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We investigate the Higgs transition within the four-dimensional SUð2Þ-Higgs model in search for an
order parameter as a function of the Higgs field hopping parameter, κ, using lattice technique. We measure
the Higgs condensate after applying Landau gauge fixing and study the corresponding susceptibility,
magnetization, and fourth order Binder cumulant using four different spatial volumes with Nτ ¼ 2.
The computation is carried out with gauge coupling, βg ¼ 8, for a range of scalar self-coupling,
λ ¼ f0.00010; 0.00350g, with an emphasis near the critical end point. Finite size scaling analysis of the
gauge fixed condensate and its cumulants agree with the standard 3D Ising values ν ¼ 0.62997,
β=ν ¼ 0.518, γ=ν ¼ 1.964 at λ ¼ 0.00150. These results are in agreement with previous studies suggesting
3D Ising universality class. The numerical results also indicate that, at the transition point, the gauge fixed
condensate vanishes in the infinite volume limit.
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I. INTRODUCTION

The understanding of the phase structure of SUð2Þ-
Higgs theory has crucial cosmological and experimental
consequences [1–4]. Over the years, several nonperturba-
tive lattice studies have been devoted in this regard [5–29]
(for reviews, please see [30–32]). These studies find that
the nature of Higgs transition varies with Higgs quartic
coupling (λ). With an increase in λ, the strength of this
transition weakens and eventually becomes a crossover for
large λ. The first order transition and crossover regions are
separated by a second order critical end point at λc [23].
There are similar examples in QCD, spin models, con-
densed matter systems etc. where lines/surfaces of the
second order transition separate first order and crossover
regions in the phase diagram [33–35]. Many attempts have
been made to study the universality class of such critical end
points in different theories [9,33–35]. These end points are
expected to belong to the universality class of the Ising
model [9,34–40]. In the electroweak theory, the critical end
point in the dimensionally reduced SUð2Þ-Higgs theory is
studied in three dimensions [9]. The analysis of the critical
behavior is done by identifying energy and magnetization
like observables [35]. The distribution of these observables,

higher cumulants and the extracted critical exponents,
clearly show that the end point is in the 3D Ising universality
class.
In Ref. [9], a linear combination of various gauge

invariant observables plays the role of magnetization.
Another orthogonal linear combination plays the role of
an energylike observable. These linear combinations change
with the bare parameters of the theory. Though gauge
invariant observables can be used to study nature of
transitions, it is desirable to have an order parameter for
the Higgs transition. In the absence of gauge symmetry, the
Higgs condensate (volume average of the Higgs field) plays
the role of an order parameter. On other hand, gauge
symmetry renders the condensate unphysical. However, it
can be made well behaved by a suitable choice of a gauge. It
is expected that the choice of a gaugewill not affect physical
quantities such as critical exponents. Note that the necessity
of a suitable order parameter exists in other gauge theories,
such as in high density QCD, to describe the normal color
superconducting transition.
In the present work, we propose the Higgs condensate in

the Landau gauge, denoted by Φg, as an order parameter
for the Higgs transition in SUð2Þ-Higgs theory. In 3þ 1
dimensions, Φg and its cumulants are computed using a
Monte Carlo simulation of the partition function by varying
the Higgs hoping parameter (κ) and the quartic coupling. It
is observed that the partition function average ofΦg behaves
similar to that of magnetization in spin models. For small λ,
the Higgs transition is of first order, and Φg is found to vary
discontinuously across the transition point. With the
increase in λ, the Higgs transition weakens, which is also
seen in Φg behavior. The jump in Φg across the transition
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point decreases with λ. At a critical point λc, Φg varies
continuously while its various cumulants show singular
behavior. The observed scaling behavior is consistent with
the 3D Ising universality class and deviates from the
universality class of the 3D Oð4Þ spin models [41,42].
The Finite Size Scaling (FSS) ofΦg suggests that it vanishes
at the critical point in the infinite volume limit. It also
vanishes in the high temperature or Higgs symmetric phase
at least for λ < λc. Wewould like to mention here thatΦg, as
an order parameter, reasonably reproduces the previous
results. A linear combination along the lines of previous
studies may further fine-tune the results.
The draft is organized as follows. In Sec. II, we provide

the lattice definition of the SUð2Þ-Higgs theory. In Sec. III,
we discuss the numerical procedures for our work. This
includes the Landau gauge fixing in lattice. In Sec. V, we
analyze our data using FSS, while we present the mag-
netization study at various λs in Sec. VI. Finally, we present
the discussion and conclusion of our study in Sec. VII.

II. LATTICE FORMALISM

The continuum action of SUð2Þ-Higgs theory is dis-
cretized on lattice as

S ¼
X

x

�X

μ>ν

β

2
TrUx;μν þ

X

μ

κTrðϕ†
xUx;μϕxþμ̂Þ

−
1

2
Trðϕ†

xϕxÞ − λ

�
1

2
Trðϕ†

xϕxÞ − 1

�
2
�
; ð1Þ

where Ux;μ ∈ SUð2Þ is a link variable, and Ux;μν is a
product of four link variables that form a plaquette, and ϕx
is a 2 ⊗ 2 matrix in isospin space describing the Higgs
scalar field. The bare parameter βg ≡ 4=g2 is the gauge
coupling, λ is the scalar quartic coupling, and κ is the scalar
hopping parameter that is related to the bare mass square by
the relation μ20 ¼ ð1 − 2λÞκ−1 − 8.
In order to search for an order parameter, we apply

Landau gauge fixing, ∂μAμ ¼ 0, and construct the con-
densate, Φg. We then study the behavior of the magneti-
zation, susceptibility, and fourth order Binder cumulant
of Φg (defined below) at various values of κ and λ while
βg ¼ 8 is kept fixed.

Magnetization∶Φg≡hΦ̃gi¼
�

1

N3
sNt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X4

i¼1

�X
x
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�
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vuut
�
;

ð2Þ

Susceptibility; χc∶ VðhΦ̃g2i − hΦ̃gi2Þ; ð3Þ

Total Susceptibility; χ∶ VhΦ̃g2i; ð4Þ

Binder Cumulant; B4∶ 1 −
hΦ̃g4i
3hΦ̃g2i2 ; ð5Þ

where h� � �i stands for the gauge average, and V ¼ N3
s is the

spatial volume of the lattice. We use the superscript, c, in
Eq. (3) to specify it as the connected susceptibility.
We devote a significant part of our study near the end

point for first order transition, namely at λ ¼ 0.00116,
0.00132, and 0.00150. Note that the first value of λ is found
to be the critical end point in Ref. [23]. The two higher λ
values lie around ∼þ 2σ of the first one. The reason to
include these higher values of λ is discussed in the Sec. VA.
We list the run parameters in Table I.

III. NUMERICAL PROCEDURE
AND PARAMETERS

For Monte Carlo simulations, we use the pure gauge part
of the publicly available MILC code [43] and modify it to
accommodate the Higgs fields. To update the gauge fields,
we first use the standard heat bath algorithm [44,45],
and then update Higgs fields using a pseudo heat bath
algorithm [13]. We then again update the gauge fields using
four overrelaxation steps [46] after which Higgs fields are
updated again using pseudo heat bath algorithm. To reduce
autocorrelation between successive configurations, we carry
out 50 cycles of this updating procedure between two
subsequent measurements. We test our codes to reproduce
histogram profiles similar to Ref. [22]. For our simulations,
we use four spatial volumes, Ns ¼ 20, 24, 32, 40, while the
temporal lattice extent is kept at Nτ ¼ 2 [23].
To implement Landau gauge fixing, we maximize the

following quantity

H ¼
X

x

X4

μ¼1

Re½TrUx;μ�: ð6Þ

TABLE I. Simulation parameters near λc.

βg λ Ns Nτ κ Confs.
Trajectories between
consecutive confs.

8.0
0.00116 20, 24, 32, 40 2 f0.129390; 0.129550g 50 000 50
0.00132 20, 24, 32, 40 2 f0.129420; 0.129820g 50 000 50
0.00150 20, 24, 32, 40 2 f0.129500; 0.130000g 50 000 50
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In order to maximize H, we separately apply two different
methods as described in [47]. One of the methods is the
standard SUð2Þ subgroup method, and the other one is
Overrelaxed Steepest Descent method. This was done to
check whether both the methods arrive at the same global
maxima. In addition, we use single, double, and quadruple
precisions in our simulations so that we are able to set our
convergence conditions accordingly. We find that both the
methods for maximization of H as well as the different
precisions produce similar results. Eventually, as described
in [47], we combine both SUð2Þ subgroup and Overrelaxed
Steepest Descent methods to speed up gauge fixing. First,
we apply SUð2Þ subgroup method to bring the configura-
tion close to the maximum, and then apply Overrelaxed
Steepest Descent method for the final convergence. We set
our overrelaxation parameter, ω ¼ 1.98, and we use double
precision for all our simulations. For convergence of SUð2Þ
subgroup method, we measure

h ∼
H

N3
sNτ

; ð7Þ

We set the convergence condition at the ith iteration as

jhi − hi−1j < 10−12: ð8Þ

For the Steepest Descent method, we measure

Δ ¼ 1

N3
sNτ

X

x

1

2

X4

μ¼1

1

4
Tr½Δx;μΔ

†
x;μ�; ð9Þ

where

Δx;μ ¼ Ux−μ̂;μ − Ux;μ − H:c: − trace: ð10Þ

We set the convergence condition for Δj at the jth
iteration as

jΔjj < 10−15: ð11Þ

Simulations are performed for a wide range of κ and λ
values. We focus our studies at λ ¼ 0.00116, 0.00132, and
0.00150. For each of them, we generate 2.5 million
trajectories out of which gauge fixing is performed on
every 50th trajectory at each κ. This gives us a total 50 000
gauge-fixed configurations for each κ. The parameters are
listed in Table I. For each of other values of λ, we generate
500 000 trajectories instead out of which every 50th
trajectory is selected for gauge fixing giving 10 000
gauge-fixed configurations for each κ. The reduced statistics
is due to the limitations in computational resources. The
parameters are listed in Table II. All the error analyses in this
study are carried out using Jackknife method with bin size
determined such a way that the total number of bins is 100.

IV. M-LIKE AND E-LIKE OBSERVABLES

The SUð2Þ-Higgs theory is similar to the case of the
liquid-gas system, i.e., none of the gauge invariant observ-
ables can be directly identified with the M-like and E-like
observables. In the previous studies of the critical end point,
observables such as SK ¼ P

x;μ Trðϕ†
xUx;μϕxþμ̂Þ, Sϕ ¼P

x ð12Trðϕ†
xϕxÞ − 1Þ2 etc. have been used to define the

M-like and E-like observables. It has been pointed out that
SK , Sϕ etc. are not necessarily orthogonal in the vicinity of
the critical point, i.e., hΔSKΔSϕi ≠ 0, where ΔSK ¼ SK −
hSKi and ΔSϕ ¼ Sϕ − hSϕi [9,34,35,37–39]. However,
linear and orthogonal combinations of them have been
found to behave as M-like and E-like observables. In the
present work, we include the Landau gauge fixed Higgs
condensate, Φg, along with other gauge invariant observ-
ables to define M-like and E-like observables. The studies
of correlations between Φg and other gauge invariant
observables seem to suggest that hΔΦgΔSKi ≈ 0 and
hΔΦgΔSϕi ≈ 0 are satisfied within the uncertainties.
We compute the correlation relations, hΔΦgΔSKi and

hΔΦgΔSϕi, over the whole range of respective κ values at
λ ¼ 0.00116 and 0.00150. They are plotted in Figs. 1 and 2,
respectively. We clearly see that there is no correlation
between theΦg and other observables. We also observe that

TABLE II. Run parameters for other λs.

βg λ Ns Nτ κ Confs.
Trajectories between
consecutive confs.

8.0

0.00010 20, 24, 32, 40 2 f0.127800; 0.128890g 10 000 50
0.00050 20, 24, 32, 40 2 f0.127800; 0.129200g 10 000 50
0.00080 20, 24, 32, 40 2 f0.129000; 0.129400g 10 000 50
0.00095 20, 24, 32, 40 2 f0.129000; 0.129400g 10 000 50
0.00100 20, 24, 32, 40 2 f0.129120; 0.129500g 10 000 50
0.00170 20, 24, 32, 40 2 f0.129690; 0.130300g 10 000 50
0.00220 20, 24, 32, 40 2 f0.129450; 0.130600g 10 000 50
0.00270 20, 24, 32, 40 2 f0.130000; 0.131340g 10 000 50
0.00310 20, 24, 32, 40 2 f0.129500; 0.135000g 10 000 50
0.00350 20, 24, 32, 40 2 f0.127500; 0.137000g 10 000 50
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the sizes of uncertainties decrease as the volume increases.
This suggests that Φg is a M-like observable.
We also study the behavior of the Φg distributions vs SK

as well as Sϕ distributions. In Fig. 3, we plot Φg vs SK and
Sϕ for λ ¼ 0.00116 and κ ¼ 0.129465. In Fig. 4, the same

quantities are plotted for λ ¼ 0.001500 and κ ¼ 0.129765.
From these figures, we see that these distributions behave
similarly to those of energy vs magnetization distributions of
the 3D Ising model. Note that Φg has four components. The
individual components have no physical significance, as
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FIG. 1. Correlations between (a) Φg and SK (b) Φg and Sϕ at λ ¼ 0.00116.
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FIG. 2. Correlations between (a) Φg and SK (b) Φg and Sϕ at λ ¼ 0.00150.
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FIG. 3. Φg vs (a) SK and (b) Sϕ at λ ¼ 0.001160 and κ ¼ 0.129465.

MRIDUPAWAN DEKA and SANATAN DIGAL PHYS. REV. D 107, 014513 (2023)

014513-4



there are no Goldstone modes in this case. The magnitude of
Φg is physical and as a consequence, we can only reproduce
the part of the Ising model figure for which M > 0. In
Figs. 3 and 4, we observe that the distributions are not linear,
unlike the distribution of Sk vs Sϕ. In this situation, no
unique linear combination is possible.

V. FINITE SIZE SCALING ANALYSIS

A. λ= 0.00116

In Fig. 5, we plot magnetization, susceptibility, total
susceptibility, and Binder cumulant for λ ¼ 0.00116. We
see that κ acts like an “inverse temperature” [48] for all the

(a) (b)

FIG. 4. Φg vs (a) SK and (b) Sϕ at λ ¼ 0.001500 and κ ¼ 0.129765.
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FIG. 5. (a) Magnetization, (b) connected susceptibility, (c) total susceptibility, and (d) Binder cumulant as functions of κ at
λ ¼ 0.00116. The dotted lines are not fitted and are for eye guides only.
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four quantities, and there are indications that these four
quantities behave similar to that of Ising model. However, it
is necessary to study further by scaling all the four

quantities with the standard Ising exponents and see
whether the scaled quantities follow the FSS behavior.
In order to carry out the scaling procedure, the corre-

sponding critical value of κ needs to be evaluated. To find
κc, we first estimate the value of χcmax for each volume and
obtain the corresponding κχmax. The standard procedure to
find χcmax is the Rewieghting method. It can be seen from
Fig. 5(b) that we have a reasonable amount of data near the
peak point for every volume. Thus, we instead use the Cubic
Spline Interpolation method to generate a few hundred
points close to κχmax for every Jackknife sample. From these
sets of interpolated points, we find the values of χcmax and the
corresponding κχmax for each volume. The value of κc is
then obtained by using the following FSS relation given by

κχ
−1
max ¼ κ−1c þ aN−1=ν

s : ð12Þ

By using the standard value of ν ¼ 0.629971 for 3D Ising
model, we get the value of κc from the linear fit of κχmax as a

function of N−1=ν
s as (see Fig. 6)
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FIG. 7. Scaled (a) magnetization, (b) connected susceptibility, (c) total susceptibility, and (d) Binder cumulant as functions of κ at
λ ¼ 0.00116.
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FIG. 8. (a) Magnetization, (b) connected susceptibility, (c) total susceptibility, and (d) Binder cumulant as functions of κ at
λ ¼ 0.00132. The dotted lines are for eye guides only.
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FIG. 9. Scaled (a) magnetization, (b) connected susceptibility, (c) total susceptibility, and (d) Binder cumulant as functions of κ at
λ ¼ 0.00132.
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FIG. 11. Scaled (a) magnetization, (b) connected susceptibility, (c) total susceptibility, and (d) Binder cumulant as functions of κ at
λ ¼ 0.00150.

MRIDUPAWAN DEKA and SANATAN DIGAL PHYS. REV. D 107, 014513 (2023)

014513-8



κc ¼ 0.1294655ð5Þ: ð13Þ

Using the value of κc from Eq. (13), and the standard 3D
Ising values of γ ¼ 1.237075 and β ¼ 0.326419, the
quantities are scaled. They are plotted in Fig. 7.
It can be clearly seen from Fig. 7 that quantities do not

properly obey the scaling behavior. The differences are

more visible in the cases of susceptibility and Binder
cumulant. Further, no improvement in the scaling is
seen by changing the universality class. We thus extend
our study to other λ values for which scaling can be
seen. We considered two other values of λ, namely λ ¼
0.00132 and 0.00150, which are around ∼1σ and ∼2σ
from λ ¼ 0.00116, respectively.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 12. Magnetization at various values of λ. (a) λ ¼ 0.00010, (b) λ ¼ 0.00050, (c) λ ¼ 0.00080, (d) λ ¼ 0.00095, (e) λ ¼ 0.00100,
(f) λ ¼ 0.00170, (g) λ ¼ 0.00310, and (h) λ ¼ 0.00350.
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B. λ= 0.00132 and 0.00150

We compute magnetization, susceptibility, total suscep-
tibility and Binder cumulant for λ ¼ 0.00132 and 0.00150.
They are plotted in Figs. 8 and 10, respectively. We again
see Ising-like behavior of these quantities. Note that the
value of κc changes with the value of λ. We follow the same
procedure as described in Sec. VA to determine κc for
λ ¼ 0.00132 and 0.00150. Thus, we get,

κc ¼ 0.1296071ð8Þ for λ ¼ 0.00132; ð14Þ

κc ¼ 0.1297642ð7Þ for λ ¼ 0.00150: ð15Þ

Using these values of kc and the standard values of the
exponents for 3D Ising model, we scale the quantities as in
Sec. VA. They are plotted in Figs. 9 and 11, respectively.
By comparing Figs. 7, 9, and 11, we see scaling for
λ ¼ 0.00150. This is an indication that Φg is a good order
parameter. Also this suggests that the critical end point is
close to λ ¼ 0.00150.

VI. MAGNETIZATION AT VARIOUS OTHER λS

We further investigate whether Φg displays the behavior
of a conventional order parameter as a function of λ. We
study the magnetization for various λ values between
f0.0001; 0.0035g. The simulation parameters for this study
are listed in Table II. As mentioned in Sec. III, the number
of configurations is restricted to 10 000 only for each
combination of λ and κ.
From Figs. 12(a) and 12(b) at λ ¼ 0.00010 and 0.00050,

respectively, we clearly see that Φg displays a first order
transition as a function of κ. Finally, we see from
Figs. 12(g) and 12(h) that the volume dependence nearly
disappears at the values of λ ¼ 0.00310 and 0.00350,
respectively, indicating a crossover.
We also evaluate κχmaxs from the maximum value of

susceptibility for Ns ¼ 40 for λ ¼ f0.0008; 0.0035g. They
are plotted in Fig. 13.

VII. DISCUSSION AND CONCLUSION

In this work, we study the behavior of the volume
average of the Landau gauge-fixed Φg and related quan-
tities in SUð2Þ-Higgs theory. The aim of our study is to see
if Φg behaves like an order parameter for the Higgs
transition. We consider βg ¼ 8 as in [23], and study Φg

at various values of λ, from λ ¼ 0.00010 to λ ¼ 0.0035.
Our results show that, Φg for different λ accurately
identifies the transitions points (κcs). Across first order
transition, Φg varies discontinuously, as expected from an
order parameter. This is clearly seen at λ ¼ 0.00010 and
λ ¼ 0.00050 in agreement with previous study [23]. From
λ ¼ 0.0008 onward, we see a weakening of transition, with
the jump inΦg decreasing with λ. At much higher values of
λ, such as λ ¼ 0.00310 and λ ¼ 0.00350, we see a gradual
disappearance of volume dependence signifying a possible
crossover. It is interesting to note that a different lattice
study [49] at zero temperature performed at βg ¼ 8,
λ ¼ 0.0033, κ ¼ 0.131 with a lattice size of 243 × 48
has found the physical Higgs mass to be 123(1) GeV,
which is closer to the experimental value.
A significant part our numerical simulations are devoted

to study behavior of Φg near the end point. The magneti-
zation, susceptibility, total susceptibility, and Binder cumu-
lant etc. of Φg as functions of κ give an impression of an
order parameter like behavior at λc. The scaling of these
quantities for ν ¼ 0.62997, β=ν ¼ 0.518, and γ=ν ¼ 1.964,
shows that the end point belongs to the 3D Ising univer-
sality class. From the scaling of the Binder cumulant from
Fig. 11(d), we find its value at ðλc; κcÞ to be consistent with
the standard 3D Ising value of ∼0.47 [50,51].
We mention here that the FSS of Φg and its various

cumulants suggests that the 3D Ising-like behavior seen
close to λ ¼ 0.00150, which is within 2σ of the endpoint
found in [23]. The FSS of Φg seen in Fig. 11 suggests that
exactly at the critical point ðλc; κcÞΦg vanishes. Also the
numerical results suggest that for λ < 0 in the Higgs
symmetric phase and at κc, Φg vanishes in the infinite
volume limit. This is in contrast to behavior of magneti-
zation in the three-state Potts model, where the magneti-
zation vanishes in the symmetric phase only in the absence
of an external field. In the presence of external field, in the
symmetric phase at transition point, magnetization
increases with external field. This behavior of magneti-
zation vs external field can be obtained by adding a simple
explicit breaking term to Ginzburg-Landau type of mean
field free energy. Such an effective description of Φg

require nontrivial term(s) such that Φg is zero in the Higgs
symmetric phase at least for λ < λc.
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