Our result for e02 is thus in perfect agreement with the

large-N analytic computation. We are also able to give a
preliminary estimation of e03, which turns out to be larger by
about a factor of 4 and of opposite sign compared to e02.
These findings match very well with those found for the
large-N behavior of the susceptibility χ and of the quartic
coefficient b2 in Ref. [58], where the coefficients of the
1=N expansion of these quantities appear to grow in
absolute value with alternating signs as the order of 1=N
is increased. This is not surprising, the 1=N expansion
being an asymptotic series.
As a final remark, we stress that the difficulty in

observing a clear signal above zero for χ0 for N ¼ 21,
31 is due to the fact that χ0 is suppressed in the large-N limit
as 1=N and is very small already at small N and is thus not
related to any intrinsic drawback of any of the methods here
employed. Therefore, this fact does not spoil the feasibility
of our strategies in more complex models such as 4d
SUðNÞ Yang-Mills theories, where such suppression at
large N is not expected to occur.

V. CONCLUSIONS

In this paper we have presented a complete lattice
investigation of the topological susceptibility slope χ0 in
2d CPN−1 models in the large-N limit. Our main purpose
was to test the feasibility of our numerical strategies
in view of an application to 4d gauge theories, where this

TABLE II. Lattice determinations of χ0 as a function of N after
the double continuum þ zero-cooling extrapolation.

N χ0

5 0.0120(90)
11 0.0032(15)
21 −0.0020ð35Þ
31 −0.0010ð30Þ

FIG. 9. Large-N behavior of χ0 compared to the LOþ NLO
analytic 1=N prediction. Dotted and dashed lines represent
polynomial best fits of our lattice determinations of χ0.

FIG. 8. Results of the zero-cooling extrapolation varying the
upper bound of the fit range nðmaxÞ

cool =ξ2L for N ¼ 21, obtained by
means of a bootstrap analysis. The lower bound was instead kept
fixed at ncool=ξ2L ≃ 0.56. The shaded area and the full point in
ncool=ξ2L ¼ 0 represent our final result.
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quantity plays an intriguing theoretical and phenomeno-
logical role.
Our approach relies on the parallel tempering on boun-

dary conditions to mitigate topological freezing and on a
double extrapolation (continuum limit followed by the
zero-cooling limit) to correctly reconstruct χ0. This strategy
ensures that no relevant UV contribution is lost because of
the smoothing method used to properly identify the
topological charge of lattice field configurations.
We computed χ0 for N ¼ 5, 11, 21 and 31 and found that

our results are in very good agreement with those obtained
from the large-N analytic 1=N expansion. Therefore, this
confirms the solidity and the feasibility of our numerical
methods to compute χ0 from the lattice.
For this reason, in the near future we aim at employing

such strategies also for 4d gauge theories. In particular,
our next step will be to compute χ0 in the 4d SU(3)
pure-gauge theory, in view of a lattice investigation
of its large-N limit in Yang-Mills theories, which has
relevant theoretical interest in relation with the
Witten-Veneziano mechanism. In the next future we also
plan to perform an investigation of χ0 in full QCD,
where its value has intriguing phenomenological
implications.
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APPENDIX: DOUBLE EXTRAPOLATION
OF χ 0 FOR N = 5, 11, 31

In Figs. 10–12 we show the double extrapolation of χ0 for
N ¼ 5, 11, 31 as done for N ¼ 21 in Sec. IVA. Results are
displayed as follows: few examples of continuum extra-
polation at fixed value of ncool=ξ2L, linear extrapolation in
ncool=ξ2L toward the zero-cooling limit, and systematics
related to the zero-cooling best fit.

FIG. 10. Figures refer to N ¼ 31. Top left: examples of
extrapolation toward the continuum limit of χL at fixed
ncool=ξ2L. Top right: extrapolation toward the zero-cooling limit
with a linear function in ncool=ξ2L. Bottom: results of the zero-
cooling extrapolation varying the upper bound of the fit range

nðmaxÞ
cool =ξ2L. Final result for χ

0 is shown as a full point in ncool ¼ 0.

FIG. 11. Figures refer to N ¼ 11. Top left: examples of
extrapolation toward the continuum limit of χL at fixed
ncool=ξ2L. Top right: extrapolation toward the zero-cooling limit
with a linear function in ncool=ξ2L. Bottom: results of the zero-
cooling extrapolation varying the upper bound of the fit range

nðmaxÞ
cool =ξ2L. Final result for χ

0 is shown as a full point in ncool ¼ 0.
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