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The traditional Markov chain Monte Carlo (MCMC) suffers from the problem of critical slowing down.
Generative machine learning methods, such as normalizing flows, offer a promising method to speed up
MCMC simulations, especially in critical regions of lattice field theory. However, training these models for
different parameter values in the critical region is inefficient. In this paper, we address this issue by
interpolating or extrapolating the flow model to any parameter value in the critical region. We demonstrate
the effectiveness of the proposed method for MCMC sampling in critical regions.
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I. INTRODUCTION

Lattice field theory is a popular nonperturbative method
for solving quantum field theory which describes particle
physics and many condensed matter systems. Markov
Chain Monte Carlo (MCMC) methods are used in lattice
field theory for sampling a probability distribution speci-
fied by the action or Hamiltonian of the lattice system. The
cost of MCMC simulation depends on the parameter value
of the theory at which the lattice samples are generated.
This cost increases swiftly for the parameter values in the
critical region, where the autocorrelation between the
generated samples shoots up. This problem is known as
critical slowing down [1,2]. Several MCMC algorithms
have been developed for specific theories [3—10] to reduce
the effect of critical slowing down. However, critical
slowing down still poses a significant hurdle in estimating
the physical observables in many lattice field theories.

Generative ML has recently has shown a great potential
to efficiently address this issue [11-24]. Flow-based gen-
erative models have been found to be effective in avoiding
the problem of critical slowing down for specific theories
[25-33]. However, simulations at multiple parameter val-
ues near the critical region are necessary to study the critical
properties of a statistical lattice system and take the
continuum limit of a lattice field theory. In the traditional
MCMC methods, the Markov chain starts from a random
state for each parameter value. In the existing flow-based
methods, the Markov chain utilizes a flow model that is
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trained for a particular parameter value. This is particularly
inefficient if estimates at many parameter values are needed.
For instance, estimation of free energy [34] requires lattice
ensembles at discrete steps in the parameter space of the
theory. Hence, training different flow models for each
parameter value increases the simulation cost. As a side
note, there is one approach [33] which does not require
ensembles at discrete steps for calculating the free energy.
There are several flow-based methods [26,27] which learn
the flow models in an online fashion, i.e., while generating
the samples, instead of pretraining with samples from train-
ing data. But online training could be unstable and may lead
to mode collapse.

In ML literature, transfer learning techniques have been
developed to efficiently transfer the knowledge across
domains [35]. This transfer enables initializing the model
in an efficient way for the new domain. Likewise, there are
conditional flow models [36] which can regress across con-
tinuous parameters, thereby transferring knowledge across
parameters. The question we address in this work is whether
the knowledge from the noncritical region can be used to
generate samples in the critical region of lattice theory. We
develop a provably correct conditional normalizing flow-
based (C-NF) sampling method for scalar ¢* theory.

Our goal is to generate lattice configurations from the
distribution:

1
o) = L)
where, Z = /Dqﬁe‘s(‘/”l). (1)

Here, ¢ denotes the lattice field, Z is the partition
function and S is the lattice action of ¢* theory. The action
can be defined in 2D lattice as:
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where A and m are the two parameters of the theory. In our
numerical experiments we fix m*> = —4 and hence we omit
this parameter in the expression of condition distribution
pa(@|4). Here, x is a 2d discrete vector and /i represents
two possible directions on the lattice.

We train a C-NF model using HMC samples from
po(p|A) for A € Aye, where Ay denotes the noncritical
region' of the theory. We use the trained C-NF model to
generate proposals for constructing a Markov chain via an
independent MH algorithm [25]. We are particularly
interested in lattice configurations for 1 € Ac, where Ac
denotes the critical region of the theory.

There are two kinds of critical regions we study, one
where noncritical regions exist on both sides of the critical
point and the other where noncritical region exists only on
one side. We apply C-NF to generate lattices for both these
cases. For the former case, we interpolate the C-NF model,
and for the latter, we extrapolate the model to the critical
region. Interpolation is useful for studying phase transition
in a statistical system, while extrapolation is useful for
obtaining the continuum limit in lattice gauge theory.

II. CONDITIONAL NORMALIZING FLOW

Normalizing flows [37] are generative models for con-
structing complex distributions by transforming a simple
known distribution via a series of invertible and smooth
mapping f: R?Y - R? with inverse f~! = g.If p4(z) is the
prior distribution and pg(¢) is the complex target distri-
bution, then the model distribution ¢q(¢p;0) which is
parametrized by variational weights @ can be written as
5 (¢)

qo(#;0) = pz(2) detT

where, ¢ = fy(2). (3)

Fitting a flow-based model gq(¢; @) to a target distri-
bution pg () can be accomplished by minimizing their KL
divergence. The quantity minimized can be called as loss
function and is defined as:

L = Dk, [pa(d;c)llqa(d; c,0)] (4)

We have estimated the network parameters 6;,; by opti-
mizing the £(0) with respect to 0 using gradient descent
based method.

The most crucial step is to construct an invertible neural
network representing the function f4(z), which enables an
efficient evaluation of |det%¢(¢)|. One such method is

9’

'We define critical and noncritical sets based on integrated
autocorrelation time.

FIG. 1. One affine block of conditional normalizing flow,
where s and t are convolutional neural networks.

to use affine coupling blocks, which divides the input z
into two halves z; and z, and applies an affine trans-
formation to produce upper or lower triangular Jacobians.
The transformation rules for such a coupling block are as
follows [38]:

¢ =71 © exp(s(z2,¢)) + 11 (22, ¢),
b2 = 22 O exp(sy(¢hy, ¢)) + t2(¢y, €), (5)

where, © represent element-wise product of two vectors. For
conditional learning, we concatenate the conditional param-
eter ¢ along with the input z and feed into the convolutional
networks s and ¢ [39] as shown in Fig. 1. We combine many
such coupling blocks to construct the C-NF model. We have
not conditioned each coupling layer of C-NF model with 4. In
experiments, we found that if we condition each layer of the
model with lambda, the model overfits the A values used for
training and does not generalize to interpolated/extrapolated
A values. For the results shown in this paper, we condition
only the layers with index n x k, wheren = 0, 1, ... and k =
1,5,9 for lattices of size (6 x6 & 8 x8), 12x 12 and
16 x 16, respectively. The model descriptions can be found
in the Appendix.

Let us designate the C-NF model as f(¢;c,6) and its
inverse as ¢(z;c,0). The invertibility for any fixed con-
dition c is given by

(e 0) =g(s.c.0) (6)
To estimate the probability density function of generated
samples, we can use

Ao @)
op |

After training, for a fixed ¢, we can execute conditional

generation of ¢ by sampling z from a simple prior distribu-

tion p(z) and employing the inverted network g(z; ¢, @y )-

qo(d;c.0) = pz(f(¢;c,0))| det

III. APPLICATION TO LATTICE
SCALAR ¢* THEORY

The lattice action as in Eq. (2) possesses ¢(x) — —¢(x)
symmetry, however it is spontaneously broken at a specific
parameter region. For the numerical investigation we
consider the phase transition with respect to the parameter
A only. For a given A the probability distribution of lattice
configuration is given by pe(¢p|4) defined in Eq. (1).
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FIG. 2. ESS for extrapolated 4 calculated from models trained
on three different lattice volumes. For each lattice, we use 65 k
iterations for training.

More information on lattice ¢* theory can be found in
[40]. Some of the observables which we will be calculating
on the lattices are

(D) (@) =13, ).

(2) Zero momentum correlation function:

C(r) = le G(x1,1),
where, x = (x;,7) and
Ge(x) =322, () d(x +3)) = (@) (p(x +))].

(3) Two point susceptibility: y = > G(x).

In the C-NF model, ¢ in Eq. (5) corresponds to the lattice
field configuration of scalar ¢* theory and the action
parameter A represent the conditional parameter c. A is
fed to the network as a separate channel appended to z with
values A1, where 1 is a matrix with all entries as identity
and size same as that of z. We generate training samples ¢
from the distribution defined in Eq. (1):

2=9(¢:2.0); P~ po(Pld). (8)

The loss function for optimizing the C-NF model is the
forward KL divergence between the model distribution
qo(p; 1, 0) and target distribution pg(¢h; A):

c@—/w%wmeM¢m—mmwmw>

= Eu~p® [lOg(p<D(¢; ’1)) - log(qq>(¢;/1, 9))} (9)

IV. TRAINING AND SAMPLING PROCEDURE
A. Training

We train two models for studying two different cases,
namely, interpolation and extrapolation to the critical region.
We use HMC generated samples for A € Ay to train these
models. In HMC simulation we use molecular dynamics
(MD) step size = 0.1 and MD trajectory length = 1. For
each 4 € Ay we generate 10,000 lattice configurations for
the interpolation case and 15,000 configurations for the
extrapolation case. For both the cases we use a fixed number

of training configurations which are rotated through in the
training process.

For estimation of observables from HMC we generate
10° lattice configurations. We use bootstrap resampling
method for estimating the uncertainty in the observables
with a bin-size of 100.

To define the sets A and Ay, we choose two threshold
values of A on both phases based on integrated autocorre-
lation time (7) of y. We select the threshold value of 4 such
that maximum 7 for Ayc set is 1.5.

During training, we use a batch size of 1024 with each
sample consisting of (¢, 1), chosen randomly from the
ensembles of different A values. We employ an Adam
optimizer with an initial learning rate of 0.0003.

B. Sampling

For sampling, we draw z from a prior distribution which
we set as standard normal, z ~ A (0,1). We feed z into
the C-NF model to generate lattice samples ¢ = f(z),
which are used as proposal samples for constructing a
Markov chain. We choose 40%—45% acceptance rate as the
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FIG. 3. Interpolation to the critical region:-(¢?) and y are
calculated on samples generated from (i) HMC, (ii) C-NF
followed by MH, and (iii) Naive C-NF. The error bars indicate
standard deviation calculated using bootstrap resampling with
bin-size 100.
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stopping criteria for training. For the C-NF model we get
the target acceptance rate around 65 k training iterations.
Once training is over, we interpolate or extrapolate the
model to the critical region. For generation in the critical
region we give critical A values as conditional parameters.
We use the acceptance rate, effective sample size (ESS)
and three observables (%), y, and C(f) as metric to
evaluate the performance of the C-NF model. We calculate
the observables for four different lattice sizes 6 x 6,
8 x 8,10 x 10, and 12 x 12. The results are almost same,
so we presents the results only for one lattice namely 8 x 8.

C. C-NF model quality: Effective sample size (ESS)
The ESS is defined as [28]

i( 1 Po(@is )/ qo(dis4.0))
N YN (poldi4)/qe(di:4.0))*

We estimate ESS for three different C-NF models corre-
sponds to three lattice sizes namely, 8 x 8,12 x 12,16 x 16.
For estimation of ESS we use a batch-size of 5000 lattice
configurations from each model trained to 65 k iterations.

ESS =

(10)
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FIG. 4. Interpolation: Zero momentum correlation function C()

calculated on samples generated from (i) HMC and (ii) C-NF
followed by MH. The error bars indicate standard deviation
calculated using bootstrap resampling with bin-size 100.

We took 100 independent estimation of ESS from each
model to calculate the uncertainty in it. In Fig. 2 we plot
the ESS for 10 different A values for each model. The ESS
is almost constant for the extrapolated A values for 8§ and
12 x 12 lattices. For 16 x 16 the ESS gradually decreases
to 10% at A values very close to the critical point.

V. NUMERICAL EXPERIMENTS AND RESULTS

A. Interpolation to the critical region

For interpolation case, we choose training Ay set as:
{3,3.2,3.5,3.6,3.7,3.8,5.8,6,6.5,7,8,9}, with threshold
A=3.8 and 5.8. We interpolate the trained model for
multiple A values, Aq: {4.1,4.2,4.25,4.3,4.35,4.4,4.45,
4.5,4.55,4.6,4.65,4.7,4.8,5.0}. For each 1 values we
generates a Markov chain of 103 configurations from the
proposed method. Then observables are calculated on each
ensemble for both the phases around the critical point.
We compare the observables from our proposed method
with those from HMC simulation in Figs. 3—7. Observables
from the naive C-NF without MH algorithm are also shown
to illustrate the C-NF model’s proximity to the true
distribution.
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0.00 T T T T T T T T
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FIG. 5. Extrapolation:-Zero momentum Correlation function
calculated on samples generated from (i) HMC and (ii) C-NF
followed by MH. The error bars indicate standard deviation
calculated using bootstrap resampling with bin-size 100.
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FIG. 6. Extrapolation to the critical region: (¢*) and y are
calculated on samples generated from (i) HMC, (ii) C-NF
followed by MH, and (iii) Naive C-NF. The error bars indicate
standard deviation calculated using bootstrap resampling with
bin-size 100.

In Fig. 3, we plot the observables (¢?) and y for 1 € Ac.
In Fig. 4, the two point zero momentum correlation
function C(r) is shown for two A values. For these 4
values, we observe larger correlation compared to non-
critical 4 values.

In Fig. 7, we also show the histogram of ¢ for a particular
critical 4 = 4.6. It visually demonstrates the elimination of
artifacts by the MH algorithm, which the C-NF model
produced.

B. Extrapolation to the critical region

The Ayc set used to train the C-NF model for the
extrapolation case in the broken phase is :{3,3.1,3.2,
3.3,3.4,3.5,3.6,3.7,3.8,3.9}. We find that in this case
the size of training dataset has to be increased to achieve
ESS comparable to the interpolation case. After training,
we extrapolate it in the critical region around A = 4.6,
which is taken as the critical region’s midpoint, i.e.,
A€ {42,43,44,45,4.6}. For each A value we generate
one ensemble of 10° configurations from our method.

W HMC

3.0

Naive C-NF
2.5 A

2.0
1.5 A
1.0 A

density of configurations

0.5 A

0.0 -
00 01 02 03 04 05 06 0.7

[ HMC
C-NF with MH

density of configurations

FIG. 7. Histogram of ¢ for A = 4.6 from the (a) naive C-NF
model and (b) C-NF with MH is compared against HMC results
with a bin-size = 100.

We plot the observables (¢*) and y in Fig. 6 and the zero
momentum correlation function is plotted in Fig. 5 for two
different 1 € Ac.

The naive C-NF model produces inherently uncorrelated
lattice configurations. However, using such configurations
directly from the naive C-NF model will lead to biases in
the observables. We use the independent MH algorithm to
avoid the model’s biases, which guarantees the asymptoti-
cally exact Markov chain.

C. Comparison to a nonconditional NF model

A nonconditional NF model trained on a single 1 value
can be used to generate proposals for MH algorithm to
construct ensembles for different A values. However, this
model may not generate good proposals for the target
distribution. The efficiency for constructing such ensem-
bles for other 1 values will depend on the acceptance rate in
MH algorithm. In Fig. 8 we compare the acceptance rate for
three different models. We train a nonconditional NF with
samples for a single 4 = 4y = 3.8 and use the model to
generate proposals for MH algorithm at other A values. We
observe a faster decline in the acceptance rate as we move
away from /1, as compared to the acceptance rate obtained
with the interpolated and extrapolated C-NF.
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FIG. 8. MH acceptance rate from three different models are
shown: (1) model trained on a single 4 = 3.8 (blue dashed);
(2) C-NF extrapolated model (red solid) and (3) C-NF interpo-
lated model (black dotted).

VI. COST ANALYSIS

The sampling algorithm for the baseline approach (HMC)
and the suggested method is vastly different; thus, a direct cost
comparison is opaque. Nonetheless, we separate the simu-
lation cost for the proposed technique into two components:
training time and sample generation time. On a Colab Tesla
P100 GPU, the training time for the C-NF model is roughly 5-
6 hours. However, sample generation is very fast for the C-NF
model once training is over. Generating a Markov chain of 10°
configuration from C-NF + MH takes only 5—7 minutes with
~40% acceptance rate. Due to the short generation time, it can
be utilized for generation of large ensembles of lattice
configurations. The proposed method allows us to extend
the same model to generate lattice samples for any value of
action parameters A in the range [3.0-10]. Therefore, the
proposed method could be efficient when lattice simulation at
multiple A values, especially in the critical region, is required.

VII. CONCLUSION

The critical slowing down problem prevents generating a
large ensemble in the critical region of lattice theory. To
resolve this issue, we employ a conditional normalizing
flow model (C-NF) to efficiently generates proposals for
constructing a Markov chain using the independent MH
algorithm. We train the C-NF model to learn a conditional
distribution over action parameters which enables us to
generate proposals at any action parameter of the theory.
We apply this method to the scalar lattice ¢* theory. We
train the C-NF model on HMC samples in the noncritical
region where simulation cost is low. The trained model can
generates proposal samples for any parameter A. Thus the
proposed method can generate Markov chain for any 4 in
the critical and noncritical regions of the theory.

We experimented with interpolating and extrapola-
ting our model to the critical region. We generate lattice
configurations for multiple A values in the critical region for

both the cases around 40% acceptance rate. We also
compare various observables from our method with that
from HMC simulation and find a good agreement. The
method developed in this paper, can be extended for lattice
simulation of gauge theory.
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APPENDIX: C-NF ARCHITECTURE

We construct a C-NF model by alternate combination of
affine layers as shown in Fig. 1. One such affine layer is
shown here. Parameters of the C-NF architecture for
different lattice sizes are also listed. Note that we have
not conditioned 4 to each coupling layer as the model over-
fit to the trained A values. We use a gap of 0,0,4, and 8 in
6x6,8x8, 12 x 12, and 16 x 16 lattices respectively.

fnput (z;) : L x L] [Conditional Parameter (c)]

—>[ Concatenation (z;, ¢) }(J

Y

Convolution2D (F1, Filter size=3, padding=periodic,
activation=Tanh)

v

Convolution2D (F2, Filter size=3, padding=periodic,
activation=Tanh)

v

Convolution2D (F3, Filter size=1, padding=periodic,
activation=Tanh)

FIG. 9. Architecture of the neural networks s and t of the ith
affine coupling layer.

TABLE 1. Parameters of the C-NF architecture for different
lattice sizes. F1, F2, and F3 are as defined in Fig. 9.

Lattice sizes No. of affine layers F1,F2,F3
6x6 8 16, 16, 2
8 x8 8 32,32,2
12x 12 16 32,32,2
16 x 16 24 16, 16, 2
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