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We employ the domain wall fermion (DWF) formulation of the Thirring model on a lattice in 2þ 1þ 1

dimensions and perform N ¼ 1 flavor Monte Carlo simulations. At a critical interaction strength the model
features a spontaneous Uð2Þ → Uð1Þ ⊗ Uð1Þ symmetry breaking; we analyze the induced spin-0 mesons,
both Goldstone and non-Goldstone, as well as the correlator of the fermion quasiparticles, in both resulting
phases. Crucially, we determine the anomalous dimension ηψ ≈ 3 at the critical point, in stark contrast
with the Gross-Neveu model in 3D and with results obtained with staggered fermions. Our numerical
simulations are complemented by an analytical treatment of the free fermion correlator, which exhibits
large early-time artifacts due to branch cuts in the propagator stemming from unbound interactions of the
fermion with its heavy doublers. These artifacts are generalizable beyond the Thirring model, being an
intrinsic property of DWF, or more generally Ginsparg-Wilson fermions.
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I. INTRODUCTION

The Thirring model is a quantum field theory of
reducible (i.e., 4-component) fermions interacting via
a current-current contact term, specified in three dimen-
sional continuum Euclidean spacetime by the following
Lagrangian:

L ¼ ψ̄ ið=∂þmÞψ i þ
g2

2N
ðψ̄ iγμψ iÞ2; ð1Þ

with i ¼ 1;…; N indexing flavor degrees of freedom.
While (1) can be used to model electron dynamics in
layered systems found in condensed matter physics, it is
theoretically interesting in its own right due to its potential
for exhibiting a UV-stable renormalization group fixed
point where a strongly interacting continuum quantum field
theory may be defined. Since there is no small parameter in
play, large anomalous scaling dimensions are anticipated,
so that the resulting theory will almost certainly lie in a new
universality class characterized by noncanonical critical
exponents, a scenario referred to as a quantum critical point
(QCP). This possibility may be explored by several means;
here we continue a program of lattice field theory simu-
lations in which the QCP is identified in the m → 0 limit
with a transition in which the formation of a bilinear
condensate hψ̄ψi spontaneously breaks the model’s global

U(2N) symmetry leading to the dynamical generation of a
fermion mass. Further background can be found in recent
reviews [1,2].
The Uð2NÞ symmetry of (1) is explicitly broken to

UðNÞ ⊗ UðNÞ in the presence of a fermion mass m ≠ 0.
Neither Wilson (with no symmetry protecting against gap
formation) nor staggered (where the breaking is instead
UðNÞ ⊗ UðNÞ → UðNÞÞ lattice fermion formulations
faithfully represent this pattern of breaking symmetry,
which is problematic when the QCP dynamics are strong
and there is no means to control the recovery of symmetry
analytically. Our approach utilizes domain wall fermions
(DWF); on a finite system with domain walls separated by
Ls in a direction x3, there is accumulated evidence both
analytically and numerically that Uð2NÞ is recovered in
the limit Ls → ∞ [3–6]. Studies of the Thirring model
with N ¼ 1 have revealed evidence for a QCP described
by an empirical equation of state for the order parameter
hψ̄ψðm; gÞi corresponding to critical exponents with non-
mean field values [6,7], and distinct from those obtained
from simulations of the model formulated with staggered
lattice fermions [8]. Moreover, simulations with N ¼ 2
have failed to identify a condensate for m → 0, consistent
with a critical flavor number 1 < Nc < 2, with N ≤ Nc
needed for the QCP’s existence [9], and again in disparity
with the Nc ≈ 7 observed for staggered fermions [10].1

In this paper we turn our attention to two-point functions,
studying both fermion–antifermion “meson” bound states
in the spin-0 channel, and also the propagating fermion
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1It has been proposed that the staggered model captures a
continuum model based on Kähler-Dirac fermions, which has a
distinct global symmetry [11].
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“quasiparticle” in the spin-1
2
channel. The calculations

employ orthodox lattice field theory techniques, and for
a massive theory, which we can ensure by setting m ≠ 0,
yield information on the particle spectrum. Since the
quasiparticle propagator is not gauge-invariant in a gauge
theory, to our knowledge this is the first time elementary
fermion excitations have been studied using DWF. In
principle it will enable us to distinguish broken from
symmetric phases via dynamical fermion mass generation
and the appearance of Goldstone bosons whose mass
has a characteristic dependence on m in the former
case. However, the DWF setup also enables a study of
the massless m ¼ 0 limit, in which case exactly at the
critical point g ¼ gc all correlations are expected to
decay algebraically, with a power sensitive to the critical
dynamics. Study of the quasiparticle propagator now
furnishes information on a critical exponent ηψ , defined
via hψðxÞψ̄ð0Þi ∼ x−ð2þηψ Þ, an important characteristic of
the QCP not accessed via the equation of state, which
focusses on the scalar order parameter field.
The rest of the paper is organized as follows. In Sec. II

we recall the lattice formulation of the Thirring model (1)
with DWF, and define the correlation functions to be
calculated in terms of fields Ψ; Ψ̄ defined on a 2þ1þ1D
lattice. Since the study of elementary fermion propagators
is new, analytic insight is welcome; in Sec. III we have
attempted to collect results for the free fermion propagator
which will inform studies in both this and future work,
including a simple analytic model which to good accuracy
reproduces a numerically significant artifact resulting from
a branch cut in the exact form (29) below. It is demonstrated
that finite-Ls artifacts are reduced if instead of mψ̄ψ the
U(2N)-equivalent mass term imψ̄γ3ψ is used, corroborat-
ing earlier studies of the condensate hψ̄ψi [3–5].
Dependence on the domain wall height M is also studied.
Section IV presents spectrum results from numerical
simulations on a 162 × 48 × Ls system with varying m,
g and the domain wall separations Ls ¼ 64, 80 used in the
most recent equation-of-state study [7]. Our fitting pro-
cedure is described in detail; we study three distinct spin-0
mesons including both Goldstone and non-Goldstone
channels (a non-Goldstone requiring the evaluation of
disconnected diagrams is omitted for now) and the fermion
quasiparticle. In Sec. V we turn our attention to the fermion
channel with m set to zero. First we develop continuum
models for the quasiparticle propagator at a QCP, i.e., with
anomalous dimension ηψ ≠ 0, showing that in general a
UV regularization is required. We also present an Ansatz
for how the propagator might be modified away from the
QCP in the symmetric phase, i.e., with a finite correlation
length μ−1 where μ is not a pole mass. Finally we present
numerical results taken at five different couplings in the
symmetric phase including one very close to the QCP
deduced from equation of state studies [7], obtaining an
estimate ηψ ≈ 3 at the critical point. Section VI discusses

our results, with some technical details postponed to the
Appendices A–C.

II. LATTICE FORMULATION
AND METHODOLOGY

The lattice model studied here is the “bulk” variant of the
formulation first set out in [5], employing domain wall
fermions in 2þ 1þ 1D:

S ¼ Skin þ Sint þ Saux

¼
X
x;y

X
s;s0

Ψ̄ðx; sÞMx;s;y;s0Ψðy; s0Þ þ Saux: ð2Þ

Here Ψ; Ψ̄ are 4-spinors defined on a hypercubic lattice
with 2þ 1D indices x and an index s labelling the “third”
direction x3, taking values s ¼ 1;…; Ls. Free fermions are
described by the kinetic operator

M0 ¼ δs;s0DWx;y þ δx;yD3s;s0 þmSm3; ð3Þ

DW is the 2þ 1D Wilson operator with domain wall
height M:

DWðMÞx;y ¼ −
1

2

X
μ¼0;1;2

½ð1 − γμÞδxþμ̂;y þ ð1þ γμÞδx−μ̂;y�

þ ð3 −MÞδx;y: ð4Þ

Throughout this work we use M ¼ 1. Hopping along x3 is
governed by

D3ðLsÞs;s0 ¼ −½P−δsþ1;s0 ð1 − δs;Ls
Þ þ Pþδs−1;s0 ð1 − δs;1Þ�

þ δs;s0 : ð5Þ

The factors ð1 − δs;1=Ls
Þ implement open boundary con-

ditions at domain walls located at s ¼ 1; Ls, while the
projectors P� ¼ 1

2
ð1� γ3Þ also appear in the definition of

the target physical fermion degrees of freedom ψ ; ψ̄ defined
on the walls:

ψðxÞ≡ P−Ψðx; 1Þ þ PþΨðx; LsÞ;
ψ̄ðxÞ≡ Ψ̄ðx; LsÞP− þ Ψ̄ðx; 1ÞPþ: ð6Þ

Finally, the mass term is defined in terms of fields on the
walls via

mSm3 ¼ im
X
x

ψ̄ðxÞγ3ψðxÞ: ð7Þ

This form of the mass term yields superior convergence to
the U(2)-symmetric limit anticipated as Ls → ∞ over the
conventional mψ̄ψ [3,5].
The interaction term is between a fermion current and a

real noncompact vector field Aμ defined on the links of the
spacetime lattice:
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Sint ¼
i
2

X
x;μ;s

AμðxÞ½Ψ̄ðx; sÞð−1þ γμÞΨðxþ μ̂; sÞ

þ Ψ̄ðxþ μ̂; sÞð1þ γμÞΨðx; sÞ�
≡X

x;μ

AμðxÞJ μðxÞ ð8Þ

Integration over the auxiliary field specified by the
Gaussian action

Saux ¼
1

2g2
X
x;μ

A2
μðxÞ; ð9Þ

results in a four-fermion contact interaction − g2

2
J μJ μ

between conserved nonlocal currents

J μðxÞ¼
XLs

s¼1

jμðx;sÞ; Δ−
μJ μðxÞ¼

X
s

Δ−
μ jμðx;sÞ¼ 0:

ð10Þ

with the local current (ν ∈ fμ; 3g)

jνðx; sÞ ¼
i
2
½Ψ̄ðx; sÞðγν − 1ÞΨðxþ ν̂; sÞ

þ Ψ̄ðxþ ν̂; sÞðγν þ 1ÞΨðx; sÞ� ð11Þ

obeying a 2þ 1D continuity equation2 (Cf. [12]):

Δ−
μ jμðx;sÞ¼

8>><
>>:
−j3ðx;1Þ−mψ̄ðxÞψðxÞ s¼ 1

−Δ−
3 j3ðx;sÞ 1<s<Ls

þj3ðx;Ls−1Þþmψ̄ðxÞψðxÞ s¼Ls:

ð12Þ

The fermion matrix M½Aμ� superficially resembles that
of an Abelian gauge theory, with link fields e�iAμ replaced
by nonunitary links ð1� iAμÞ. At strong coupling this
nonunitary nature presents challenges, both in invertingM
and in the recovery of U(2) as Ls → ∞ [6]. In practice
N ¼ 1 dynamics are simulated with an RHMC algorithm
based on the positive measure detðM†MÞ12; details can be
found in [6,9] and the simulation code is available at [13].
Quasiparticle and meson propagators are calculated in

terms of the 2þ 1þ 1D propagator Sðm; x; s; y; s0Þ ¼
hΨðx; sÞΨ̄ðy; s0Þi, which obeys two useful identities [3]:

γ5Sðm; x; s; y; s0Þγ5 ¼ S†ðm; y; s0; x; sÞ; ð13Þ

γ3Sðm; x; s; y; s0Þγ3 ¼ S†ð−m; y; s̄0; x; s̄Þ; ð14Þ

with s̄≡ Ls − sþ 1. Meson propagators in spin-0 channels
are then defined using local bilinear sources via

CΓðxÞ¼ hψ̄ð0ÞΓψð0Þψ̄ðxÞΓψðxÞi; Γ∈ fγ3;γ5;1;γ3γ5g:
ð15Þ

Using the definition (6) and relations (13), (14) they can all
be expressed in terms of the primitive correlators [3,9]

C−−ðxÞ ¼ tr½Sðm; 0; 1; x; LsÞP−S†ðm; 0; 1; x; LsÞP−�;
Cþ−ðxÞ ¼ tr½Sðm; 0; 1; x; 1ÞPþS†ðm; 0; 1; x; 1ÞP−�;
C̃−−ðxÞ ¼ tr½Sðm; 0; 1; x; LsÞP−S†ð−m; 0; 1; x; LsÞP−�;
C̃þ−ðxÞ ¼ tr½Sðm; 0; 1; x; 1ÞPþS†ð−m; 0; 1; x; LsÞP−�;

ð16Þ

requiring two inversions of M for each source location on
the s ¼ 1 wall. The resulting expressions are

Cγ5ðxÞ≡ CG−ðxÞ ¼ jC−−ðxÞ þ Cþ−ðxÞj; ð17Þ

C1ðxÞ≡ CGþðxÞ ¼ jC̃−−ðxÞ − C̃þ−ðxÞj; ð18Þ

Cγ3ðxÞ≡ CNGþðxÞ ¼ jC̃−−ðxÞ þ C̃þ−ðxÞj; ð19Þ

Cγ3γ5ðxÞ≡ CNG−ðxÞ ¼ jC−−ðxÞ − Cþ−ðxÞj: ð20Þ

The channel subscripts denote whether the meson is
Goldstone or non-Goldstone, based on an anticipated
Uð2Þ → Uð1Þ ⊗ Uð1Þ symmetry breaking induced by a
symmetry-breaking mass term imψ̄γ3ψ . Parity� assign-
ments follow the definition

ψðxÞ↦P γ3ψð−xÞ; ψ̄ðxÞ↦P ψ̄ ð−xÞγ3; ð21Þ

chosen to leave this mass term invariant. Note that in the
case of symmetry breaking the NGþ channel also has a
significant contribution of the opposite sign from discon-
nected fermion line diagrams, which we do not attempt to
calculate.
In the spin-1

2
sector the time slice propagator for free

fields is

Sfðx0Þ ¼
X
x⃗

hψð0Þψ̄ðxÞi ∼
Z

dp0

2π

eip0x0

ip0γ0 þ imγ3

¼ −iγ3 � γ0
2

e−mjx0j; ð22Þ

where � denotes the sign of the temporal displacement
x0. In terms of 2þ 1þ 1D propagators this motivates the
measurements

2If the U(2)-equivalent mass term imψ̄γ5ψ is used [3], there are
no terms proportional to m in (12).
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S0ðx0Þ ¼
1

4
trγ0Sfðx0Þ ¼

1

4

X
x⃗

trγ0½P−Sðm; 0; 1; x; 1Þ

þ PþSðm; 0; Ls; x; LsÞ�;
S3ðx0Þ ¼

i
4
trγ3Sfðx0Þ ¼

i
4

X
x⃗

tr½−P−Sðm; 0; 1; x; LsÞ

þ PþSðm; 0; Ls; x; 1Þ�: ð23Þ

For enhanced sampling expressions (23) are evaluated
using a wall source; since there is no need for gauge-
fixing, this presents no additional complications. We
sampled every fifth trajectory, using sources located at
five different time slices, each requiring separate inver-
sions on two distinct Dirac-indexed sources to evaluate
(23). This was found to yield substantially improved
results compared to earlier studies employing smeared
sources [5].

III. FREE FERMION CORRELATOR

In this section we collect together some analytic results
and approximations for the free fermion correlator using
DWF, with the goal of understanding the discretization
effects introduced by the lattice as well as the influence of
domain wall height M and separation Ls. All the con-
sidered formulations have the correct continuum limit,
but they approach it at different rates which can be crucial
for simulations with limited computational resources.
This will inform the numerical study of the fermion
propagator in the interacting theory to be presented in
Secs. IV, V.
We explicitly distinguish between the two mass

operators iγ3m3 as in Eq. (7) and the conventional
Hermitian mh in this section. Since we are interested in
analytic results here, we derive the free fermion propagator
in terms of operators rather than the measured quantities
Sðm; x; s; y; s0Þ. Furthermore we work in momentum space.
Following Ref. [5], we obtain the expressions [formally
equivalent to those in Eq. (23)]

Cðp; 1; 1Þ ¼ Tr½γ0P−D†ðp; 1; sÞGðp; s; 1Þ�; ð24Þ

Cðp;1;LsÞ

¼
�
Tr½P−D†ðp;1;sÞGðp;s;LsÞ�; m¼mh

Tr½−iγ3P−D†ðp;1;sÞGðp;s;LsÞ�; m¼ iγ3m3

ð25Þ

where the Wilson operator D [corresponding to M0 in (3)]
and the Green’s function G are defined by

D†ðp; 1; sÞ ¼ θðs − 1ÞθðLs − sÞ½−Pþδs;2
þ ðb − ip̄Þδs;1 þmP−δs;Ls

�; ð26Þ

Gðp; s; s0Þ ¼ ðPþAþ þ P−A−Þe−αðsþs0−2Þ

þ ðPþA− þ P−AþÞe−αð2Ls−s−s0Þ þ Be−αjs−s0j

þ Amðe−αðLs−sþs0−1Þ þ e−αðLsþs−s0−1ÞÞ ð27Þ

respectively, with the auxiliary variables α; p̄; b; A�; Am,
and B listed in Appendix A 1.
For zero spatial momentum, the explicit evaluation of the

traces in (24) and (25) yields the form

Cðp ¼ ðp0; 0; 0ÞÞ
¼ Cððp0; 0; 0Þ; 1; 1Þ þ Cððp0; 0; 0Þ; 1; LsÞ ð28Þ

¼ 2im sinðp0Þþ2cosðp0Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−4cosðp0Þ

p
−1

iðm2þ1Þsinðp0Þþ2m cosðp0Þ−m
ð29Þ

in the large Ls limit and setting the domain wall height
M ¼ 1 immediately. The exact form for finite Ls can be
found in Appendix B.
We obtain the same expression for both mass terms,

iγ3m3 and mh, in the Ls → ∞ limit as expected. The
convergence in the m3 case is significantly faster, however,
as we will discuss later on.

A. The free propagator in momentum and real space

Often the physical intuition obtained from exact analytic
calculations is rather limited. We will therefore investigate
an approximation that captures all the important physics
without “having too many trees to see the forest.”
We start out with the well known (up to a constant and

irrelevant factor 2) free particle propagator in continuous
space3

CcontðpÞ ¼
2

mþ ip
: ð30Þ

Going to a lattice, we have to substitute the momentum p
for the lattice momentum sinp. The simplest realization
with the correct continuum limit is then

CnaiveðpÞ ¼
2

mþ i sinp
; ð31Þ

which, of course, leads to the infamous doubling problem
since the sin-function has zeros not only at integer multi-
ples of 2π, but also at multiples of π. The domain wall
approach essentially gets rid of this problem by lifting the
unphysical pole near p ¼ π (assuming m ≪ 1). The exact
formula (29) is a particular realization of this requirement,
and so is

3This works straightforwardly at zero momentum as then p≡
p0 is scalar which is the relevant case for now, but it can also be
extended canonically to the vectorial version.
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C0ðpÞ ¼
1þ nðmÞ cosp
mþ i sinp

; nðmÞ ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p : ð32Þ

Figure 1 shows that C and C0 are quite compatible, so we
are going to use the simplistic version C0ðpÞ in further
analysis.
We are interested in the propagator in (imaginary) time,

still at zero spatial momentum, so we have to perform a
Fourier transformation

C0ðtÞ ¼
1

Lt

X
p0

C0ðpÞeip0t; ð33Þ

where p0 ranges over fermionic Matsubara modes. The full
derivation of the exact form is provided in Appendix A 2
and it yields

C0ðtÞ ¼
e−m̃t

e−m̃Lt þ 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p − δt0; ð34Þ

where m̃ ≔ sin h−1m. In the zero temperature (Lt → ∞)
and continuum (m → 0, but mt ¼ const.) limits C0ðtÞ
approaches the expected form e−mt.

B. Leading order corrections

The propagator C0 derived in Sec. III A captures the
important intermediate time 1 ≪ t ≪ Lt features including
some lattice artefacts and the absence of the doubler. There
are, however, more subtle but still substantial discretization
effects not yet considered. When considering the exact
form CðpÞ instead of the simplified C0ðpÞ, the most
prominent difference is that CðpÞ has not only poles but
also branch cuts due to the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4 cosp

p
term. The square

root stems from the quadratic nature of DD† solved for the
Green’s function [5], or more generally from the quadratic
(chirality breaking) term of order OðaÞ in the Ginsparg-
Wilson equation [14]. While all the other differences are

analytic and can therefore feature only in higher orders of
m, this nonholomorphicity has an immediate impact on the
contour integral and therefore on CðtÞ. The existence of
branch cuts in the DWF representation has been noted
before [15], but to the best of our knowledge so far neither
their origins nor their implications have been investigated.
Branch cuts indicate unbound many-particle interactions

[16], in this case between the fermion and its doubler.
These interactions are very short ranged for heavy doublers
and decouple completely in the continuum limit. Put
differently, the branch cuts can only start at energies larger
than the sum of fermion and doubler masses and therefore
vanish in the limit of infinitely heavy doublers. Here we see
again that DWF (or more generally Ginsparg-Wilson
fermions) do not get rid of the doublers in principle, but
rather assign zero weight to the single particle dou-
bler poles.
Again, the details of the modified correlator’s derivation

can be found in Appendix A 3. We call the modified
propagator that incorporates both C0 and the branch cuts

C̃0ðtÞ ¼ C0ðtÞ þ
ffiffiffiffiffiffi
3

4π

r �
1

mþ 3
4

2t−Lt

ðLt − tþ 3
4
Þ3=2

þ 1
3
4
−m

2−t

ðtþ 3
4
Þ3=2

�
ð35Þ

and we show all three propagators as a function of t in
Fig. 2. As expected the unphysical contributions vanish
exponentially fast when t and Lt − t are large, so that the
correct results are obtained in the continuum and zero
temperature limits. Careful zooming in reveals some small
differences between C and C̃0 at the edges of the diagram,
but the leading order features are described very well.

C. Influences of the domain wall height and separation

Throughout this work we set the DW height M ¼ 1 and
therefore do not go into detail about its influence on the

FIG. 1. Exact and approximate free fermion propagators at zero spatial momentum in momentum space, m ¼ 0.05. Real part left,
imaginary part right.
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propagator here. A short summary of how M affects the
propagator is provided in Appendix B.
More importantly, the DW separation Ls has to be

chosen finite in actual simulations so that the Ls → ∞
limit assumed in this section so far is not always justified.
We show the behavior of the propagators at small domain
wall separations in Fig. 3. Ch (i.e. using m ¼ mh) exhibits
significant deviations from the case discussed above for
L≲ 6, whereas C3 (i.e., using m ¼ iγ3m3) remains vir-
tually unchanged until L≲ 3. We find that both expressions

contain first order e−αLs-terms but C3 has only imaginary
and order OðmÞ suppressed contributions, resulting in
smaller finite Ls effects. See Appendix B for the exact
formulas.
Let us stress at this point that the finite Ls effects are

significantly larger in the interacting case (Cf. the results
for the equation of state presented in [6,7]) and one cannot
choose the DW separation from these free theory calcu-
lations. We can nevertheless infer that C3 approaches the
physical Ls → ∞ limit faster than Ch justifying our use of
this particular formulation throughout this work.
In summary, the results of this section demonstrate that

while DWF introduce new forms of short-distance artifact
due to a branch cut not present in traditional lattice
formulations, the results are in perfect accord with the
free fermions in the continuum am → 0 and low temper-
ature Lt → ∞ limits. These insights will aid interpretation
of the numerical results for interacting fermions to follow in
Secs. IV and V.

IV. RESULTS FROM 162 × 48

In this section we present spectroscopy results from a
162 × 48 system, using domain wall separations Ls ¼ 64,
80. In this initial study we have focussed attention on four
values of the inverse coupling β≡ g−2a ∈ f0.24; 0.28;
0.32; 0.36g. For the N ¼ 1 model defined by (2), the

FIG. 2. Exact and approximate free fermion propagators at zero
spatial momentum in real space, m ¼ 0.05.

FIG. 3. Exact and approximate free fermion propagators at zero spatial momentum in real space, bare mass m ¼ 0.05, domain wall
separations top: L3 ¼ 3, Ls ¼ 4; bottom: Ls ¼ 5, Ls ¼ 6.
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U(2) symmetry spontaneously breaks at a critical coupling
around β ≈ 0.28 [6,7], so we have one ensemble well within
the broken phase, two in the symmetric phase, and one in the
vicinity of the critical point. Figure 4 shows data taken from
2500 RHMC trajectories at the weakest coupling β ¼ 0.36
(left) characterizing unbroken symmetry, and the strongest
β ¼ 0.24 (right) characterizing the broken phase.
The data plotted corresponds to the time slice correlators

in G− (17), Gþ (18) and NG− (20) meson channels, and the
forward-moving spin-1

2
quasiparticle state given by Sþ ¼

S0 þ S3 (23), denoted f in the figure. Since NGþ also has
contributions from disconnected fermion line diagrams not
calculated here, we merely comment that numerically the
connected component is very close to the G− channel
(indeed they are exactly degenerate in them → 0 limit), and
omit this channel from subsequent analysis. Also note we
have chosen to plot the square root of the meson data in
Fig. 4 for ease of comparison with f.
As might be anticipated from the form of (17), G− yields

numerically the largest signal, which increases going from
symmetric to broken phases as first noted in [9]. A striking
feature is the disparity between G� channels, which should
be degenerate if U(2) symmetry is manifest. The NG− data
is appreciably noisier, since the signal (20) results from the
difference of two much larger numbers. Finally, f is not
symmetric under t ↦ −t, a generic feature of fermion
correlators. For β ¼ 0.36 the f correlator has kink dis-
continuities about t ¼ 6; Lt − 6 which are compatible with
the branch cut artifacts in the free fermion correlator
revealed in the difference between C0 and C; C̃0 in
Fig. 2, discussed in Sec. III. At the weaker coupling β ¼
0.36 the decay in the forward t-direction is comparable in
all channels, modulo an overall normalization, suggesting
the mesons are weakly bound states withMmeson ∼ 2Mf. At
β ¼ 0.24 it is possible to discern a difference between G
and NG channels, but by now both NG and f signals are
much noisier. The visible curvature in all data, particularly

those at weak coupling, suggests that a fit assuming
conventional exponential decay resulting from an isolated
simple pole may not capture all the information present.
Nonetheless, as a first step in the next subsection we will
pursue this strategy.

A. Correlator and plateau fits

We allow two Ansätze for the correlator. In the massive
case we assume the usual exponential behavior with
(symmetric meson correlator) and without (nonsymmetric
fermion correlator) back-propagating part

CsymðtÞ ¼ a coshðmeffðt − Lt=2ÞÞ; ð36Þ

CexpðtÞ ¼ ae−meff t; ð37Þ

respectively, while for fermions with m ¼ 0 we addition-
ally test for compatibility with an algebraic decay

CalgðtÞ ¼ αt−μeff : ð38Þ

In both cases the proportionality constants a, α do not
carry physical meaning, whereas the effective masses
meff and anomalous dimension μeff are to be determined,
respectively.
To this end we use the procedure derived in Ref. [17],

Appendix B and summarized in Algorithm 1 thereof. First,
we calculate local approximations of the effective masses

meffðtÞ ¼ cosh−1
�
Csymðtþ 1Þ þ Csymðt − 1Þ

CsymðtÞ
�
; ð39Þ

meffðtÞ ¼ − ln
Cexpðtþ 1Þ
CexpðtÞ

; ð40Þ

μeffðtÞ ¼ −
ln Calgðtþ1Þ

CalgðtÞ
ln tþ1

t

ð41Þ

and identify plateaus of the effective mass. Next, we fit a
constant to the plateau in this region and simultaneously
one of formulas (36) or (38) directly to the respective
correlator in the same region. The constant plateau fit might
have a bias (see [17], or for more details Sec. 4.C of [18]),
so further analysis always relies on the correlator fit
exclusively. Finally, if the effective mass is not too noisy,
we identify all regions where its slope is compatible with
zero, repeat the fit and use the standard deviation over the
different regions’ fit results as an estimator of the system-
atic error Δsyst.
Figure 5 shows examples of plateaus corresponding

to a weakly and a strongly interacting “Goldstone” meson
correlator respectively. Clearly, the case of β ¼ 0.24
features a distinct plateau, resulting in small errors. In
contrast, β ¼ 0.36 comes without an obvious flat region.

FIG. 4. Time slice correlators for β ¼ 0.36 (left) and 0.24
(right) with ma ¼ 0.005, Ls ¼ 64.
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This property is captured in a much larger systematic error,
as seen in Table I below.
For fermions the effective mass often turns out to be too

noisy to be of any use, as can be seen in the left panel of
Fig. 6. Nevertheless a fit to the correlator is well behaved in
most cases (see right panel of Fig. 6), so that we can safely
analyze the fit result, albeit without an estimator of
potential systematic errors.

B. Results

Figure 7 shows the resulting spectrum in the four
channels of interest for Ls ¼ 64 (left) and Ls ¼ 80 (right),
using the bare fermion mass ma ¼ 0.005, and assuming
exponential decay. Although there are relatively large
uncertainties in NG− and f channels, the picture remains
consistent as Ls increases from 64 to 80. The two G
channels yield roughly constant masses across the range of
couplings explored; moreover despite the large disparity in
signal amplitude apparent in Fig. 4, the G� masses are
approximately degenerate consistent with U(2) symmetry.

The f mass satisfies Mf ≃ 1
2
Mmeson at the weakest cou-

pling, but rises sharply across the critical region β ∼ 0.28,
consistent with dynamical mass generation associated with
the spontaneous breaking of U(2). No satisfactory fits were
found for the noisy broken phase data at β ¼ 0.24. The
NG− results are very noisy, but are at least consistent with
MNG ∝ Mf as befits a generic non-Goldstone bound state.
As mentioned above, as a consequence of the curvature

of the data in the plots of Fig. 4, single-pole fits of the form
(36) are more convincing in the broken phase, and work
less well in the weak-coupling symmetric phase; this is
corroborated by the growth Δsyst with β exemplified by
G− data shown in Table I. Mesons at weak coupling are
weakly-bound at best, and ultimately may be better
described using a continuum spectral function.
Qualitatively, the picture is very similar to that found in

simulations of the Thirring model with N ¼ 1 staggered
fermions (see Fig. 17of [8]), in which case the symmetry
breaking pattern is Uð1Þ ⊗ Uð1Þ → Uð1Þ. For DWF with
finite Ls it is necessary to enquire to what extent the
anticipated pattern Uð2Þ → Uð1Þ ⊗ Uð1Þ is realized.
Figure 8 addresses this issue from two directions. On
the left is plotted the Goldstone versus bare fermion
masses. Although M−

G decreases with m at all couplings,
there is no sign of the MG ∝

p
m behavior of a true

Goldstone mode in the broken phase β ¼ 0.24.
Comparison of Ls ¼ 64, 80 also suggests the results are
not yet in the large-Ls limit where U(2) recovery is
expected. The plot on the right compares data from the
two Goldstone channels G�, which with U(2) symmetry
manifest should be degenerate even for m ≠ 0. At best

FIG. 5. Visualizations of the effective mass (39) plateaus of cosh-type mesonic Goldstone C1ðxÞ ¼ CGþðxÞ (18) correlator fits. The
blue line with error band gives result of the correlator fit with statistical error, obtained via Eq. (36). The length of the blue band indicates
the fitting region. For comparison, a constant fit to the effective mass is shown by the dashed orange line. The dot-dashed red line shows
the estimation of the systematic error, as explained in [17]. Note that the red and orange lines have been extended outside of the fitting
region, for clearer visibility. Left: m ¼ 0.005, β ¼ 0.28, Ls ¼ 80. Right: m ¼ 0.005, β ¼ 0.36, Ls ¼ 64.

TABLE I. Systematic fitting uncertainties in the G− channel
with ma ¼ 0.005.

β ΔsystðLs ¼ 64Þ ΔsystðLs ¼ 80Þ
0.24 0.0008 0.0007
0.28 0.0001 0.0002
0.32 0.0029 0.0003
0.36 0.0158 0.0113
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degeneracy looks to be recovered only asm → 0, and again
there are significant finite-Ls effects. We conclude the
results obtained in the meson sector are suggestive but not
yet conclusive, and that U(2) symmetry recovery is not yet
demonstrated.
In summary, in this section we have demonstrated: the

presence of meson bound states (unambiguously in the
broken phase β < βc, more equivocally in the symmetric
phase β > βc); degeneracy of the two distinct Goldstone
states in pseudoscalar and scalar channels, despite the large
numerical disparity in the correlators; the expected hier-
archy between G and NG states; the evolution in fermion
mass from weak coupling where mesons are weakly-bound

ff̄ states to strong coupling where there is dynamical gap
generation and Mf is hard to measure. The scaling of the
Goldstone masses with bare fermion mass does not
manifest the expected MG ∝

p
m behavior, and further

work to explore both thermodynamic and large-Ls limits is
needed.

V. CONFORMAL NATURE OF THE
FERMION CORRELATOR

While spectroscopy with explicit U(2) symmetry-
breaking m ≠ 0 is the best way to test the Goldstone nature
of the bound states G�, it does not reveal the critical nature
of the fermion at the fixed point. In this section we discuss

FIG. 7. Spectrum results with ma ¼ 0.005, Ls ¼ 64 (left) and
Ls ¼ 80 (right). Error bars are obtained by adding Δstat and Δsyst

in quadrature.

FIG. 8. MG− vs m for various couplings (left); comparison of
MG� vs m (right). In both cases open symbols denote Ls ¼ 64,
closed Ls ¼ 80.

FIG. 6. Algebraic fit of a fermionic correlator (38) (m ¼ 0, β ¼ 0.34, Ls ¼ 64). Visualization of the effective mass (41) (left) and
actual fit of the correlator (right). Fit results including statistical errors are shown in blue. The length of the blue band indicates the fitting
region. For comparison, in the left panel a constant fit to the effective mass is shown by the dashed orange line.
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the case m ¼ 0, presenting both continuum-based models
for the critical propagator, characterized by a new and
distinct exponent ηψ , and numerical data for the propagator
S0 (23) taken in the massless limit.

A. Massless fermions

To begin, we propose a model for the fermion time
slice correlator Cfðx0Þ in the symmetric phase g2 < g2c in
the massless limit m → 0. In this regime we expect the
correlator to decay algebraically, but also to reflect in
some way a finite correlation length which diverges only as
g2 → g2c−. Our ultimate aim is to identify the fermion
anomalous dimension ηψ defined by the critical scaling

Cfðp⃗Þ ∼
p̂ · γ⃗
jp⃗j1−ηψ ⇔ Cfðx⃗Þ ∼

x̂ · γ⃗
jx⃗j2þηψ

ð42Þ

with γ⃗ ¼ ðγ0; γ1; γ2Þ, x̂ · x⃗ ¼ jx⃗j≡ x.
We start by focussing on the behavior exactly

at the critical point, modelled by replacing the free
massless fermion momentum-space propagator 1=i=p by
1=ip1−ηψ p̂μγμ with jp̂j ¼ 1 and p̂μpμ ¼ p:

CfðxÞ ¼ tr

�
γx̂
4

Z
d3p
ð2πÞ3

−ip̂μγμ
p1−ηψ

eip⃗·x⃗
�

¼
Z

dp
8π2

p1þηψ

Z π
2

−π
2

dθ sin 2θ sinðpx cos θÞ

¼ x−
1
2

ð2πÞ32
Z

∞

0

dpp
1
2
þηψJ3

2
ðpxÞ: ð43Þ

The remaining integral over p is formally given by

CfðxÞ¼
1

4πx2þηψ

Γð2þηψÞ
Γð1þ ηψ

2
ÞΓð1− ηψ

2
Þ ; lim

ηψ→0
CfðxÞ¼

1

4πx2
:

ð44Þ

Since the decay is algebraic, it is natural to plot CfðxÞ using
logarithmic scales on both x and y-axes.

B. UV considerations

The integral (43) is only convergent for ηψ < 0: in
general therefore we must introduce a UV scale Λ to
regularize the model. A simple sharp momentum-space
cutoff p ≤ Λ yields an oscillatory dependence CfðxÞ ∝
cosðΛxÞ, which is physically unacceptable. We have
explored a smoother cutoff defined by the following
integral, which exists for ηψ > −3:

x−
1
2

ð2πÞ32
Z

∞

0

dpp
1
2
þηψJ3

2
ðpxÞe−p2

Λ2

¼ Γð3þηψ
2
Þ

12π2
xΛ3þηψM

�
3þ ηψ

2
;
5

2
;−

x2Λ2

4

�
; ð45Þ

where M is the confluent hypergeometric function 1F1.
In the limit xΛ → ∞ (45) recovers the naive algebraic
decay (44).
Fig. 9 shows CfðxÞ evaluated using both (44), (45). To

approximate the lattice cutoff we choose a numerical value
Λ ¼ π. For ηψ ≲ 1 the regularized form matches the
algebraic form well, but for larger values of ηψ the cutoff
dependence is significant over much of the range permitted
by Lt ¼ 48. As dictated by the gamma function in the
denominator of (44), things break down at ηψ ¼ 2 where
(45) has the limiting form

CfðxÞ ¼
xΛ5

16π
p
π
exp

�
−
x2Λ2

4

�
; ð46Þ

and it is no longer possible to hide the cutoff.
We conclude: (i) for conformal dynamics described by

(42) there appears to be an upper bound on the anomalous
dimension ηψ < 2; (ii) for large anomalous dimensions UV
artifacts might make fitting for ηψ a nontrivial challenge.

C. Introduction of finite correlation length

Next we introduce a finite correlation length μ−1,
motivated by the large-N limit of the scalar auxiliary field
propagator found in the 2þ 1D Gross-Neveu model [19]:

DσðpÞ ¼
4μ

pþ μ
; ð47Þ

where the inverse correlation length μ is related to the width
of an unstable resonance in the scalar channel, but does
not correspond to a pole on the imaginary-p axis yielding
exponential decay. Rather, the appearance of p ¼ ðp⃗ · p⃗Þ12
in the denominator yields a branch cut starting at the origin
in the complex p2 plane; the pole of (47) at ðp2Þ12 ¼ −μ lies
on a different sheet to the one where the integral defining
the Fourier transform from p to x lives. This form was used
to fit numerical Dσ data in [20].

FIG. 9. CfðxÞ for various ηψ with Λ ¼ π.
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Our Ansatz for the fermion propagator in momentum
space is

CfðpÞ ¼
1

iðpþ μÞ1−ηψ p̂μγμ
¼ −ip̂μγμ

ðpþ μÞ1−ηψ : ð48Þ

In real space we now have

CfðxÞ ¼
1

4
trγx̂CfðpÞ ¼

x−
1
2

ð2πÞ32
Z

∞

0

dpðpþ μÞηψ−1p3
2J3

2
ðpxÞ:

ð49Þ

In the limit μ → 0 we recover (44), while for μ → ∞

CfðxÞ ¼
1

π2μ1−ηψx3
: ð50Þ

Once again a UV regulator e−
p2

Λ2 must be introduced, which
modifies CfðxÞ at small x. The resulting integral may be
evaluated using numerical quadrature; the result for fixed
μ and varying ηψ ∈ ð0;2Þ is shown in Fig. 10. Dashed and
dotted lines show the limiting forms (44) and (50)
respectively.
In practice, our dataset is hypothesized to have

fixed ηψ and varying μ corresponding to varying
g−2c − g−2. Figures 11 and 12, show CfðxÞ evaluated
for various μ with fixed ηψ chosen close to the extremes
of the range (0,2). The curvature of the plots suggests it
may be possible to distinguish the cases ηψ < 1 and ηψ >
1 by qualitative means without recourse to a fitting
analysis where control of systematics is still poorly
understood.
However, the Monte Carlo data is for the time slice

correlator Cftðx0Þ. For CfðxÞ ¼ x̂ · γ⃗=x2þηψ ,

Cftðx0Þ ¼
1

4
trγ0

Z
d2x⊥CfðxÞ ¼

2π

1þ ηψ

1

x
ηψ
0

: ð51Þ

We therefore predict the slope of the resulting data on a log-
log plot to be in the range (0,2) for Λx0 ≫ 1, μx0 ≪ 1, with
asymptotic slope 1 achieved for μx0 ≫ 1.

D. Numerical results

We calculated the fermion time slice propagator with
m ¼ 0 using just the time-symmetric projection S0 of (23)
on ensembles with Ls ¼ 64 generated by 5000 RHMC
trajectories taken at 5β-values in the symmetric phase, with
the strongest β ¼ 0.28 corresponding approximately to the
critical value obtained in studies of the equation of state
[6,7]. The results for data averaged over forward and
backward directions are shown on a log-log plot in
Fig. 13. While the data show qualitative features which
might be compared with those of Fig. 12 describing the
case ηψ > 1, the signal-to-noise ratio falls as the critical
coupling is approached.
In principle on a lattice of finite temporal extent we

should correct for backward propagating signals, and also
contributions from propagation over arbitrarily many tem-
poral circuits. The analysis presented in Appendix C shows
that both effects are mitigated by fermion antiperiodic

FIG. 10. CfðxÞ for various ηψ with Λ ¼ π and μ ¼ 0.005. FIG. 11. CfðxÞ for ηψ ¼ 0.2 with Λ ¼ π and various μ.

FIG. 12. CfðxÞ for ηψ ¼ 1.8 with Λ ¼ π and various μ.
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boundary conditions; however, with the limited statistical
precision currently achieved there is no motivation to
explore beyond the simplest fit form (38). Results for
the fitted ηψ ¼ μeff are plotted in the inset of Fig. 13. The
quality of fit increases as β↘βc and the fitted ηψ ≃ 3 for the
near-conformal value β ¼ 0.28.
In summary, we have established a signal and obtained

results for the fermion time slice correlator in the vicinity
of the postulated QCP in the massless limit, and analyzed
its propagation assuming algebraic decay in the temporal
direction. Our results are in qualitative agreement with the
model presented in Sec. V C, but disagree quantitively in
two respects: firstly the value for the fermion anomalous
dimension ηψ lies outside the range [0,2) compatible with
the conformal propagator in momentum space (42); sec-
ondly there is no sign of recovery of μeff ¼ 1 far from
criticality as predicted by (48), (50). Rather, our data
suggest ηψ ≈ 3 in the vicinity of the QCP, an unexpectedly
large value.

VI. DISCUSSION

In this paper we have used the DWF formulation of the
Thirring model to perform spectroscopy using orthodox
lattice field theory techniques on a lattice in which the
temporal extension is greater than the spatial extent. Since
the Thirring model has no gauge symmetry, we have also
been able to study propagation of elementary fermion
fields. In both cases the results represent significant
progress over previous exploratory studies [5,9].
In the meson sector, our results are consistent with the

two Goldstone-like modes G� having degenerate masses,
as demanded by the residual Uð1Þ ⊗ Uð1Þ symmetry,
despite a large disparity in the overall magnitude of the
correlators. Moreover the accessible non-Goldstone NG−

state is clearly more massive, and increasing as the system
moves from the symmetric into the broken phase, despite a

very noisy signal due to its definition in terms of the
difference of two much larger correlators. At the weakest
couplings β ¼ 0.36 explored, the poor quality of fit
reflected in the large systematic error Δsyst suggests
mesons are only very weakly bound so there is significant
contamination from a fermion-antifermion continuum. In
the broken phase at β ¼ 0.24 by contrast, the Goldstones
are tightly bound, but fail to respect the expected behavior
MG ∝

p
m; the large Ls-artifacts shown in Fig. 8 suggest

U(2) symmetry restoration may be even harder to observe
in the spectrum than in the order parameter: studies in the
thermodynamic limit, not taken here, may also prove
important.
In the fermion sector, we have first presented an analysis

of the free-field correlator which highlights a potentially
significant contamination arising from a fermion-doubler
continuum at small t, clearly visible in the data of Fig. 4,
which must be taken into account when performing
spectroscopic fits. We also examined the impact of varying
domain wall height M and separation Ls. Once again, the
superior convergence of the DWF formulation with mass
term Sm3

(7) is apparent. A major innovation has been the
employment of wall sources to vastly improve the sampling
of the correlator over previous attempts [5]. The results
indicate Mf ≈ 1

2
MG ≃ 1

2
MNG at weak coupling β ¼ 0.36,

consistent with mesons being weakly bound states, but that
Mf rises steeply toward the phase transition at βc ≈ 0.28
until correlator noise precludes its measurement in the
broken phase. It is clear a much finer comb of coupling
strengths in the vicinity of βc is needed in order to refine
this rather crude first step.
Finally, we exploited the stability of the DWF formu-

lation to perform measurements of the fermion propagator
in the m → 0 limit in an attempt to probe the conformal
nature of the putative fixed point dynamics. We first
presented an analytic model demonstrating that in general
a UV regularization is needed, and that the algebraic decay
of the fermion correlator parametrized by the critical
exponent ηψ needs to satisfy the bounds 0 ≤ ηψ < 2 in
order to permit a straightforward passage between real
space and momentum space. The numerical data of Fig. 13
by contrast prefer ηψ ≈ 3. We are at a loss to account for this
discrepancy, but know of no reason why a conformal field
theory with such a large anomalous dimension should be
excluded. This is certainly the most interesting result of this
paper, and contrasts markedly with the value ηψ ¼ 0.37ð1Þ
found in finite volume scaling studies of both Thirring [21]
and U(1) Gross-Neveu [22] models formulated with stag-
gered fermions, strengthening our conviction that DWF and
staggered Thirring models are distinct.
In conclusion, while much insight into the excitations of

the Thirring model as the U(2) limit is approached as Ls →
∞ has been obtained, some important questions remain
unanswered. In future work, encouraged by the apparent
superior Ls convergence observed in [23], we plan to

FIG. 13. Time slice fermion correlator for various β with
Ls ¼ 64, m ¼ 0, together with fits to (38). The inset shows
the fitted anomalous dimension ηψ .
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extend the study to the Thirring model formulated with
DWF using a Wilson kernel rather than the simplest Shamir
kernel (5) used here.

VII. DATA AVAILABILITY

All the code and data (raw as well as analyzed) required
to reproduce the results of this paper can be found in [24]
under open access. We used FORTRAN for the DW simu-
lations and heavily relied on the HADRON [25] package for
our data analysis implemented in R [26].
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APPENDIX A: DERIVATION OF THE FREE
FERMION PROPAGATOR IN TIME

1. List of auxiliary variables

The auxiliary variables required in the Eqs. (24) and (25)
are given by

2 cosh α ¼ 1þ b2 þ p̄2

b
; p̄μ ¼ sinpμ;

bðpÞ ¼ 1 −M þ
X
μ

ð1 − cospμÞ ðA1Þ

as well as

A� ¼ Δ−1Bðe�α − bÞð1 − jmj2Þ; ðA2Þ

Am ¼ Δ−1B½−2mb sinh αþ e−αðLs−1Þðe−2αðb − eαÞ
þ jmj2ðe−α − bÞÞ�; ðA3Þ

B ¼ ð2b sinh αÞ−1; ðA4Þ

Δ ¼ e2αðb − e−αÞ þ jmj2ðeα − bÞ
þ e−2αðLs−1Þ½jmj2ðb − e−αÞ þ e−2αðeα − bÞ�
þ δm;mh

e−αðLs−1Þ4mb sinh α: ðA5Þ

The mass can be chosen to be either m ¼ mh or m ¼ im3.

2. Holomorphic case up to poles

We employ the Matsubara technique

C0ðtÞ ¼
1

Lt

X
p0

1þ nðmÞ cosp0

mþ i sinp0

eip0t ðA6Þ

¼ −1
2πi

I
C
dz

1

eLtz þ 1

1þ nðmÞ cosð−izÞ
mþ i sinð−izÞ ezt ðA7Þ

¼ −1
2πi

I
C
dz

ezt

eLtz þ 1

1þ nðmÞ cosh z
mþ sinh z

ðA8Þ

where the closed contour C has to be chosen such that it
encloses the poles of the Fermi-Dirac function 1

eLtzþ1

corresponding to the Matsubara frequencies z ¼ ip0 ¼
i 2πLt

ðjþ 1
2
Þ with j ¼ 0;…; Lt − 1 and no other poles, as

visualized in Fig. 14.
The integrand is 2πi-periodic (reflecting the finite

momenta range due to the lattice discretization) and has
singularities at z ¼ i 2πLt

ðZþ 1
2
Þ, z ¼ −sinh−1mþ i2πZ,

and at z ¼ sinh−1mþ iπ þ i2πZ. The two former are poles
of first order whereas the latter can be lifted, i.e., the
numerator is zero as well, which corresponds to the
disappearance of the doubler or back-propagating part
(opposite real mass) and is exactly the reason we had to
introduce the normalization nðmÞ. Thus we can safely
deform the contour C to the four paths shown in Fig. 15

C1 ¼ Rþ iε; ðA9Þ

C2 ¼ ½∞þ iε;∞þ 2πi − iε�; ðA10Þ

C3 ¼ −Rþ 2πi − iε; ðA11Þ

FIG. 14. Initial contour C from Eq. (A8) enclosing the poles of
the Fermi-Dirac function 1

eLtzþ1
.
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C4 ¼ ½−∞þ 2πi − iε;−∞þ iε�: ðA12Þ

This means that we first integrate along the real axis shifted
upward by the infinitesimal imaginary parameter iε. Then
at positive real infinity we go upward to imaginary 2πi − iε.
Next we go in negative direction parallel to the real axis.
Finally we close the contour at negative real infinity going
back down to the imaginary part iε.
Let us consider C2 and C4 first. t ¼ 0;…; Lt − 1, there-

fore at positive real infinity the integrand is exponentially
suppressed by the Fermi-Dirac function, so C2 does not give
any contribution. The integral along C4, in contrast, does
not vanish for t ¼ 0. At negative real infinity the sinh- and
cosh-terms dominate and the Fermi-Dirac function goes to
one. So we get

−1
2πi

Z
C4

dz
ezt

eLtz þ 1

1þ nðmÞ cosh z
mþ sinh z

¼ −1
2πi

Z
−∞þiε

−∞þ2πi−iε
dx

etx

eLtx þ 1

1þ nðmÞ cosh x
mþ sinh x

¼ −1
2πi

Z
iε

2πi−iε
dxð−δt0Þ ¼

δt0
2πi

ðiε − ð2πi − iεÞÞ

¼ −δt0 ðA13Þ

for ε → 0.
eNtz and sinh2 z

2
are both 2πi-periodic. Thus integrating

along C3 is identical to integrating along the real axis
shifted by −iε. The union C1 ∪ C3 − 2πi together with
infinitesimal closing sequences at �∞ is again a closed
contour C0 around the real axis winding once in negative
direction (see Fig. 16). The corresponding integral can be
performed using the residuum theorem and plugging in the
single real first order pole z0 ¼ −sinh−1m. We get

−1
2πi

I
C0
dz

ezt

eLtz þ 1

1þ nðmÞ cosh z
mþ sinh z

¼ Resz0
ezt

eLtz þ 1

1þ nðmÞ cosh z
mþ sinh z

ðA14Þ

¼ lim
z→z0

ezt

eLtz þ 1
ð1þ nðmÞ cosh zÞ z − z0

mþ sinh z
ðA15Þ

¼ e−sinh
−1mt

e−sinh
−1mLt þ 1

1þ nðmÞ cosh sinh−1m
cosh sinh−1m

ðA16Þ

¼ e−m̃t

e−m̃Lt þ 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p ; ðA17Þ

where m̃ ≔ sinh−1m.
Now we have all the ingredients to evaluate Eq. (A8). It

yields

C0ðtÞ ¼
−1
2πi

I
C
dz

ezt

eLtz þ 1

1þ nðmÞ cosh z
mþ sinh z

ðA18Þ

¼ −1
2πi

�Z
C4

dzþ
I
C0
dz

�
ezt

eLtz þ 1

1þ nðmÞ cosh z
mþ sinh z

ðA19Þ

¼ e−m̃t

e−m̃Lt þ 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p − δt0: ðA20Þ

3. Case including branch cuts

By and large, the derivation of ChðtÞ proceeds in the
same way as that of C0ðtÞ until the integral over C0 has to be
solved. This part turns out to be trickier as the paths C1 and
C3 − 2πi cannot be connected at �∞ because of the
aforementioned branch cuts on the real axis starting at
� cos h−1 5

4
¼ � ln 2. Instead we have to split both paths

into three parts each

FIG. 15. Deformed contour C1 ∪ C2 ∪ C3 ∪ C4. FIG. 16. Alternative closed contour C0 ⊃ C1 ∪ C3 − 2πi.
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C−1;3 ¼ ½−∞� iε;− ln 2� iε�; ðA21Þ

C01;3 ¼ ½− ln 2� iε; ln 2� iε�; ðA22Þ

Cþ1;3 ¼ ½ln 2� iε;∞� iε� ðA23Þ

and bridge the gaps between them with infinitesimal paths
orthogonal to the real axis as in Fig. 17. Thus we are left
with C01 ∪ C03 enclosing the pole at z ¼ −sin h−1m and
yielding the same contribution as the integral over C0, as
well as the two paths along the branch cuts

C�bc ≔ C�1 ∪ C�3 : ðA24Þ

Taking into account the integration directions dictated by
the paths, we obtain

−1
2πi

Z
C�bc

dz
ezt

eLtz þ 1
Chð−izÞ

¼ 1

π
ℑ
Z �∞

� ln 2
dx

etx

eLtx þ 1
Chð−ixÞ ðA25Þ

¼ � 1

π
ℑ
Z

∞

ln 2
dx

e�tx

e�Ltx þ 1
Chð∓ ixÞ ðA26Þ

≈� 1

π
ℑ
Z

∞

ln 2
dx

e�tx

e�Ltx þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4 cosh x

p

m� sinh x
ðA27Þ

¼ � 1

π

Z
∞

ln 2
dx

e�tx

e�Ltx þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 cosh x − 5

p

m� sinh x
: ðA28Þ

To the best of our knowledge this integral has no exact
analytic solution, so we used an approximation again, this
time taking the scaling near ln 2 and the asymptotic
behavior into account:

−1
2πi

Z
Cþbc

dz
ezt

eLtz þ 1
Chð−izÞ

≈
1

π

Z
∞

0

dx
2t−Lt

mþ 3
4

ffiffiffiffiffi
3x

p
e−ðLt−tþ3

4
Þx ðA29Þ

¼
ffiffiffiffiffiffi
3

4π

r
1

mþ 3
4

2t−Lt

ðLt − tþ 3
4
Þ3=2 ; ðA30Þ

−1
2πi

Z
C−bc

dz
ezt

eLtz þ 1
Chð−izÞ

≈ −
1

π

Z
∞

0

dx
2−t

m − 3
4

ffiffiffiffiffi
3x

p
e−ðtþ3

4
Þx ðA31Þ

¼
ffiffiffiffiffiffi
3

4π

r
1

3
4
−m

2−t

ðtþ 3
4
Þ3=2 : ðA32Þ

APPENDIX B: ALGORITHMIC
PARAMETERS M AND Ls

1. Influence of the domain wall height M

The domain wall height M has a significant impact on
the propagators. For reasons of space we withhold the
complete formula analogous to Eq. (29) and limit the
discussion to numerical observations.
In Fig. 18 we show the time dependent propagator for

different domain wall heights where C ¼ Ch ≡ C3 is again
calculated exactly.
In order to approximate C, we have rescaled the

approximate correlators

C0ðtÞ ↦ ð1 − ð1 −MÞ2ÞC0ðtÞ ðB1Þ

and likewise for C̃0, as well as the bare mass

m ↦ mð1 − ð1 −MÞ2Þ: ðB2Þ

We do not provide an analytic proof for the above formulas,
though hard staring at the propagatorlike terms (22) in
Ref. [5] supports their plausibility. With this additional
modification C is well approximated by C0 even for small
domain wall heights M ∼ 0.25 as seen in Fig. 18. The
relative significance of the branch cut modeled by C̃0, by
contrast, is sensitive to M. C shows rather unintuitive
behavior around the limits t ≈ 0 and t ≈ Lt. The deviations
from the scaling at intermediate times, though always
positive, appear to be smallest around M ≈ 0.5.

2. Influence of the domain wall separation Ls

The finite-Ls correction of Oðe−αLsÞ in Ch, with αðpÞ
defined in (A1), reads

FIG. 17. Split contours Eqs. (A21)–(A23) accounting for the
branch cuts.
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−
�
4sin2

p0

2
ð−3Pþ 2 cosp0ðPþ 2Þ − 5Þð3m2ðPþ 1Þ − cos 2p0ðm2ðPþ 5Þ þ 3Pþ 13Þ þ cosp0ð3m2 þ 16Pþ 47Þ

þmðm cos 3p0 − 4i sinp0ðcos 2p0 − 2ðPþ 4Þ cosp0 þ 3Pþ 8ÞÞ þ cos 3p0 − 13P − 35Þ
�

× ½ð−2 cosp0 þ Pþ 3Þðcosp0 − 1Þðm2P − 2 cosp0ð−m2 þ Pþ 3Þ − ðm2 − 1Þ cos 2p0 þ 2Pþ 5Þ2�−1 ðB3Þ

with Pðp0Þ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4 cosp0

p
, and the corresponding term in C3 reads

�
4sin2

p0

2
ð−3Pþ2cosp0ðPþ2Þ−5Þ×ð−2icosp0ð2m2þPþ2Þþið2m2ðPþ3Þþ3Pþ5Þþ2msinp0ð−2cosp0þPþ3ÞÞ

�

× ½Pð−2cosp0þPþ3Þðcosp0−1Þð−m2Pþðm2−1Þcos2p0þ2cosp0ð−m2þPþ3Þ−2P−5Þ�−1: ðB4Þ

APPENDIX C: IR CONSIDERATIONS

The time slice propagator measured in lattice simulations
defined by Cftðx0Þ ¼

R
d2x⊥Cfðx⊥; x0Þ can be written

Cftðx0Þ ¼
Γð2þ ηψ Þ

2ηψx
ηψ
0 Γð1 − ηψ

2
ÞΓð1þ ηψ

2
Þ ¼ Bðηψ Þx−ηψ0 : ðC1Þ

When evaluating the time slice correlator on a lattice of
finite temporal extent Lt, because of the algebraic decay of
Cfðx0Þ it is necessary not only to include the effects of a
backward propagating signal, but also signals which have

propagated n times around the lattice, i.e., we need to
incorporate “image sources.” Each time a fermion crosses
the timelike boundary it picks up a minus sign due to
boundary conditions. The total is therefore

Cftðx0;LÞ¼
BðηψÞ
L
ηψ
t

X∞
n¼0

� ð−1Þn
ðx0LþnÞηψ þ

ð−1Þn
ð1− x0

LþnÞηψ
�

¼ Bðηψ Þ
ð2LtÞηψ

X
s¼x0

L ;1−
x0
L

�
ζ

�
ηψ ;

s
2

�
−ζ

�
ηψ ;

1

2
ð1þsÞ

��
;

ðC2Þ

FIG. 18. Exact and approximate free fermion propagators at zero spatial momentum in real space, bare mass m ¼ 0.05, C0 and C̃0

rescaled as in Eq. (B1), m rescaled as in Eq. (B2). Domain wall heights top: M ¼ 0.25, M ¼ 0.5; bottom: M ¼ 0.75, M ¼ 1.5.
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where ζðα; zÞ is the Hurwitz zeta function; the difference in
Eq. (C2) is convergent for ηψ > 0 and given by an integral
suitable for numerical evaluation:

2−ηψ

�
ζ

�
ηψ ;

s
2

�
− ζ

�
ηψ ;

1

2
ð1þ sÞ

��

¼ 1

ΓðηψÞ
Z

∞

0

zηψ−1e−sz

1þ e−z
dz: ðC3Þ

The resulting forms for Cftðx0;LtÞ are shown for various
ηψ in Fig. 19. Dashed lines show the simple algebraic form
(C1), and dotted lines the result of a naive inclusion of just a
single backward propagating signal, as done in conven-
tional spectroscopy. The antiperiodic boundary conditions
significantly mitigate this finite-Lt artifact, particularly for
small ηψ , and indeed in making the signal convergent in
this limit. It is clear though that with Lt ¼ 48 it will be

necessary to use a formula such as (C2) for precision
fitting to ηψ .
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