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I discretize axion string configuration coupled to a Dirac fermion, which in the continuum binds a
massless chiral fermion in its core when the winding is one. I show that such a configuration can host one or
more chiral fermions when regulated on the lattice. To realize these chiral fermions I introduce Wilson-like
terms similar to the Wilson term used in lattice domain wall fermions. The number of chiral fermions on the
string jumps as the Wilson-like parameter is varied with respect to the other mass scales in the problem.
A one-loop Feynman diagram is used to demonstrate how anomaly inflow works in this lattice regularized
theory.
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I. INTRODUCTION

In [1], Callan and Harvey demonstrated that fermions
coupled to a domain wall in odd number of dimensions and
vortex defects in even dimensions (2nþ 2) can exhibit
massless chiral edge states bound to the defects at low
energy. For example, the low energy spectrum of a massive
Dirac fermion in 2þ 1 or 4þ 1 dimensions, with a domain
wall profile in its mass, has a single chiral fermion bound to
the domain wall. Similarly, in the even dimensional case
2nþ 2, a Dirac fermion coupled to an axion string exhibits
chiral edge states bound to the core of the string. These
systems are of interest to both high energy [2–6] and
condensed matter physics [7–16].
The chiral edge states living on the defects in both cases

suffer from chiral anomaly when fermion number sym-
metry is gauged and the defect theory by itself violates
current conservation. Callan and Harvey showed that
current conservation is restored by an inflowing current
from the bulk to the defect. This inflowing current can be
computed by integrating out the fermion sufficiently far
away from the defect where the fermion spectrum is
completely gapped.
The continuum construction of chiral fermion edge

states on the domain wall was later used by [17] to realize
chiral fermions on the lattice. This construction of lattice
chiral fermions has the advantage of retaining global chiral
symmetry and has therefore been extensively used in
simulations of QCD where this is a desirable feature.

Interestingly, the construction of a lattice domain wall
fermion is more subtle than the continuum construction of
Callan-Harvey. The subtleties arise due to the presence
of fermion doublers coming from naive discretization of
fermions. With naive discretization, the domain wall carries
equal numbers of right and left moving doublers which
preclude any net chirality on the wall. In order to eliminate
the unwanted doublers, one has to use a Wilson-Dirac
Lagrangian in a domain wall background for the mass
term [17]. For certain values of the Wilson parameter R and
the Dirac mass M one can realize a net imbalance of right
and left moving modes on the wall resulting in a net
chirality.1 Given the subtleties associated with realization of
chiral domain wall fermions, it is interesting to ask how a
lattice discretization of axion strings will alter the chiral
fermion spectrum confined to the string.
Unsurprisingly, it is not just the lattice theory of domain

wall fermions where the presence of fermion doublers
eliminates any net chirality on the wall, naive discretization
of the axion string theory behaves the same way, i.e., there
are equal number of right and left moving doublers on the
string. As a result the string carries no net chirality. In order
to realize a net chirality on the defect I introduce Wilson-
like terms in the Lagrangian to create an imbalance of right
and left moving modes on the string. Before discretizing
space-time it is convenient to write the axion string in terms
of a crossed domain wall configuration as illustrated in the
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1The corresponding bulk theory away from the domain wall
exhibits a topological phase analogous to those observed in Chern
insulators in condensed matter physics [17–20]. The Wilson
parameter in lattice QFT corresponds to the hopping parameter in
Chern insulators and the Dirac mass corresponds to magnetic
polarization [21,22]. These examples, being demonstrative of the
deep ties between lattice fermion field theory and the physics
of topological materials, have inspired several papers in recent
times [23–29].
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next section. This configuration is easier to discretize and
the corresponding Wilson-like terms have a simple form.
A similar crossed domain wall configuration in the con-
tinuum was studied in the context of regulating four
dimensional chiral gauge theories in [30].
As shown in Callan-Harvey [1], for domain wall

fermions, the fermion number current which flows from
the bulk to the boundary in a background electric field
(Goldstone-Wilczek current) [31], can be computed using a
one-loop Feynman diagram. It was shown [19] that a
similar calculation applies for lattice domain wall fermions
in the continuum limit, where the Goldstone-Wilczek
current is computed using the same Feynman diagram as
in the continuum, using lattice perturbation theory. The
Feynman diagram on the lattice computes the winding
number of a map from momentum space, which on the
lattice is a torus, to the Dirac space, which is a sphere. The
result therefore is quantized. The winding number of
this map jumps as a function of the Dirac mass M and
the Wilson parameter R when the bulk fermion propagator
goes gapless. As I show in this paper, a similar calculation
applies to the axion string. The corresponding Goldstone-
Wilczek current is computed using a one-loop Feynman
diagram and the net current exhibits discrete jumps as a
function of the parameters of the theory just as in lattice
domain wall. These discrete changes in the Goldstone-
Wilczek current are necessary to compensate for the
boundary current as the number and chirality of edge
states jump. Furthermore, I find that at certain values of the
Wilson-like parameter, the bulk fermion gap goes to zero
along a two dimensional surface passing through the defect,
coinciding with the discrete jumps in the chiral edge states.
This indicates that the discrete jump in chiral edge states is
accompanied by a phase transition along this two dimen-
sional surface.
The organization of this paper is as follows. I begin with

a brief review of the lattice construction of domain wall
fermions which is followed by axion string analysis in
the continuum. The subsequent section demonstrates that
the axion string configuration is equivalent to a crossed
domain wall configuration which is then discretized.
The corresponding Wilson-like terms are introduced to
engineer chiral edge states on the string and the associated
Goldstone-Wilczek current is computed. This is followed
by a section which discusses possible numerical realiza-
tions of this construction and its relevance to axion
insulators.

II. DOMAIN WALL AND VORTEX STRING

To review the lattice domain wall construction, it is
convenient to first focus on 2þ 1 dimensions (x0; x1; x2)
where a Dirac fermion with a mass defect m ¼ m0ϵðx2Þ for
m0 > 0 exhibits chiral edge states on the defect (domain
wall) at x2 ¼ 0. If this fermion theory is discretized naively,
the low energy spectrum on the wall will carry equal

number of right moving and left moving edge states. This is
caused by fermion doubling as can be seen from the
discretized Euclidean Dirac equation,

�
−iγμ

sinðpμaÞ
a

þ γ2∇2 þm

�
ψðp; x2Þ ¼ 0; ð2:1Þ

where μ takes values 0 and 1, the x0, x1 coordinates have
been Fourier transformed, and ∇2 is the lattice derivative
δx;xþa2

−δx;x−a2
2a when the lattice spacing is a. Since I am

interested in massless chiral edge states on the wall,
I can set

P
μ γμ sinðpμaÞ ¼ 0. As seen from this equation,

the transverse profile for the states located near the corners
of the Brillouin zones p0 ¼ n π

a, p1 ¼ m π
a with n;m ¼ 0; 1

are identical and all of these modes have normalizable
transverse profiles. The modes around the BZ corners
f0; 0g and fπa ; πag are of chirality −1 whereas fπa ; 0g and
f0; πag are of chirality þ1, thus eliminating any net chirality
on the wall. It was shown in [17] that one needs to introduce
a Wilson term, R

2
ψ̄∇2ψ where ∇ is the lattice Laplacian

∇ ¼P2
μ¼0

δx;xþμþδx;x−μ−2δx;x
a2 in the Lagrangian in order to

realize an imbalance between right and left moving modes.
To see how this comes about, one can set R ¼ a. Then the
equation for the transverse profile for the edge states
becomes

ψðx2 þ aÞ ¼ −ðmeffÞψðx2Þ; ð2:2Þ

where meff ¼ ma − 1 − FðpÞ with FðpÞ ¼Pμ¼0;1ð1−
cosðpμaÞÞ. This equation is solved by the ansatz ψ ¼
ð−meffÞx2=a and a normalizable mode exists as long as

2 > m0a − FðpÞ > 0: ð2:3Þ

For 0 < m0a < 2, it is only the states around f0; 0g which
are normalizable. For 2 < m0a < 4, the normalizable states
are centered around f0; πag and fπa ; 0g. Similarly for
4 < m0a < 6, it is the states centered around fπa ; πag which
have normalizable solutions. For m0a > 6 there are no
normalizable chiral edge states on the domain wall. If we
focus just on the zero modes, we see that their number and
chirality jump as a function of the parameter m0a2=R
(or m0a for R ¼ a). The corresponding continuum limit is
obtained by taking a → 0 while holding m0a constant. It
naturally raises the question as to whether the Goldstone-
Wilczek current also jumps as a function of m0a to account
for the current flowing on the boundary as one takes the
continuum limit. In order to understand how the Goldstone-
Wilczek current compensates for the boundary current, one
can gauge the fermion number symmetry and then integrate
out the Wilson-Dirac fermion away from the domain wall
as shown in [19]. This leaves behind a Chern-Simons
theory for the gauge field at low energy. The corresponding
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Chern-Simons coefficient is computed using a Feynman
integral and can be expressed as

c ¼ −i
2

ϵμ0μ1μ2
3!

Z
d3p
ð2πÞ3 Trf½SðpÞ∂μ0SðpÞ

−1�½SðpÞ∂μ1SðpÞ−1�

× ½SðpÞ∂μ2SðpÞ−1�g ð2:4Þ

where S−1ðpÞ is the lattice fermion propagator given by

S−1ðpÞ ¼
X2
μ¼0

i
γμ sinðpμaÞ

a
þmþ r

X2
μ¼1

½cosðpμaÞ − 1�

ð2:5Þ

and the Chern-Simons effective action is Seff ¼ cϵα0α1α2×R
d3xAα0∂α1Aα2 . It was explained in [19] that the Feynman

integral computes the winding number of a map from a
torus (momentum space) to a sphere specified by S−1ðpÞ.
The Chern-Simons level 4πic jumps between 1, −2, and 1
asm0a is varied from 0 < m0a < 2, 2 < m0a < 4 and then
4 < m0a < 6 exactly compensating for the current on the
wall. These jumps in the Chern-Simons level indicate
Chern insulatorlike topological phase transitions within
the bulk away from the domain wall.

A. Continuum analysis of axion string

As discussed in Callan-Harvey [1], besides a domain
wall in odd dimensional Dirac fermion theories, a Dirac
fermion coupled to axion strings in even 2nþ 2 dimen-
sional theories can also exhibit chiral edge states. The
continuum analysis of this was presented in Callan-Harvey
[1] which I briefly review here. I specialize to four
dimensions for this discussion. Note that, in this section
I will use Minkowski metric while reviewing Callan-
Harvey’s calculation. When I discuss the lattice theory
in Sec. III, I will use Euclidean space-time. The continuum
Minkowski Lagrangian for a Dirac fermion coupled to an
axion string in four space-time dimensions is given by

L ¼ Ψ̄ðiΓμ
∂μÞΨ − Ψ̄ðϕ1 − iϕ2Γ̄ÞΨ; ð2:6Þ

where Γ̄ ¼ iΓ0Γ1Γ2Γ3. Here ϕ1 þ iϕ2 ≡ ϕ is the vacuum
expectation value of a complex scalar field, the phase
fluctuations of which correspond to an axion field. Since
I am interested in static axion string configuration, I can
take the phase to wind by 2π around the x1 axis without a
loss of generality. To find the low energy spectrum on the
string I can now write the equation of motion for the
fermion field in the background of axion string as

ðiΓμ
∂μÞΨ ¼ ðϕ1 − iϕ2Γ̄ÞΨ: ð2:7Þ

To look for a massless chiral fermion solution to the
equation of motion (EOM), I set ∂0 ¼ ∂1 ¼ 0, and obtain

ðiΓ2
∂2 þ iΓ3

∂3ÞΨ ¼ ðϕ1 − iϕ2Γ̄ÞΨ: ð2:8Þ

I make a specific choice for gamma matrices for conven-
ience with Γ0 ¼ σ1 ⊗ σ0 where σ0 is the two dimensional
identity matrix and Γi ¼ iσ2 ⊗ σi. Writing this equation in
polar coordinates, x2 ¼ r cos θ, x3 ¼ r sin θ, I look for θ
independent solutions with ∂x2 ¼ cos θ∂r, ∂x3 ¼ sin θ∂r.
Thus, the EOM reduces to

0
BBB@

0 0 i sin θ cos θ

0 0 − cos θ −i sin θ
−i sin θ − cos θ 0 0

cos θ i sin θ 0 0

1
CCCA∂r

�Ψþ
Ψ−

�

¼ fðrÞ

0
BBB@

eiθ 0 0 0

0 eiθ 0 0

0 0 e−iθ 0

0 0 0 e−iθ

1
CCCA
�Ψþ
Ψ−

�
: ð2:9Þ

Here I have used

Ψ ¼
�Ψþ
Ψ−

�

and ϕ ¼ fðrÞeiθ where r is the radial distance from the
center of the string and fðrÞ ¼ jϕj is only a function of
the radial coordinate. The phase of the scalar field winds
uniformly around the x1 axis which produces the corre-
sponding azimuthal angular dependence of eiθ. This
equation is solved by the following ansatz:�

0

Ψ−

�
¼ ηe−

R
ρ

0
fðσÞdσ

�Ψþ
0

�
¼ −iΓ2

�
0

Ψ−

�
¼ −iΓ2ηe

−
R

ρ

0
fðσÞdσ; ð2:10Þ

where Γintη ¼ −η, Γ̄η ¼ η, and Γint measures the chirality
of the solution with Γint ¼ −Γ0Γ1. For the particular choice
of gamma matrices here, one can rewrite the solution as

�Ψþ
Ψ−

�
¼

0
BBB@

−1
1

1

1

1
CCCAe−

R
fðσÞdσ: ð2:11Þ

Clearly this massless chiral fermion suffers from anomaly
which leads to nonconservation of fermion number current
on the string in a background electric field. This is
remedied by the inflowing Goldstone-Wilczek current
which can be computed in perturbation theory away from
the vortex core. To do this computation I parametrize
ϕ1 þ iϕ2 as ðvþ δvÞeiα where δv and α vary slowly in
space. I can then expand the Lagrangian in α and δv to get
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L ¼ Ψ̄ðiΓμ
∂μ − vÞΨþ iαvΨ̄ Γ̄ Ψ − δvΨ̄Ψþ � � � : ð2:12Þ

I can now attempt to compute the Goldstone Wilczek
current by treating δv and α as perturbation. The corre-
sponding fermion propagator in momentum space is
given by

SF ¼ iðΓμpμ þ fÞ
p2 − f2 þ iϵ

: ð2:13Þ

Gauging the fermion number symmetry, the fermion
number current can be computed up to leading order in
∂σα
f using the Feynman diagram in Fig. 1 as [1],

J μ ¼ hΨ̄ΓμΨi ¼ −
1

8π2
ϵμνβσFνβ∂σα: ð2:14Þ

A chiral edge state of negative chirality on the string carries
a current of − E1

2π when an electric field E1 is applied in the
direction of the string. To see how current conservation
works, I can substitute the smooth axion string (vortex)
configuration with α ¼ θ where θ is the azimuthal coor-
dinate θ ¼ tan−1ðx3x2Þ. For this field configuration all com-
ponents of the current density in Eq. (2.14) is zero except
the radial component. The net current flowing to the string
is then given by Z

J rðrdθÞ ¼ −
1

2π
E1 ð2:15Þ

compensating for the current flowing on the string.

B. Crossed domain wall

Before I discuss the lattice construction of axion string
edge states, I will in this section demonstrate that an axion
string configuration in the continuum can be deformed into
a crossed domain wall configuration. The motivation to
relate the two configurations arises from the observation
that the crossed domain wall is relatively easy to discretize.
As I will show, the crossed domain wall carries the same

winding as the vortex configuration and hosts a chiral edge
state confined to it. The latter is not surprising since the
configurations carry the same winding in ϕ1 þ iϕ2. The
Goldstone-Wilczek current is only sensitive to this wind-
ing, ensuring that the low energy fermion spectrum of the
two configurations match. The crossed domain wall con-
figuration I will consider will involve a domain wall in the
field ϕ1 and another in ϕ2. Note the most general form for
the crossed domain wall configuration is

ϕ1 ¼ m1ϵðx2Þ þ δm1; ϕ2 ¼ m2ϵðx3Þ þ δm2 ð2:16Þ

with m1 > δm1 > 0, m2 > δm2 > 0. As we will see, the
hierarchy between m1 and δm1 as well as m2 and δm2, is
important in order to obtain a nontrivial winding and a
localized chiral edge state. If the hierarchy is reversed as in
δm1 > m1 or δm2 > m2, the chiral edge state is lost and the
winding of the domain wall configuration goes to zero. If I
define angular coordinate θ such that the four quadrants
fx2 > 0; x3 > 0g, fx2 < 0; x3 > 0g, fx2 < 0; x3 < 0g, and
fx2 > 0; x3 < 0g map to π

2
> θ > 0, π > θ > π

2
,

3π
2
> θ > π, and 2π > θ > 3π

2
, then I can write

ϕ1 ¼ m1

cos θ
j cos θj þ δm1; ð2:17Þ

ϕ2 ¼ m2

sin θ
j sin θj þ δm2: ð2:18Þ

I can reparametrize ϕ1 þ iϕ2 ¼ hðcos αþ i sin αÞ such that

tan α ¼
m2

sin θ
j sin θj þ δm2

m1
cos θ
j cos θj þ δm1

; ð2:19Þ

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m1

cos θ
j cos θj þ δm1

�
2

þ
�
m2

sin θ
j sin θj þ δm2

�
2

s
:

ð2:20Þ

Denoting αðθ ¼ 0Þ≡ α0, it is easy to see that as θ is varied
from 0 to 2π, α goes from α0 to α0 þ 2π as long as
m1 > δm1, m2 > δm2. Then, α winds in the azimuthal
direction just as one expects in a vortex. In other words

Z
2π

0

1

r
ð∂θαÞrdθ ¼

Z
α0þ2π

α0

dα ¼ 2π: ð2:21Þ

Of course I can choose to deform the crossed domain wall
profiles slightly by replacing the step functions ϵðx2Þ and
ϵðx3Þ by tanhðx2Þ and tanhðx3Þ. This however does not
affect the winding of α. In fact, the vortex configuration
used in the previous section fðρÞeiθ can simply be
deformed into a crossed domain wall configuration by

FIG. 1. The one-loop Feynman diagram for the Goldstone-
Wilczek current.
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choosing δm1 ¼ δm2 ¼ 0 and m1 ¼ m2 ¼ fðρ → ∞Þ. In
this case we have tanðαÞ ¼ tanðθÞ

j tan θj and h ¼ fð∞Þ.
I will now look for chiral edge state solutions confined to

the crossed domain wall defect. For this I consider the
equation of motion of the fermion coupled to this crossed
domain wall, setting ∂0 ¼ ∂1 ¼ 0

0
BBB@

0 0 i∂3 ∂2

0 0 −∂2 −i∂3
−i∂3 −∂2 0 0

∂2 i∂3 0 0

1
CCCA
�Ψþ
Ψ−

�

¼

0
BBB@

m 0 0 0

0 m 0 0

0 0 m� 0

0 0 0 m�

1
CCCA
�Ψþ
Ψ−

�
ð2:22Þ

where I have used m¼m1ϵðx2Þþδm1þ iðm2ϵðx3Þþδm2Þ.
Defining �m1 þ δm1 ¼ m�

1 , �m2 þ δm2 ¼ m�
2 it is easy

to see that this equation is solved by

�Ψþ
Ψ−

�
¼

0
BBB@

−1
1

1

1

1
CCCAκðx2; x3Þ ð2:23Þ

where

κ¼ e−m
þ
1
x2−mþ

2
x3θðx2Þθðx3Þþe−m

−
1
x2−mþ

2
x3θð−x2Þθðx3Þ

þe−m
−
1
x2−m−

2
x3θð−x2Þθð−x3Þþe−m

þ
1
x2−m−

2
x3θðx2Þθð−x3Þ:

ð2:24Þ

Again, note that the solution is normalizable only when
m1 > δm1 > 0, m2 > δm2 > 0. In the limit of δm1 ¼
δm2 ¼ 0 and m1 ¼ m2 ¼ f∞, the solution is

κ ¼ e−f∞ðjx2jþjx3jÞ: ð2:25Þ

We therefore see that a crossed domain wall configuration
carries the same winding number as in the axion string
configuration. The massless edge state spectrum of the two
defects are also identical, there being a chiral edge state of
the same chirality confined to the core in both cases.

III. DISCRETIZING SPACE-TIME

I now consider the crossed domain wall on discrete
Euclidean space-time and look for chiral edge states. I
choose a square lattice such that aμ, the lattice spacing in xμ

direction, is aμ ¼ a. The equation of motion for the fermion
in the background of a domain wall with naive discretiza-
tion looks like

−
iΓE

μ sinðpμaÞ
a

Ψþ ðΓE
2∇2 þ ΓE

3∇3ÞΨ ¼ −ðϕ1 − iϕ2Γ̄ÞΨ;
ð3:1Þ

where ΓE
μ are Euclidean gamma matrices ΓE

0 ¼ Γ0,
ΓE
i ¼ −iΓi, ∇2, ∇3 are lattice derivatives given by

∇2=3 ¼
δx;xþa2=3 − δx;x−a2=3

2a2=3
; ð3:2Þ

and the variable μ takes values 0, 1. Note that Γ̄ is defined in
the text below Eq. (2.6). Again I have Fourier transformed
the coordinates x0 and x1. In order to solve for massless
states, I can expand the momenta around the corners of the
Brillouin zone (BZ), i.e., fp0a ¼ 0; p1a ¼ 0g, fp0a ¼ 0;
p1a ¼ πg, fp0a ¼ π; p1a ¼ 0g, and fp0a ¼ π; p1a ¼ πg.
With an ansatz of the form

ψ ¼

0
BBB@

−1
1

1

1

1
CCCAφðp0; p1Þχðx2; x3Þ; ð3:3Þ

the equation for the transverse profile is

∇2χ ¼ −ϕ1χ ⇒ χðx2 þ aÞ − χðx2 − aÞ ¼ −2aϕ1χðx2Þ;
∇3χ ¼ −ϕ2χ ⇒ χðx3 þ aÞ − χðx3 − aÞ ¼ −2aϕ2χðx3Þ:

ð3:4Þ

These two equations are solved by χðx2; x3Þ ¼ zx22 z
x3
3 where

z2=3 ¼
−2aϕ1=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2ϕ2

1=2 þ 4
q
2

: ð3:5Þ

So, it is clear that the conditions of normalizability for all
the doublers are the same and as a result we do not have a
net chirality on the string. In order to engineer net chirality
on the string I will have to introduce Wilson-like terms in
the Lagrangian. For this purpose, I propose adding to the
Euclidean Lagrangian the following terms: R

2
Ψ̄ð∇2

2 þ
∇2

intÞΨ − i R
2
Ψ̄ Γ̄ð∇2

3 þ∇2
intÞΨ where ∇2

int ¼ ∇2
0 þ∇2

1.
This shifts ϕ1 to ϕ1 þ R

2a2 ð∇2
2 þ∇2

intÞ and ϕ2 to ϕ2þ
R
2a2 ð∇2

3 þ∇2
intÞ. Thus the equation of motion with an ansatz

as in Eq. (3.3) is

∇2χ ¼ −
�
ϕ1 þ

R
2
∇2

2 þ
R
2a2

X
μ

ð2 cosðpμaÞ − 2Þ
�
χ;

∇3χ ¼ −
�
ϕ2 þ

R
2
∇2

3 þ
R
2a2

X
μ

ð2 cosðpμaÞ − 2Þ
�
χ:

ð3:6Þ
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I set R ¼ a, and solve for the transverse profile with the
same ansatz as before, i.e.,

χðx2; x3Þ ¼ zx22 z
x3
3 : ð3:7Þ

The solutions are given by2

za2 ¼ −
�
aϕ1 − 1þ

X
μ¼0;1

ðcosðpμaÞ − 1Þ
�
;

za3 ¼ −
�
aϕ2 − 1þ

X
μ¼0;1

ðcosðpμaÞ − 1Þ
�
: ð3:8Þ

I now impose δm1 ¼ 0 and δm2 ¼ 0 and obtain the
condition of normalizability for the different doublers. If
I focus on the corners of the BZ, the mode fp0¼0;p1¼0g
is normalizable for 0 < m1a < 2 and 0 < m2a < 2. The
modes fp0 ¼ 0; p1 ¼ π

ag and fp0 ¼ π
a ; p1 ¼ 0g are nor-

malizable for 2 < m1a < 4 and 2 < m2a < 4. Similarly,
the mode fp0¼ π

a;p1¼ π
ag is normalizable for 4 < m1a < 6

and 4 < m2a < 6. There are no normalizable solutions for
m1=2a > 6. I list the number and chirality of normalizable
edge state solutions in Table I for various values of the
parameters m1a and m2a. In Fig. 2, I plot the values of the
parameters for which one finds chiral edge states solutions
on the crossed domain wall defect.

A. Goldstone-Wilczek current

Having obtained the edge state solutions for the crossed
domain wall configuration on the lattice, I will now proceed
to compute the Goldstone-Wilczek current while taking the
continuum limit. I will begin with the Euclidean lattice
Lagrangian

LE ¼ Ψ̄ðΓE
μ∇μÞΨþ Ψ̄

�
ϕ1 þ

R
2a2

ð∇2
2 þ∇2

intÞ
�
Ψ

− iΨ̄ Γ̄
�
ϕ2 þ

R
2a2

ð∇2
3 þ∇2

intÞ
�
Ψ: ð3:9Þ

At this point I will partition this Lagrangian in two parts
and discuss them in order:

LE ¼ L1
E þ L2

E; ð3:10Þ

where

L1
E ¼ Ψ̄ðΓE

μ∇μÞΨþ R
2a2

Ψ̄ð∇2
2 þ∇2

intÞΨ

− i
R
2a2

Ψ̄ Γ̄ð∇2
3 þ∇2

intÞΨ ð3:11Þ

contains the kinetic term and the Wilson-like term whereas

L2
E ¼ ϕ1Ψ̄Ψ − iϕ2Ψ̄ Γ̄ Ψ ð3:12Þ

contains the two mass terms involving ϕ1 and ϕ2. Let us
first consider L1

E. In momentum space I can write the
corresponding action as

S1
E ¼

Z
d4p
ð2πÞ4

"
Ψ̄ðpÞ

�
−iΓE

μ
sinðapμÞ

a

�
ΨðpÞ

þ Ψ̄ðpÞ
 
R
a2
X

i¼0;1;2

ðcosðpiaÞ − 1Þ
!
ΨðpÞ

− iΨ̄ðpÞΓ̄
 
R
a2
X

i¼0;1;3

ðcosðpiaÞ − 1Þ
!
ΨðpÞ

#
: ð3:13Þ

The momentum integration in Eq. (3.13) is over one
Brillouin zone. It is convenient to divide the momentum
space integral around the BZ corners. Let us denote the

FIG. 2. The light red, green, and yellow regions indicate the
values of the parameters of the crossed domain wall, m1 and m2,
for which there exist chiral edge states. The net chirality for the
relevant parameters is also indicated inside the colored regions. In
the region outside of the colored boxes, there are no chiral edge
states confined to the defect.

TABLE I. Number and chirality of edge states.

2>m1a>0 4>m1a>2 6>m1a>4 m1a>6

2>m2a>0 −1 0 0 0
4>m2a>2 0 2 0 0
6>m2a>4 0 0 −1 0
m2a>6 0 0 0 0

2Note that one could instead introduce a standard Wilson term
R
2
Ψ̄∇2Ψ and engineer chiral edge states by tuning ϕ1, ϕ2, and R

appropriately. In this case the equation of motion takes the
form ∇2χ ¼ −ðϕ1 þ R

2
∇2

2 þ R
2
∇2

3 þ R
2a2
P

μð2 cosðpμaÞ − 2ÞÞχ,
∇3χ ¼ −ϕ2χ. The analysis of these equations and the corre-
sponding Goldstone-Wilczek current is slightly more subtle and
I leave it for future work.
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fermion field ΨðpÞ near the BZ corner p ¼ π
a fi; j; k; lg as ψ i;j;k;l where i; j; k; l can either be 0 or 1. I can now split the

action over momentum integrals around the BZ corners by expanding in small p as

S1
E ¼ −

Z X
i;j;k;l

ψ̄ i;j;k;lðpÞðið−1Þiδμ;0ΓE
μpμ þ ið−1Þjδμ;1ΓE

μpμ þ ið−1Þkδμ;2ΓE
μpμ þ ið−1Þlδμ;3ΓE

μpμÞψ i;j;k;lðpÞ

þ
Z X

i;j;k;l

ψ̄ i;j;k;lðpÞ
��

−2
R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δk;1

�
−iΓ̄

�
−2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δl;1

��
ψ i;j;k;lðpÞ: ð3:14Þ

Thus I have rewritten the Lagrangian in terms of 16 flavors of fermions. I can redefine the gamma matrices for these
different flavors so as to absorb the factor of ð−1Þi=j=k=l in the definition of the gamma matrices using similarity
transformation. The redefined gamma matrices for the flavor fi; j; k; lg are given by

Pi;j;k;lΓE
0P

−1
i;j;k;l ¼ ð−1ÞiΓE

0 ; Pi;j;k;lΓE
1P

−1
i;j;k;l ¼ ð−1ÞjΓE

1 ;

Pi;j;k;lΓE
2P

−1
i;j;k;l ¼ ð−1ÞkΓE

2 ; Pi;j;k;lΓE
3P

−1
i;j;k;l ¼ ð−1ÞlΓE

3 : ð3:15Þ

This similarity transform takes the Γ̄ matrix to

Γ̄i;j;k;l ¼ ð−1ÞiþjþkþlΓ̄: ð3:16Þ

Therefore the action reduces to

S1
E ¼

Z X
i;j;k;l

ψ̄ i;j;k;lðpÞ
�
−iΓE

μpμ þ
�
−2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δk;1

��
ψ i;j;k;lðpÞ

−
Z X

i;j;k;l

ψ̄ i;j;k;lðpÞ
�
iΓ̄i;j;k;l

�
−2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δl;1

��
ψ i;j;k;lðpÞ: ð3:17Þ

Fourier transforming back to position space I rewrite this action as

S1
E ¼

Z X
i;j;k;l

ψ̄ i;j;k;lðxÞ
�
ΓE
μ∂μ þ

�
−2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δk;1

��
ψ i;j;k;lðxÞ

−
Z X

i;j;k;l

ψ̄ i;j;k;lðxÞ
�
iΓ̄i;j;k;l

�
−2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δl;1

��
ψ i;j;k;lðxÞ: ð3:18Þ

Let us now consider the second piece of the LagrangianL2
E.

When I transform to momentum space the corresponding
action integral can be written as

S2
E ¼

Z
d4p
ð2πÞ4

Z
d4k
ð2πÞ4 Ψ̄ðpÞðϕ1ðp − kÞ

− iΓ̄ϕ2ðp − kÞÞΨðkÞ: ð3:19Þ

I can again expand p and k about the corners of the BZ
assuming that the spatial variation in ϕ1 and ϕ2 takes place
over length scales much longer than the lattice spacing.
This is achievable by giving the domain walls some width
larger than the lattice spacing. I can now write p ¼ Qþ δp
and k ¼ Qþ δk where Q stands for the momentum
corresponding to the BZ corner. Then the action of
Eq. (3.19) splits into 16 flavor pieces with

S2
E ¼

X
i;j;k;l

Z
d4δp
ð2πÞ4

Z
d4δk
ð2πÞ4 Ψ̄i;j;k;lðδpÞðϕ1ðδp − δkÞ

− iΓ̄ϕ2ðδp − δkÞÞΨi;j;k;lðδkÞ: ð3:20Þ

In coordinate space, this action turns into

S2
E ¼

X
i;j;k;l

Z
d4xΨ̄i;j;k;lðxÞðϕ1ðxÞ − iΓ̄ϕ2ðxÞÞΨi;j;k;lðxÞ:

ð3:21Þ

I can now proceed to compute the vector current for the
lattice Lagrangian of Eq. (3.9) in the presence of a back-
ground gauge field in a crossed domain wall profile for ϕ1

and ϕ2. In order to compute this I combine the actions in
(3.18) and (3.21)
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SE ¼
Z

d4x
X
i;j;k;l

ψ̄ i;j;k;l

�
ΓE
μ ∂μ þ

�
ϕ1 − 2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δk;1

�
−iΓ̄i;j;k;l

�
ϕ2 − 2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δl;1

��
ψ i;j;k;l:

ð3:22Þ

For every flavor of fermion I can combine the Wilson-like terms and the fermion-scalar coupling to rewrite the action as

SE ¼
Z X

i;j;k;l

ψ̄ i;j;k;lðΓE
μ∂μÞψ i;j;k;l þ

Z X
i;j;k;l

fi;j;k;lψ̄ i;j;k;lψ i;j;k;l − i
Z X

i;j;k;l

ð−1Þiþjþkþlθi;j;k;lfi;j;k;lψ̄ i;j;k;lΓ̄ψ i;j;k;l ð3:23Þ

where

fi;j;k;l ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϕ1 − 2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δk;1

�
2

þ
�
ϕ2 − 2

R
a2

δi;1 − 2
R
a2

δj;1 − 2
R
a2

δl;1

�
2

s
ð3:24Þ

and

θi;j;k;l ¼ tan−1
�
ð−1Þiþjþkþl

�
ϕ2 − 2 R

a2 δi;1 − 2 R
a2 δj;1 − 2 R

a2 δl;1
ϕ1 − 2 R

a2 δi;1 − 2 R
a2 δj;1 − 2 R

a2 δk;1

��
: ð3:25Þ

This now looks like 16 copies of the continuum Callan-
Harvey Lagrangian with 16 different spatially varying mass
terms. Now I set R ¼ a as before. For each flavor of
fermion, I can now compute the current, treating θi;j;k;l as a
background field while writing the fermion propagator as

Si;j;k;l ¼
ðΓE

μpμ þ fi;j;k;lÞ
p2 þ f2i;j;k;l

ð3:26Þ

and using the same Feynman diagram as in Fig. 1. For

fi;j;k;l ≫ ∂νθi;j;k;l, up to leading order in ∂νθi;j;k;l
fi;j;k;l

expansion,

the current for the flavor fi; j; k; lg is given by

J i;j;k;l
μ ¼ −

ϵμνλρ
8π2

∂νθi;j;k;lFλρ ð3:27Þ

which leads to the net current

J μ ¼
X
i;j;k;l

J i;j;k;l
μ ¼ −

X
i;j;k;l

ϵμνλρ
8π2

∂νθi;j;k;lFλρ: ð3:28Þ

Given this expression for the current I can now verify if the
integral of the divergence of this current is consistent with
the number of chiral edge states on the string so as to ensure
current conservation. In order to compute the net current
flowing to the string from the bulk, I need to first obtain the
various windings seen by the different flavors, i.e., in θi;j;k;l.
Note that the overall sign of the winding will depend on the
factor of ð−1Þiþjþkþl appearing in the definition θi;j;k;l in
Eq. (3.25). The winding in θi;j;k;l for a particular flavor can
be obtained by computing

1

2π

Z
2π

0

1

r
ð∂θθi;j;k;lÞr dθ ð3:29Þ

which is always an integer. For a crossed domain wall
configuration the result is a function of the domain wall
heights ajϕ1j and ajϕ2j. As an example let us consider
m1 ¼ m2 ¼ m and δm1 ¼ δm2 ¼ 0. The corresponding
windings for the different flavors are shown in Table II.
For 0 < am < 2, a winding of 1 is found for the flavor
ψ0;0;0;0. The winding is zero for all the other flavors.
Therefore the net current is

TABLE II. Winding in θi;j;k;l as a function of the parameter ma
for the 16 different flavors. These windings are used to compute
the net radial Goldstone-Wilczek current.

fi; j; k; lg 2 > ma > 0 4 > ma > 2 6 > ma > 4 ma > 6

f0; 0; 0; 0g 1 1 1 1
f1; 0; 0; 0g 0 −1 −1 −1
f0; 1; 0; 0g 0 −1 −1 −1
f0; 0; 1; 0g 0 −1 −1 −1
f0; 0; 0; 1g 0 −1 −1 −1
f1; 1; 0; 0g 0 0 1 1
f0; 1; 1; 0g 0 0 1 1
f0; 0; 1; 1g 0 1 1 1
f1; 0; 1; 0g 0 0 1 1
f0; 1; 0; 1g 0 0 1 1
f1; 0; 0; 1g 0 0 1 1
f1; 1; 1; 0g 0 0 0 −1
f1; 1; 0; 1g 0 0 0 −1
f1; 0; 1; 1g 0 0 −1 −1
f0; 1; 1; 1g 0 0 −1 −1
f1; 1; 1; 1g 0 0 0 1
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Z
rdθ

X
i;j;k;l

J i;j;k;l
r ¼ −

E1

2π
: ð3:30Þ

This result is consistent with there being one normalizable
chiral zero mode of chirality−1 on the string corresponding
to fp0 ¼ 0; p1 ¼ 0g for 0 < am < 2 as can be seen from
Eq. (3.8) or Table I. For 2 < am < 4 the flavors ψ0;0;0;0 and
ψ0;0;1;1 see a winding of þ1 whereas the flavors ψ1;0;0;0,
ψ0;1;0;0, ψ0;0;1;0, ψ0;0;0;1 see a winding of −1. The rest of the
flavors do not see any winding. Therefore the net current is

Z
rdθ

X
i;j;k;l

J i;j;k;l
r ¼ E1

π
: ð3:31Þ

This is consistent with the fact that for 2 < am < 4, there
are twoþ1 chirality modes on the wall, i.e., fp0¼0;p1¼π

ag
and fp0 ¼ π

a ; p1 ¼ 0g. Similarly, for 4 < am < 6, there
are seven flavors which see a positive winding ofþ1. These
are ψ0;0;0;0, ψ0;0;1;1, ψ0;1;1;0, ψ1;1;0;0, ψ1;0;0;1, ψ0;1;0;1, ψ1;0;1;0.
Similarly, there are six flavors which see a winding of −1
and these are ψ1;0;0;0, ψ0;1;0;0, ψ0;0;1;0, ψ0;0;0;1, ψ0;1;1;1,
ψ1;0;1;1. The other flavors do not see any net winding.
Therefore the net current for this case is

Z
rdθ

X
i;j;k;l

J i;j;k;l
r ¼ −

E1

2π
: ð3:32Þ

This current is consistent with there being a single normal-
izable chiral zero mode of −1 chirality on the string, i.e., the
mode fp1 ¼ π

a ; p4 ¼ π
ag. For am > 6, all the 16 flavors see

a winding, with eight of them seeing a winding of þ1 and
the rest −1. Therefore the net current is zero which is
consistent with there being no normalizable edge states for
ma > 6. In Table III I list the Goldstone-Wilczek current as
a function of the parameterma for the crossed domain wall
configuration.

B. Crossed domain wall with unequal domain
wall heights

In the previous discussion I concentrated on m1 ¼
m2 ¼ m and δm1 ¼ δm2 ¼ 0. One can repeat the analysis
of the Goldstone-Wilczek current relaxing these conditions
and it is easy to see that the corresponding current inflow
compensates for the boundary current as required by the
number and chirality of the edge modes listed in Table I.

In this subsection, I will allow m1 ≠ m2 while holding
δm1 ¼ δm2 ¼ 0 and analyze the spectrum of the 16 differ-
ent flavors in the Lagrangian of Eq. (3.22) for R ¼ a. I
define

aϕ̃1 ¼ aϕ1 − 2δi;1 − 2δj;1 − 2δk;1;

aϕ̃2 ¼ aϕ2 − 2δi;1 − 2δj;1 − 2δl;1: ð3:33Þ

Note that ϕ̃1 and ϕ̃2 act as gaps for the different flavors and
are constants away from the domain wall in ϕ1 and ϕ2.
More specifically, the gap for a particular flavor is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̃2
1 þ ϕ̃2

2

q
. It is interesting to explore the behavior of the

gap and its variation in space as one changes the parameters
in the theory. With 2 > am1 > 0, the gap aϕ̃1 passes
through zero along the x2 ¼ 0 domain wall, for two of
the flavors ψ0;0;0;0 and ψ0;0;0;1. For the other 14 flavors ϕ̃1

does not pass through zero anywhere in space as long as
2 > am1 > 0. If I now consider the behavior of aϕ̃2, I find
that for all values of am2, aϕ̃2 for the flavor ψ0;0;0;0 is
nonzero along the entire x2 ¼ 0 domain wall, except at the
point x3 ¼ 0. The situation for the other flavor ψ0;0;0;1 is
slightly different. For 0 < am2 < 2, aϕ̃2 for ψ0;0;0;1 is
nonzero in all of space. When am2 ¼ 2, however, aϕ̃2

passes through zero, along the x3 > 0 surface of the domain
wall at x2 ¼ 0. Therefore the spectrum of the ψ0;0;0;1 flavor
goes gapless along a half-plane of the domain wall at
x2 ¼ 0 when am2 ¼ 2. As am2 > 0, the gap for this flavor
passes through zero only at x2 ¼ 0, x3 ¼ 0 just as in the
case of the flavor ψ0;0;0;0. aϕ̃1 and aϕ̃2 does not pass
through zero for any of the other flavors for 2 > am1 > 0.
As I increase am1, several other flavors go gapless along
the positive half of the domain wall at x2 ¼ 0 as am2

reaches 2, 4, and 6. In Table IV I show for which flavors the
gap passes through zero along the entire x3 > 0 region of
the domain wall at x2 ¼ 0. A similar analysis can be done
for the domain wall at x3 ¼ 0 where the gaps for the
different flavors will pass through zero when am1 reaches
2, 4, and 6 for various values of am2. Note that, the
appearance of this surface along which the gap for certain
flavors goes to zero coincides with the boundaries of the
regions containing chiral edge states in Fig. 2. Since
fermion gap closing is typically associated with phase
transitions, we can expect the boundaries in Fig. 2 to
correspond to phase transitions as well.

IV. DISCUSSION

A. Vortex configuration

Although the crossed domain wall configuration and
the vortex axion string carry the same winding and the
spectrum of massless states are analogous, the details of the
two systems differ. In particular, the range of the Wilson
parameters and the gaps ϕ1 and ϕ2 for which one finds 1, 2,

TABLE III. Net Goldstone-Wilczek current in units of E1

2π. The
current is obtained by taking into account the windings of
different flavors as listed in Table II.

2 > ma > 0 4 > ma > 2 6 > ma > 4 ma > 6

1 −2 1 0
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and 1 chiral edge states on the defect, corresponding to
the 4 different doublers, is expected to be different for the
crossed domain wall defect and the vortex. Moreover, the
radial profile for the edge states in the discretized vortex
configuration will be different from the radial profile
obtained for the crossed domain wall configuration. The
difference in the radial profile will arise from the fact that
the variation in ϕ1 and ϕ2 in a vortex configuration is
uniform in all of space as opposed to that in a crossed
domain wall where ϕ1 and ϕ2 change rather rapidly along
two surfaces while remaining constant in the rest of the
bulk. Similarly, in a vortex configuration one will find
surfaces along which the gap corresponding to different
flavors will pass through zero in analogy with the dis-
cussion in Sec. III B. Of course, the range of the parameters
for which the gap will pass through zero will be different
from those obtained in Table IV.

B. Finite volume lattice construction

The construction of discretized axion string edge states
pursued in this paper applies to infinite volume lattices.
It would be interesting to implement this construction
numerically which will inevitably involve a finite volume
lattice. Since it would be impossible to create a single
vortex of winding one in a box, one can consider a vortex
and an antivortex or a vortex loop geometry so that there is
no net winding in the system. The vortex and the antivortex
will host chiral edge states of opposite chirality. The
number of these chiral edge states will of course depend
on the ratio of the scalar vacuum expectation value to that of
theWilson parameter. This finite volume system will have a
net zero chirality. The edge states will acquire a mass which
is going to be exponentially suppressed in the distance
between the vortex and the antivortex or the size of the
axion loop.
Implementing the crossed domain wall configuration in a

finite volume, on the other hand will involve two vortices
and two antivortices corresponding to a wall and an
antiwall in x2 and x3. The crossed domain wall configu-
rations in question are ϕ1 ¼ m1ðϵðx2Þ þ ϵðL − x2ÞÞ,
ϕ2 ¼ m2ðϵðx3Þ þ ϵðL − x3ÞÞ, such that the domain wall
and antidomain walls are at a distance L apart. If the defects

at fx2 ¼ 0; x3 ¼ 0g and fx2 ¼ L; x3 ¼ Lg carry a winding
of 1 in ϕ1 þ iϕ2, the ones at fx2 ¼ 0; x3 ¼ Lg and
fx2 ¼ L; x3 ¼ 0g carry a winding of −1. Then, these
defects will carry chiral edge states with a net chiral
imbalance provided m1 and m2 and the Wilson-like
parameters are in the appropriate range as discussed in
the paper. Locally near each of the crossed domain wall
defects one will observe an inflowing or outflowing current
depending on the number and chirality of zero modes on
the defect.

C. Axion insulator

The continuum Callan-Harvey example of Dirac fer-
mions coupled to an axion field has analogs in condensed
matter systems known as axion insulators. To understand
the connection consider the four band Weyl semimetal
Hamiltonian discussed in [13]

H ¼ vF
X3
i¼1

Γið−i∂i − eAi − qiΓÞ − eA0; ð4:1Þ

where Γi are Dirac matrices and Γ is the chirality operator
with the Dirac space being constructed from spin and
pseudospin degrees of freedom [32]. Aμ stands for the
vector gauge field and qi is a vector meant to shift the
gapless points away from zero momentum. The Dirac
matrices can be taken to be Γi ¼ τ3 ⊗ σi and Γ ¼ τ3 ⊗ σ0
with commutation relations ½Γi;Γj� ¼ 2δij and ½Γi;Γ� ¼ 0.
Setting the vector gauge field to zero, it is easy to see that
the low energy spectrum consists of left-handed modes Γ ¼
þ1 with HþðkÞ ¼ þvFσ:ðk − qÞ and right-handed modes
Γ ¼ −1 with H−ðkÞ ¼ −vFσ:ðkþ qÞ. The points k ¼ q
and k ¼ −q are called Weyl points. Expanding momenta
around the Weyl points, one ends up with the Hamiltonian
of a free Dirac fermion with chiral symmetry. Interestingly,
as described in [13], one can design four fermi interactions
that couple these two Weyl points in such a way so as to
drive dynamical chiral symmetry breaking which gaps
out the spectrum. This is called axion insulator and the
corresponding Hamiltonian can be written as

TABLE IV. The flavors for which the gap passes through zero along a surface in the region x3 > 0 at x2 ¼ 0 (along the domain wall)
when m2a ¼ 2; 4; 6.

2 > m1a > 0 4 > m1a > 2 6 > m1a > 4 m1a > 6

m2a ¼ 2 ψ0;0;0;1 ψ1;0;0;0;ψ0;1;0;0;ψ0;0;0;1;ψ0;0;1;1

ψ1;0;0;0;ψ0;1;0;0 ψ1;0;0;0;ψ1;0;1;0
ψ0;0;0;1;ψ1;0;1;0; ψ0;1;0;0;ψ0;1;1;0
ψ0;1;1;0;ψ0;0;1;1 ψ0;0;0;1;ψ0;0;1;1

m2a ¼ 4 ✗ ψ1;0;0;1;ψ0;1;0;1

ψ1;0;0;1;ψ0;1;0;1 ψ1;1;0;0;ψ1;1;1;0
ψ1;0;1;1;ψ0;1;1;1 ψ1;0;0;1;ψ1;0;1;1

ψ1;1;0;0 ψ0;1;0;1;ψ0;1;1;1

m2a ¼ 6 ✗ ✗ ψ1;1;0;1 ψ1;1;0;1;ψ1;1;1;1

SRIMOYEE SEN PHYS. REV. D 107, 014509 (2023)

014509-10



H ¼
�−iσ · ∂ σ0Δ

σ0Δ� iσ · ∂

�
; ð4:2Þ

whereΔ is the auxiliary field whose expectation value drives
spontaneous breaking of chiral symmetry. The similarity
with Callan-Harvey’s axion-fermion Lagrangian is now
manifest. In the presence of a nonzero vacuum expectation
value for Δ, its phase serves as the axion field. A vortex in
Δ will then serve as an axion string. As outlined in [16]
this can be engineered by turning on an axial gauge field
A5 constructed using spin-orbit coupling which turns the
Hamiltonian of (4.2) into

H ¼
�
σ · ð−i∂ −A5Þ σ0Δ

σ0Δ� σ · ði∂ −A5Þ

�
: ð4:3Þ

The corresponding effective Hamiltonian for the auxiliary
field can be written using gauge invariance and resembles
Hamiltonian of a charge 2 Abelian Higgs model

HΔ ¼ jð∂ − 2A5ÞΔj2 þ � � � : ð4:4Þ

Turning on a background axial magnetic field therefore
creates vortex lines in Δ causing its phase to twist. This
creates the axion string background of Callan-Harvey.
Substituting the vortex background in the Hamiltonian of
Eq. (4.2) one obtains chiral edge state solutions.
The construction of axion insulator described above

mimics the physics of the Callan-Harvey continuummodel.
It will be interesting to construct axion insulator models
which mimic the behavior of the lattice axion string
analyzed in this paper. The model of axion string discussed
in [16] can engineer n chiral fermions on the string by
engineering a winding n vortex. The corresponding Hall
current is n times the Hall current for a unit winding vortex.
In the lattice axion string model constructed in this paper
one does not need a winding two string to obtain two chiral
fermions. Awinding one vortex can gives rise to two chiral
fermions as long as the Wilson parameter is adjusted to be
within a certain range as discussed in previous sections of
this paper. If axion insulators can be made to mimic the
lattice axion string of this paper, then they will be able to
support two chiral edge states and a Hall current of two
units with a single winding vortex. Whether such a
construction is realizable will be explored in future work.

V. CONCLUSION

In this paper I constructed a lattice description of axion
strings coupled to fermions which in the continuum is
known to exhibit chiral edge states. The construction is
facilitated by deforming the vortex configuration to a
crossed domain wall configuration, both of which carry
a winding of 1 in the axion field. Naive discretization of
space-time leads to the elimination of any net chirality on
the string or the crossed domain wall core due to the
presence of fermion doublers. This problem is similar to
what is encountered in lattice domain wall systems where a
Wilson term has to be introduced in order to engineer a
net imbalance of right and left chiral edge states on the
wall. Inspired by the domain wall fermion construction, I
introduce Wilson-like terms in the axion string Lagrangian
in order to obtain a net imbalance of right and left moving
edge states on the string. As one changes the crossed
domain wall height with respect to the Wilson-like param-
eter, one encounters discontinuous changes in the number
of chiral fermions on the string. These changes are
associated with the appearance of a two dimensional
surface coinciding with the domain walls where the
fermion gap passes through zero indicating a phase
transition. In the presence of an electric field directed
along the string, a Hall current flows from the bulk to the
string. This Hall current jumps between different integers,
exactly compensating for the boundary current as the
number and chirality of the edge states change as a function
of the parameters. This current is obtained by computing
a one-loop Feynman diagram which integrates out the
fermion away from the defect while treating the phase
variation of the axion field and the background gauge field
perturbatively. There are several interesting questions that
remain to be explored. One of these involves implementing
a finite volume numerical realization of both the crossed
domain wall configuration and the vortex-loop configura-
tion. It will also be interesting to explore a lattice model for
the axion insulator mimicking the lattice quantum field
theory described in this paper.
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