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In this paper we present an improved regularization-independent (RI)-type prescription appropriate for
the nonperturbative renormalization of gauge-invariant nonlocal operators. In this prescription, the
nonperturbative vertex function is improved by subtracting unwanted finite lattice spacing (a) effects,
calculated in lattice perturbation theory. The method is versatile and can be applied to a wide range of
fermion and gluon actions, as well as types of nonlocal operators. The presence of operator mixing can also
be accommodated. Compared to the standard RI0 prescription, this variant can be recast as a supplementary
finite renormalization, whose coefficients bring about corrections of higher order in a; consequently, it
coincides with standard RI0 as a → 0—however, it can afford us a smoother and more controlled
extrapolation to the continuum limit. In this proof-of-concept calculation we focus on nonlocal fermion
bilinear operators containing a straight Wilson line. In the numerical implementation we use Wilson clover
fermions and Iwasaki improved gluons. The finite-a terms were calculated to one-loop level in lattice
perturbation theory, and to all orders in a, using the same action as the nonperturbative vertex functions. We
find that the method leads to significant improvement in the perturbative region indicated by small and
intermediate values of the length of the Wilson line. This results in a robust extraction of the
renormalization functions in that region. We have also applied the above method to operators with
stout-smeared links. We show how to perform the perturbative correction for any number of smearing
iterations and evaluate its effect on the power divergent renormalization coefficients.

DOI: 10.1103/PhysRevD.107.014503

I. INTRODUCTION

The past decade has seen a great surge in the study of
parton distribution functions (PDFs), by means of calcu-
lations formulated on a spacetime lattice. The viability of a
Euclidean formulation for these intrinsically Minkowski-
space functions was argued in ground-breaking papers by
Ji [1,2] with the introduction of the large momentum field
theory and the calculation of the so-called quasidistributions.
A number of approaches are currently being employed in
addition to quasidistributions in order to match experimen-
tally measurable distribution functions to quantities ame-
nable to numerical estimation on a lattice, such as the
pseudodistributions [3,4]. Both of these cases rely on the
evaluation, via lattice simulations, of matrix elements which
involve gauge-invariant nonlocal composite operators. There
is a large variety of nonlocal operators which are of physical

relevance, notably path-ordered exponentials of the gluon
field along a straight-line or staple-shaped contour (“Wilson
line”), with a quark-antiquark pair or two gluon field tensors
attached at the end points. For an extended list of general
references, we refer the reader to Refs. [5–9].
The study of nonlocal operators in Minkowski continuum

spacetime has a long history, dating back decades before
lattice investigations began, with seminal works by
Mandelstam, Polyakov, Makeenko and Migdal [10–12],
and later works, among them Refs. [13–19]. The lattice
formulation introduces several new complications, such
as mixing and renormalization functions which exhibit
an inverse-power divergence as the regulator a (lattice
spacing) approaches its limiting value, a → 0. Power diver-
gences can of course manifest themselves also in the
renormalization of local operators but only in the presence
of mixing with lower-dimensional operators which share the
same symmetry properties; nonlocal operators, on the other
hand, by virtue of the natural length scale(s) appearing in their
definition, exhibit power divergences despite the absence
of mixing with lower-dimensional operators. Further, the
effect of finite-a corrections—lattice artifacts—becomes ever
more significant as the spatial extent of the operator grows.
A number of approaches are routinely applied to

alleviate finite-a artifacts. Many of them apply improved
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discretizations to terms in the action and to the defi-
nitions of composite operators; such improvements
amount to adding contributions of higher order in a,
which is a legitimate and systematic procedure in the
spirit of the Symanzik-improvement program [20,21]
(for one of the first lattice applications see, e.g., [22]).
Evaluation of nonperturbative extraction of renormaliza-
tion functions utilizing perturbation theory for local
operators can be found in Refs. [23,24]. Exploitation
of symmetries can also lead, in some cases, to elimina-
tion of Oða1Þ [or even Oða2Þ] effects (e.g., [25–27]).
A recent approach developed for nonlocal operators, the
hybrid scheme [28], implements a different renormali-
zation scheme for small and large values of the length
of the Wilson line, z. At short distances one may use a
regularization-independent (RI) type or a ratio scheme.
At large values of z one can use the Wilson-line-mass-
subtraction scheme [29,30].
Another approach, which will be employed in the present

work, has been quite successful in the renormalization of
various local operators on the lattice; it relies on perturbation
theory carried out to all orders in a (see, e.g., Refs. [31–35]
for comparable implementations). In this approach, the
Green’s functions which are to be evaluated nonperturba-
tively, in order to stipulate operator renormalization con-
ditions, are also computed perturbatively, keeping the
complete dependence on a at the ith perturbative order1

Oðg2iÞ. The perturbative result, generically denoted as
ΛðiÞðaÞ, can be split into contributions which are Oða0Þ,
Oða0 lnðaÞÞ [possibly even Oða−1Þ], and remaining con-
tributions which vanish as a → 0. This splitting is most
straightforwardly performed to one loop: Λð1ÞðaÞ ¼
Λð1Þ
0 ðaÞ þ Λð1Þ

restðaÞ; the quantity Λð1Þ
0 ðaÞ could be used to

derive standard perturbative renormalization functions,

should this be called for, while Λð1Þ
restðaÞ, which consists

purely of lattice artifacts, can be subtracted from the non-
perturbative value of the corresponding Green’s function.
It is our finding that the latter becomes a smoother function
of a and allows for a more stable extrapolation to the
continuum limit. The legitimacy of this procedure can be
best exposed by recasting the above subtraction in the form
of a complementary renormalization containing only higher
orders in a (i.e., supplemental multiplicative renormalization
functions of the form ZðaÞ ¼ 1þ g2zðaÞ, [zð0Þ ¼ 0] and
mixing of the original operator O with higher-dimensional
operators Oi, thus leading to a renormalized operator OR ¼
ZðaÞOþP

i miðaÞOi [mið0Þ ¼ 0]). Ideally, the elimination
of artifacts would circumvent the need to carry out an
extrapolation to vanishing lattice spacing; this, unfortunately,
is not practicable since, in the absence of such an

extrapolation, terms of Oðg2ianÞ (i > 1, n > 0), which
are beyond computational feasibility, would still be signifi-
cant for typical values of a used in simulations.
In this work, we apply this last approach to nonlocal

operators; we focus on straight Wilson lines ending on a
quark and an antiquark field. It is worth noting that, in
handling nonlocal operators, elimination of lattice artifacts
is performed separately for different values of the oper-
ators’ length scale(s), since each value corresponds to an
independent operator. One of the advantages of this method
is that it can be integrated in the hybrid scheme to improve
the estimates for the small-z region.
Another aspect of nonlocal operator improvement

which is addressed in this work regards stout smearing
[36] and, in particular, the elimination of lattice artifacts
from Green’s functions of operators containing stout links.
Implementation of stout smearing is straightforward and
can be iterated an arbitrary number of times (“smearing
steps”) in the context of a numerical simulation. On the
contrary, perturbative calculations in the presence of stout
links are notoriously cumbersome and can rarely be carried
out beyond one step [37]. We demonstrate that, for the
operators under study, as well as for a rather wide class of
local and nonlocal operators, one-loop perturbative expres-
sions can be obtained as closed form integrands over the
loop momentum, for an arbitrary number of smearing steps.
This allows a perturbative treatment of artifacts, using the
procedure outlined above.
The layout of this paper is as follows: Sec. II provides the

general setup and definitions of the objects entering the
calculation. In Sec. III we describe the renormalization
scheme and the improvement procedure. Sections IV
and V contain our perturbative results to all orders in a
and their effect of nonperturbative renormalization functions,
respectively. Section VI discusses stout smearing and the
results of its application to one loop, for an arbitrary number
of smearing steps. Finally, Sec. VII summarizes our findings.

II. FORMULATION

A. Lattice actions

We calculate the Green’s functions of nonlocal
operators using the clover (Sheikholeslami-Wohlert) fer-
mion action [38]

SF ¼ −
a3

2

X
x;f;μ

½ψ̄fðxÞðr − γμÞUx;xþaμψfðxþ aμÞ

þ ψ̄fðxþ aμÞðrþ γμÞUxþaμ;xψfðxÞ�

þ a4
X
x;f

�
4r
a
þmf

0

�
ψ̄fðxÞψfðxÞ

−
a5

4

X
x;f;μ;ν

cSWψ̄fðxÞσμνF̂μνðxÞψfðxÞ; ð1Þ
1Note that such contributions cannot be extracted analytically

as functions of the external momentum p; rather, they must be
computed numerically for every relevant value of p.

CONSTANTINOU and PANAGOPOULOS PHYS. REV. D 107, 014503 (2023)

014503-2



in which the clover parameter cSW is treated as a free
parameter. The Wilson parameter r is set to 1; f is a flavor
index, σμν ¼ ½γμ; γν�=2 and F̂μν=ðia2gÞ is a clover discre-
tization of the gluon field tensor, defined as

F̂μν ≡ 1

8
ðQμν −QνμÞ; ð2Þ

with Qμν being2

Qμν ¼ Ux;xþμUxþμ;xþμþνUxþμþν;xþνUxþν;x

þ Ux;xþνUxþν;xþν−μUxþν−μ;x−μUx−μ;x

þ Ux;x−μUx−μ;x−μ−νUx−μ−ν;x−νUx−ν;x

þ Ux;x−νUx−ν;x−νþμUx−νþμ;xþμUxþμ;x: ð3Þ

The Lagrangian masses of each flavor, mf
0 , are set to their

critical value; the ensuing one-loop calculations require, for
consistency, the tree-level value, which is zero.
We present results for the Symanzik-improved gluon

action [39]

SG ¼ 2

g20

�
c0
X
plaq

ReTrf1 −Uplaqg þ c1
X
rect

ReTrf1 −Urectg

þ c2
X
chair

ReTrf1 −Uchairg
�
; ð4Þ

where the coefficients c0, c1, and c2 must satisfy the
normalization condition c0 þ 8c1 þ 16c2 ¼ 1. We will
focus on the Iwasaki action, for which c0 ¼ 3.648,
c1 ¼ −0.331, and c2 ¼ 0. Our calculation is readily appli-
cable for a family of Symanzik-improved gluon actions, as
defined in Ref. [39].

B. Definition of operators

We study fermion bilinear nonlocal operators of the form

OΓ ≡ ψ̄ðxÞΓPeig
R

z

0
Aμðxþζμ̂Þdζψðxþ zμ̂Þ; ð5Þ

where the path-ordered (P) Wilson line is inserted for
gauge invariance. We consider only cases where the Wilson
line is straight, and, without loss of generality, we choose it
to be along the ẑ direction. The length of the Wilson line is
z, and our perturbative calculation implements values of z
which range between z ¼ 0 and z ¼ 15. This range is
sufficient for the lattice sizes used currently in nonpertur-
bative calculations of the renormalization functions. Note
that, in the limit z → 0, Eq. (5) reduces to the standard
ultralocal fermion bilinear operators. However, the calcu-
lation of the Green’s functions forOΓ is for strictly z ≠ 0 as
the limit z → 0 is nonanalytic.

We perform our calculation for all 16 independent
combinations of Dirac matrices Γ, and we distinguish
between the cases in which a Lorentz index of a Dirac
matrix is in the direction z of the Wilson line or not.
Therefore, the possible choices of Γ are separated into eight
subgroups, defined as

S≡O1; P≡Oγ5 ; Vz≡Oγz ; Vj≡Oγj ;

Az≡Oγ5γz ; Aj≡Oγ5γj ; Tzj≡Oσzj ; Tjk≡Oσjk ; ð6Þ

where j; k ∈ ft; x; yg. An alternative definition for the
tensor operators is Oγ5σμν . This is redundant if one employs
a four-dimensional regularization, such as the lattice, since
the latter operators are just a renaming of the T operators,
and they will, thus, renormalize identically.
Reference [40] revealed a pairwise finite mixing

pattern in lattice regularization for some of the operators
of Eq. (6), based on one-loop perturbative calculations in
lattice QCD. The mixing pattern is in the pairs fS; Vzg,
fAt; Txyg, fAx; Ttyg, and fAy; Ttxg, and this holds to all
orders in perturbation theory. The improvement method
that we propose here can be applied to the cases with or
without mixing.

C. Perturbative calculation

The central focus of this work is the evaluation of the
lattice-regularized bare amputated Green’s functions

Λ1-loop
O ¼ hψOΓψ̄i1-loop ð7Þ

to one-loop level in perturbation theory and all orders in
the lattice spacing, Oðg2a∞Þ. Exploiting translational
invariance in this equation, the operator OΓ is summed
over all spacetime positions, and thus the external quark
and antiquark Fourier transformed fields have the same
momentum (p). Λ1-loop

O explicitly depends on p and on the
length of the Wilson line z. Such a calculation requires
more sophisticated methods of integration over the loop
momentum but is, overall, less complicated than the
calculation to Oðg2a0Þ, which must also be carried out.
Arriving at analytic expressions for the latter necessitates
that the divergent terms be isolated; this is a rather delicate
procedure involving special techniques [40]. On the con-
trary, the Green’s functionsOðg2a∞Þ are evaluated numeri-
cally for each value of the external momentum that is used
in the numerical calculation of the renormalization func-
tions; this momentum serves as the renormalization scale.
Besides these one-loop calculations, we evaluate non-
perturbatively the same Green’s functions, traced with
their tree-level value. Such a projection, described in more
detail in Sec. III, eliminates the Dirac structure, leading to a
computationally less costly calculation. Other kinds of
projectors can also be employed.2For ease of notation, we will often omit a in what follows.
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The one-loop Feynman diagrams which enter our cal-
culation are shown in Fig. 1. The filled rectangle shows the
insertion of any one of the nonlocal operatorsOΓ. Diagram
d1 contains the zero-gluon vertex of the operator, whereas
diagrams d2 and d3 (d4) contain the corresponding one-
gluon (two-gluon) vertex. The “tadpole” diagram d4 is
related to the self-energy of the operator and leads to the
well-known linear divergence with respect to the dimen-
sionful ultraviolet cutoff a [15,41]. As noted in Ref. [40],
such a divergence is independent of the choice of the
operator and, to Oðg2a0Þ, has the form cjzj=a. The
coefficient c depends, however, on the gluon action.

III. RENORMALIZATION

A. Nonperturbative calculation

For the renormalization condition we employ a
regularization-independent RI0 scheme [42], which requires
the calculation of the nonperturbative vertex functions,
GOðp; zÞ. The latter correspond to a nonlocal operator
within quark states. A convenient choice is hψ̄uOΓψdi,
where ψu (ψd) is the up-quark (down-quark) field. The
vertex functions with momentum p are amputated using
the up-quark and down-quark propagator in momentum
space, that is,

VOðp; zÞ ¼ ðSuðpÞÞ−1GOðp; zÞðSdðpÞÞ−1: ð8Þ

VOðp; zÞ is the nonperturbative equivalent of Λ1-loop
O ;

cf. Eq. (7). This amputated vertex function is matched to

its tree-level value Λtree
O ðp; zÞ, using the RI0 prescription,

where the vertex momentum is set equal to the renormaliza-
tion scale. We define the renormalization functions
for the quark field and quark operator as ψR ¼ Zqψ

B and
OR

Γ ¼ ZOOB
Γ , respectively. The appropriate condition for the

renormalization function ZO is

ZOðμ0; zÞ ¼
Zqðμ0Þ

1
12
Tr½VOðp; zÞðΛtree

O ðp; zÞÞ−1�

����
p2¼μ2

0

; ð9Þ

where the quark field renormalization Zq is given by
matching the propagator to its tree-level value Λtree

q ðpÞ:

Zqðμ0Þ ¼
1

12
Tr½S−1ðpÞΛtree

q ðpÞ�jp2¼μ2
0
: ð10Þ

Equation (9) is a generalization of the condition used for
local operators at a scale μ0; here it is applied at each value of
z separately.

B. Improvement scheme

The improvement procedure is applied on Eq. (9) using
the perturbative expressions for the Oðg2a∞Þ results
obtained through the diagrams of Fig. 1. A similar improve-
ment is applied on Zq following the work of Ref. [35].
More precisely, we redefine the renormalization functions
as follows:

Zimpr
O ðμ0; zÞ ¼

Zimpr
q ðμ0Þ

1
12
ðTr½VOðp; zÞðΛtree

O ðp; zÞÞ−1� − Tr½ΔΛ1-loop
O ðp; zÞðΛtree

O ðp; zÞÞ−1�Þ

����
p2¼μ2

0

¼ 1; ð11Þ

Zimpr
q ðμ0Þ ¼

1

12
ðTr½S−1ðpÞΛtree

q ðpÞ� − Tr½ðΔΛ1−loop
q ðpÞÞ−1Λtree

q ðpÞ�Þjp2¼μ2
0
; ð12Þ

where ΔΛ is the difference between the Green’s functions
to Oðg2a∞Þ and the Green’s functions to Oðg2a0Þ, defined
above as Λð1Þ

restðaÞ. With this improvement scheme, one
subtracts the unwanted finite-a contamination from the
nonperturbative trace of the vertex functions using the

results from one-loop perturbation theory. There are alter-
native subtraction schemes, such as to subtract the finite-a
contamination on ZO. The latter differs from the one in
Eq. (11) to Oðg4anÞ (n ≥ 1). As described in the intro-
duction, the variations of improvement schemes can also be

FIG. 1. Feynman diagrams contributing to the one-loop calculation of the Green’s functions of operator OΓ. The straight (wavy) lines
represent fermions (gluons). The operator insertion is denoted by a filled rectangle.
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understood as a finite renormalization whose effects dis-
appear in the limit a → 0.
Once the improvement procedure is applied on the

renormalization conditions, the analysis proceeds as out-
lined in Ref. [43], that is, as follows.
(1) Calculation of the vertex functions using isotropic

(“democratic”) momenta in the spatial directions,
ap ¼ 2π

L ðnt
2
þ 1

4
; nx; nx; nxÞ. We employ antiperiodic

boundary conditions in the time direction. In addi-
tion, the momenta should have a ratio

P4≡
P

iðapiÞ4
ðPiðapiÞ2Þ2

ð13Þ

as close to 0.25 as possible (ideally below 0.3 for
nonlocal operators). This is based on empirical
arguments, since the Lorentz noninvariant function
P4 appears in Oðg2a2Þ contributions in lattice
perturbation theory.

(2) Implementation of an improvement scheme that
eliminates finite-a contamination, such as Eq. (11).

(3) Chiral extrapolation using the estimates of ZO
obtained from ensembles with different values for
the quark masses.

(4) Conversion of the chirally extrapolated ZO to the
modified MS scheme (MMS) scheme [43] and
evolution to a common renormalization scale. The
appropriate expressions for nonlocal operators can
be found in Ref. [40].

(5) Elimination of residual dependence on the initial
renormalization scale using a linear fit in ðaμ0Þ2.

IV. PERTURBATIVE RESULTS

It is instructive to study the finite-a contributions
extracted from our perturbative calculation, in order to
assess the magnitude of the artifact contamination in the
renormalization functions. For demonstration purposes
we show the artifacts in the Landau gauge for cSW ¼ 1
and lattice size L ¼ 24. For the bare coupling constant
(g20 ¼ 6=β) we choose β ¼ 2.10. These parameters match
those of the calculation presented in Ref. [43]. We note that
the choice of the optimal tree-level value cSW ¼ 1 is
consistent with one-loop perturbation theory and not with
the value used in nonperturbative calculations. Using
cSW ¼ 1 in perturbative calculations is the standard treat-
ment of the clover parameter.
The one-loop lattice artifacts are embodied in the

following expression:

TOðz; pÞ≡ 1

4
Tr½ΔΛ1-loop

O ðp; zÞðΛtree
O ðp; zÞÞ−1�; ð14Þ

where

ΔΛ1-loop
O ¼ Λ1-loop;Oðg2 a∞Þ

O − Λ1-loop;Oðg2 a0Þ
O : ð15Þ

The factor of 1
4
is the normalization assuming that the trace is

over the Dirac indices. We note that TOðz; pÞ is a complex
function due to the presence of theWilson line. Numerically,
we find that TO is similar for all operators and has mild cSW
dependence. Therefore, we focus on the vector operator,
Γ ¼ γ0, for cSW ¼ 1. For simplicity, we drop the argument p
in TO. We use several values of the momentum ðapÞ that
correspond to fnt; nxg ¼ f½0 − 10�; ½0 − 6�g, leading to a
total of 77 values of the momentum in the range
ðapÞ2 ∈ ½0; 10�. The values of P4 cover the whole range,
that is, P4 ∈ ½0.25; 1�.
Figure 2 shows the real part of TV for selected values of

the length of the Wilson line, namely, z ¼ 3, 6, 9, 12, 15.
For comparison, we also include the values of TVð0Þ (top
left panel), which are obtained from the calculation of
Ref. [35]. Similarly, Fig. 3 corresponds to the imaginary
part of TV for z ¼ 1, 3, 6, 9, 12, 15. Given that TO is purely
real for z ¼ 0, we include z ¼ 1 instead. For both parts, we
observe that the seven classes of momenta in the spatial
direction (nx ∈ ½0; 6�) contributing to the same z have a
different behavior compared to each other that exhibits
discontinuities. This holds for any value of z, including
z ¼ 0. Such a “wiggling” effect has also been observed in
the nonperturbative renormalization of local and nonlocal
operators [35,43]. On the contrary, the members of each
class of nx (nt ∈ ½0; 10�) follow a smooth functional form, a
feature also observed in nonperturbative calculations.
There are a number of observations regarding the

behavior of the finite-a terms.
(i) We find that Re½TV � is negative for z > 0 for all

momentum classes except the ones with spatial
components in the class ðnt; 0; 0; 0Þ.

FIG. 2. The real part of TV in the Landau gauge for β ¼ 2.10
and cSW ¼ 1 as a function of ðapÞ2. We use z ¼ 0, 3, 6, 9, 12,
15. The filled black symbols correspond to ðapÞ values that
have P4≲ 0.26.
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(ii) The artifacts for both the real and imaginary parts
of TV at z ≠ 0 have negligible values for the
class ðnt; 0; 0; 0Þ.

(iii) The values of Re½TV �ðz ¼ 0Þ tend to become more
positive as the scale ðapÞ2 increases, while
Re½TV �ðz > 0Þ become more negative.

(iv) Re½TV �ðz > 0Þ has a similar range of values,
½0;−0.04� for all values of z shown. On the contrary,
Im½TV �ðz > 0Þ has both positive and negative values
that span the interval ½−0.04; 0.06�.

The interplay between real and imaginary parts of TV has
nontrivial implications on Eq. (11) due to its complex
nature and will be studied numerically in Sec. V. For
convenience, in Fig. 4 we directly compare the artifacts of
Figs. 2 and 3 for z ¼ 1, 8, 15, in order to illustrate the z
dependence of the finite-a contributions.

V. NONPERTURBATIVE IMPROVED RESULTS

Here we demonstrate the effectiveness of the proposed
renormalization prescription using the vertex functions of
the vector operator, Γ ¼ γ0, which is free of mixing and is
used for the calculation of physical matrix elements related
to the unpolarized PDF. We checked that the conclusions
drawn here are also valid for the axial and tensor operators.
We use two ensembles of Nf ¼ 2 twisted mass fermions
with a clover term and Iwasaki gluons. The volume is
243 × 48, lattice spacing a ¼ 0.0938 fm, and the corre-
sponding values of the pion mass are 235 and 340 MeV.
More details can be found in Refs. [35,43]. We find that the
level of improvement is the same for both ensembles and
present results for the 235MeV case. It should be noted that
the nonperturbative vertex functions have been obtained
using five steps of stout smearing, while the perturbative

calculation is performed without smearing. Therefore, the
effect of the subtraction of lattice artifacts can potentially be
further improved when the stout dependence is calculated;
this remains to be seen. We refer the reader to Sec. VI for
the calculational setup.
The effect of the improvement scheme is best evaluated

after the ZO estimates are converted to the MS or MMS
schemes, where the residual dependence on the initial RI
scale is Oðg4Þ. Here, we use the MMS scheme [43], which
is employed by the Extended Twisted Mass Collaboration.
All data have been evolved to a scale of 2 GeV using the
conversion factor of Ref. [40].
As mentioned previously, the nonperturbative renorm-

alization functions should ideally be determined on spa-
tially isotropic momenta with P4 as close to 0.25, which
correspond to the fully isotropic case (temporal and
spatial). Such choices put very strict limits on the number
of RI0 scales in a range in which both hadronic contam-
inations are small and perturbation theory is valid. It is,
thus, desirable to expand the range of momenta by relaxing
the criterion for P4. Here, we use momenta that satisfy
0.25 ≤ P4 ≤ 0.41 and have ðapÞ2 up to 7.
Figure 5 shows the raw nonperturbative data for ZVð1Þ,

ZVð2Þ, and ZVð3Þ, as well as the corresponding improved
ones. Similarly, Figs. 6 and 7 show ZV for z=a ¼ 4–6 and
z=a ¼ 7–9, respectively. Focusing on the real part of ZV ,
we find that the effect of the subtraction of lattice artifacts
as proposed in Eq. (11) works very well up to z ¼ 7a∼
0.65 fm. Beyond that region, the subtraction method does
not perform well, particularly for P4 > 0.29. This is not
surprising because such values of z exceed the perturbative
region, and the one-loop perturbative results become
unreliable. Nevertheless, the method appears to be suc-
cessful for z < 0.65 fm. In particular, the “wiggling” effect

FIG. 3. The imaginary part of TV in the Landau gauge for
β ¼ 2.10 and cSW ¼ 1 as a function of ðapÞ2. We use z ¼ 1, 3, 6,
9, 12, 15. The filled black symbols correspond to ðapÞ values that
have P4≲ 0.26.

FIG. 4. The real (top) and imaginary (bottom) parts of TV in the
Landau gauge for β ¼ 2.10 and cSW ¼ 1 as a function of ðapÞ2.
Blue, green and red symbols correspond to z ¼ 1, 8, 15,
respectively.
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between the different classes of momenta disappears for
almost all values of P4. This is a highly nontrivial feature
of the improved estimates. In addition, we observe the
formation of good plateaus that allows one to reliably take
the limit ðaμ0Þ2 → 0. The quality of the plateaus improves
further if we apply a cut on the data at P4 ¼ 0.3, as shown
in the figures. It is noteworthy that the raw nonperturbative
data produce a linear dependence in ðaμ0Þ2 for P4 ¼ 0.25,
which, however, has a sizable slope leading to an unreliable
estimate at ðaμ0Þ2 → 0.
We also find interesting features in the imaginary part of

ZV . The first observation is that for z ≤ 4a, the subtraction
of lattice artifacts results in an estimate which is closer to

zero than the purely nonperturbative ones. In fact, the
imaginary part of the improved estimates is always closer to
zero in the region ðaμ0Þ2 < 5. This is a desired feature
because in dimensional regularization the poles are real to
all orders in perturbation theory. The same feature should
hold for nonperturbative calculations if a conversion factor
to high enough order in g2 were available. In addition,
the improved estimates [Eq. (11)] for the small-z region
(z < 0.4 fm) have a smoother dependence on ðaμ0Þ2
compared to the purely nonperturbative estimates [Eq. (9)].
As z increases, discontinuities are observed between differ-
ent classes of momenta, in particular for ðaμ0Þ2 ≳ 3.5. A
milder effect is observed for momenta satisfying P4 < 0.3.

FIG. 6. The same as Fig. 5 for z ¼ 4, 5, 6.

FIG. 5. Estimates of real (left) and imaginary (right) parts of ZVðz=aÞ in the MMS scheme at a renormalization scale of 2 GeV,
as a function of the initial RI0 scale. From top to bottom we show the values for z ¼ 1, 2, 3. Black circles correspond to
Eq. (9) (raw) and magenta diamonds to Eq. (11) (improved). Filled violet diamonds are the improved estimates of Eq. (11) using
RI0 scales that satisfy P4 < 0.3.
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It is interesting to observe that the purely nonperturbative
data have a smoother ðaμ0Þ2 dependence in the large-z
region compared to the improved ones. This indicates that
the real and imaginary parts have different contamination
from finite-a contributions. We note that the inclusion of
stout smearing in the perturbative calculation, as described
in Sec. VI, has the potential to improve the effectiveness of
the subtraction.

VI. STOUT IMPROVEMENT

A standard way of improving the behavior of operator
matrix elements is implemented by applying stout smear-
ing to link variables [36]. This procedure is typically
performed as an iteration of smearing steps; starting

from the original link variables Uð0Þ
μ ðxÞ≡Ux;xþaμ≡

expðigaAð0Þ
μ ðxþ aμ=2ÞÞ, the ith iteration step performs

the following replacement [44]:

UðiÞ
μ ðxÞ → Uðiþ1Þ

μ ðxÞ ¼ eiQ
ðiÞ
μ ðxÞUðiÞ

μ ðxÞ; ð16Þ

where the definition of QμðxÞ is [the superscript (i),
denoting smearing step, is implicit]

QμðxÞ ¼
ω

2i

�
VμðxÞU†

μðxÞ −UμðxÞV†
μðxÞ

−
1

3
TrðVμðxÞU†

μðxÞ −UμðxÞV†
μðxÞÞ

�
: ð17Þ

The “stout coefficient” ω is a tunable parameter and
VμðxÞ represents the sum over all staples associated with
the link UμðxÞ.

The implementation of stout smearing on links which
are produced in numerical simulations is straightfor-
ward; several smearing steps are generally applied in
order to optimize improvement in measured quantities.
On the other hand, calculations in lattice perturbation
theory, in the presence of a smeared action or of
smeared operators, are prohibitively complicated even
at one loop, given the extraordinary proliferation of
terms in the corresponding vertices; as a result, such
calculations can usually be performed only when a
maximum of two smearing steps have been
applied. [37,45].
Despite the sheer complexity of constructing and using

vertices with stout links, there are two general classes of
vertices which can be expressed in a compact form, even
for an arbitrary number of smearing steps: The first class
regards vertices in which only one field is a gluon. The
second class regards vertices in which two fields are
gluons; this class leads to compact expressions only for
that part of the vertices which does not vanish when the
color indices of the two gluons are contracted (i.e., the
part which is free of commutators). Thus, there are
several instances of Green’s functions (GFs), typically
at one loop, which can be thoroughly computed with
relative ease for any number of smearing steps. Such
instances include (i) the fermion propagator, (ii) GFs with
external fermion-antifermion lines and an insertion of any
fermion local bilinear operator of arbitrary twist, and
(iii) GFs with external fermion-antifermion lines and an
insertion of a fermion nonlocal bilinear. The latter
instance is of course the focus of the present work;
however, the explanation which follows regards generic
one- and two-gluon vertices.

FIG. 7. The same as Fig. 5 for z ¼ 7, 8, 9.
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Let us first derive the terms up toOðgÞ (one-gluon) in a link after one smearing step. In terms of the Fourier transformed

gluon field Ãð0Þ
μ ðpÞ, one obtains

Uð1Þ
μ ðxÞ ¼ 1þ iga

X4
ρ¼1

Ãð0Þ
ρ ðpÞeipρ=2

�
δμρ

�
1þ ω

X4
σ¼1

ðeipσ þ e−ipσ − 2Þ
�
þ ωð1 − e−ipρ − eipμ þ eipμ−ipρÞ

�

¼ 1þ igaeipμ=2
X4
ρ¼1

Ãð0Þ
ρ ðpÞðδρμ − ωðδρμp̂2 − p̂ρp̂μÞÞ

�
p̂μ ≡ 2 sinðpμ=2Þ; p̂2 ≡X4

ρ¼1

p̂2
ρ

�

≡ eigae
ipμ=2Ãð1Þ

μ ðpÞ; where Ãð1Þ
μ ðpÞ ¼

X4
ρ¼1

Ãð0Þ
ρ ðpÞ

�
ð1 − ωp̂2Þ

�
δρμ −

p̂ρp̂μ

p̂2

�
þ p̂ρp̂μ

p̂2

�
þOðg2Þ: ð18Þ

[For conciseness, an integral
R
π
−π d

4peip·x̄=ð2πÞ4, accompanying each gluon field ÃρðpÞ, is left implicit. x̄≡ x=a is a four-
vector with integer components.]
From the above expression it follows that the longitudinal part of the gluon field remains intact, while the transverse part

is multiplied by a factor ð1 − ωp̂2Þ. This feature propagates to successive smearing steps, with potentially different stout
coefficients (ω, ω0):

Ãð2Þ
μ ðpÞ ¼

X4
ρ¼1

Ãð1Þ
ρ ðpÞ

�
ð1 − ω0p̂2Þ

�
δρμ −

p̂ρp̂μ

p̂2

�
þ p̂ρp̂μ

p̂2

�
þOðg2Þ

¼
X4
ρ¼1

X4
σ¼1

Ãð0Þ
σ ðpÞ

�
ð1 − ωp̂2Þ

�
δσρ −

p̂σp̂ρ

p̂2

�
þ p̂σp̂ρ

p̂2

��
ð1 − ω0p̂2Þ

�
δρμ −

p̂ρp̂μ

p̂2

�
þ p̂ρp̂μ

p̂2

�
þOðg2Þ

¼
X4
σ¼1

Ãð0Þ
σ ðpÞ

�
ð1 − ωp̂2Þð1 − ω0p̂2Þ

�
δσμ −

p̂σp̂μ

p̂2

�
þ p̂σp̂μ

p̂2

�
þOðg2Þ: ð19Þ

Thus, a succession of N steps with the same coefficient ω leads to

UðNÞ
μ ðxÞ ¼ eigae

ipμ=2ÃðNÞ
μ ðpÞ; ÃðNÞ

μ ðpÞ ¼
X4
σ¼1

Ãð0Þ
σ ðpÞ

�
ð1 − ωp̂2ÞN

�
δσμ −

p̂σp̂μ

p̂2

�
þ p̂σp̂μ

p̂2

�
þOðg2Þ: ð20Þ

Terms with two or more gluons in the exponent of smeared links [i.e., theOðg2Þ terms in ÃðNÞ
μ ðpÞ] are considerably more

complicated. However, given that UðNÞ
μ ðxÞ is special unitary by construction, two-gluon terms in its exponent will

necessarily involve a commutator; consequently, such terms will give a vanishing contribution in Feynman diagrams where
the color indices of the two gluons end up being identified. In such diagrams, the two-gluon expression arising from a
smeared link is simply

UðNÞ
μ ðxÞ ¼ ðigaÞ2

2
ðeipμ=2ÃðNÞ

μ ðpÞÞðeip0
μ=2ÃðNÞ

μ ðp0ÞÞ ½only two-gluon part; no commutators�: ð21Þ

Let us apply the above to the zero-, one- and two-gluon vertices of the nonlocal operatorOðNÞ
Γ , defined as in Eq. (5), with

N-fold smeared links. Setting z ¼ an, n ∈ N, we obtain

OðNÞ
Γ ¼

Z
π

−π

d4kd4k0

ð2πÞ8 eiðk0−kÞ·x̄eik0μn ˜̄ψðkÞΓVψ̃ðk0Þ; where; omitting commutators; ð22Þ
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V ¼
�
1þ ga

2

Z
π

−π

d4p
ð2πÞ4 e

ip·x̄
X4
ρ¼1

Ãð0Þ
ρ ðpÞ eipμn − 1

sinðpμ=2Þ
�
ð1 − ωp̂2ÞN

�
δρμ −

p̂ρp̂μ

p̂2

�
þ p̂ρp̂μ

p̂2

�

þ ðgaÞ2
8

Z
π

−π

d4pd4p0

ð2πÞ8 eiðpþp0Þ·x̄ X4
ρ;σ¼1

Ãð0Þ
ρ ðpÞÃð0Þ

σ ðp0Þ eipμn − 1

sinðpμ=2Þ
eip

0
μn − 1

sinðp0
μ=2Þ

·

×

�
ð1 − ωp̂2ÞN

�
δρμ −

p̂ρp̂μ

p̂2

�
þ p̂ρp̂μ

p̂2

��
ð1 − ωp̂02ÞN

�
δσμ −

p̂0
σp̂0

μ

p̂02

�
þ p̂0

σp̂0
μ

p̂02

��
: ð23Þ

The appearance of the stout parameter ω exclusively
in the combination ð1 − ωp̂2ÞN provides a point of refer-
ence for the numerical values of ω to be employed:
Given that the maximum value of p̂2 is 16, and its average
value is 8, one may expect that values of ω in the range
1=16≲ ω≲ 1=8 tend to eliminate the transverse part of the
gluon fields after several smearing steps. This, in particular,
implies a vanishing result for diagrams d2–d4 (see Fig. 1)
in the Landau gauge, leaving only diagram d1; since the
latter coincides with its continuum counterpart, it follows
that there would be no lattice corrections to this order.
Conversely, values of ω beyond ω≳ 1=8 risk a dispropor-
tionate increase of lattice artifacts in the transverse gluon
field. Nonperturbatively, the value of ω can be tuned using
the criterion that the plaquette reaches maximum value for a
given number of smearing steps, and typical values for ω
are around 0.1.
As a demonstration, we show numerical results for the

linear divergence

Λd4ðωÞ ¼
g2CF

16π2
jzj
a
ðe0 þ eNω

Þ; ð24Þ

where the coefficient eNω
depends on the gluon action,

the steps of stout smearing, Nω, and the value of ω. We
separate the coefficient of the linear divergence in the
absence of stout smearing, e0. Here we use Iwasaki
gluons and find e0 ¼ −12.98. The numerical values of
eNω

are shown in Table I for a few choices of ω and

Nω ∈ ½1; 10�. Given the gauge invariance of the linear
divergence, the Landau-gauge statements of the previous
paragraph, regarding dependence on ω and Nω are
directly applicable here.
The values ω ¼ 0.1, 0.125, 0.15 have been implemented

in numerical calculation of matrix elements of nonlocal
operators [43,46,47]. The values ω < 0.1 are included for
pedagogical reasons. The data can be compared in different
ways leading to various conclusions. Firstly, for all cases,
the increase of stout steps leads to an increase of the eNω

value (see, also, left panel of Fig. 8). Because of the
different sign of eNω

and e0, this leads to a suppression of
the linear divergence contribution in the matrix elements.
This corroborates the use of multiple smearing steps in
physical matrix elements to suppress the linear divergence
in the renormalization functions. Secondly, very small
values of ω lead to small additions to e0, and, thus, the
stout smearing does not have any practical benefit. Thirdly,
eNω

is not too sensitive to the value of ωwhen chosen in the
range ½0.1 − 0.15�, which are the values employed in
nonperturbative calculations of physical matrix elements.
Lastly, the value of eNω

demonstrates convergence as the
number of steps increases. This effect can also be seen in
the right panel of Fig. 8 where we plot the ratio Nω=Nω−1.
The ratio approaches unity, typically after five steps of
smearing for ω ¼ 0.05–0.15. While the setup and the
conclusions described above are valid in one-loop pertur-
bation theory, they are also indicative for the nonperturba-
tive behavior.

TABLE I. Stout-step dependence of linear divergence, eNω
, for Iwasaki gluon action and various values of ω.

Nω

ω 1 2 3 4 5 6 7 8 9 10

0.001 0.085 0.168 0.251 0.333 0.414 0.494 0.573 0.651 0.729 0.805
0.010 0.825 1.560 2.217 2.806 3.335 3.812 4.243 4.633 4.988 5.311
0.050 3.643 5.621 6.817 7.605 8.161 8.575 8.897 9.155 9.369 9.549
0.100 6.083 7.849 8.716 9.246 9.613 9.887 10.10 10.28 10.42 10.55
0.125 6.852 8.426 9.180 9.643 9.967 10.21 10.40 10.56 10.69 10.80
0.150 7.319 8.805 9.500 9.927 10.22 10.45 10.62 10.77 10.89 10.99
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VII. SUMMARY

In this work, we propose an improvement to RI-type
prescriptions for the renormalization of fermion bilinear
nonlocal operators containing a straight Wilson line. The
method is inspired by its successful implementation in local
operators [31–35] and can be generalized to any operator,
for instance, nonlocal operators with staple-shaped Wilson
line or gluon operators. The improved renormalization
scheme is applied to nonperturbative vertex functions
and uses results of the operators’ Green’s functions from
a perturbative calculation in lattice QCD to all orders in the
lattice spacing, Oððg2Þna∞Þ. The approach is applicable to
any order in perturbation theory, but we find that the one-
loop level (n ¼ 1) is sufficient to reduce the bulk of finite-a
effects. While the method utilizes perturbation theory, the
renormalization functions maintain their nonperturbative
nature: The subtraction of finite-a effects as outlined in
Eq. (11) can be interpreted as an additional finite renorm-
alization containing only higher orders in a.
In our proof-of-concept calculation we implement the

improved scheme to two Nf ¼ 2 ensembles of twisted
mass fermions with a clover term and Iwasaki gluons. The
ensemble has β ¼ 2.10 (a ¼ 0.0938 fm) and lattice size
243 × 48. Here, we present results for the ensemble with a
pion mass of 235 MeV, which was used in Ref. [43] for the
nonperturbative renormalization of PDFs. We note that our
existing perturbative calculation is easily adaptable to any
gluon action (plaquette, tree-level Symanzik, Iwasaki and
tadpole-improved Lüscher-Weisz) and Wilson clover fer-
mions. Also, the Dirac structure of the operator, Γ, and the
parameters g2, cSW, the gauge fixing parameter α, ðapÞ2 are
chosen at the last stage of the calculation.

We find that the proposed renormalization scheme
[Eq. (11)] is advantageous compared to the purely non-
perturbative one [Eq. (9)], as it has better control of
unwanted finite-a effects. As a consequence, one can
include in nonperturbative calculations a wider range of
renormalization scales ðaμ0Þ2, as well as P4 values beyond
the most democratic ones (P4 ¼ 0.25), a measure of the
Lorentz noninvariant finite-a contributions. For example, in
the calculations of the renormalization of nonlocal oper-
ators done so far [43,46,48–55] only about ten values of the
scale were used covering a small ðaμ0Þ2 interval, typically
½2 − 4�; These momenta are chosen based on the P4 < 0.28
criterion. Here, we are able to include in our nonperturba-
tive analysis 38 values of ðaμ0Þ2 that cover a range of about
½1 − 7�. The improvement of the renormalization functions
works well even at P4 around 0.4 for z ≤ 6, which is a
significant advantage. However, caution is needed because
of the limitations of perturbation theory that are manifested
at high values of z. In this analysis we find improvement for
z up to 0.65 fm. Another conclusion from this calculation is
that the subtraction of Oðg2a∞Þ terms has different effec-
tiveness in the real and imaginary parts of the renormaliza-
tion function with respect to z. In particular, the real part is
still improved for z > 0.65 fm, while the imaginary part
worsens. With this in mind, one can employ an alternative
scheme to subtract the artifacts, which has different zmax for
the real and imaginary parts.
As mentioned in the main text, the subtraction of the

finite-a terms is done in the absence of stout smearing,
which is computationally more expensive due to a fast
increase of additional terms in the Green’s functions. In this
work we lay the foundation for a calculation that contains
stout smearing. Our proposal gives, for the first time,

FIG. 8. Left: Stout-dependent coefficient eNω
of the linear divergence in the Green’s functions as a function of the stout steps,

Nω ∈ ½1 − 10�. The results for the stout smearing parameter ω ¼ 0.001, 0.01, 0.05, 0.1, 0.125, 0.15 are shown with cyan circles, green
diamonds, red left triangles, blue right triangles, purple up triangles, and orange down triangles, respectively. Right: the ratio eNω

=eNω−1
for Nω ∈ ½1 − 10�. The notation is the same as in the left panel.
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a prescription to include an arbitrary number of stout steps
with the same computational cost as a single step. This is
applicable to cases involving Feynman diagrams with up to
two gluons that will be contracted to each other (see, e.g.,
d4 in Fig. 1), like the cases presented here. This is very
powerful, as the nonperturbative calculations are performed
with 5–20 stout steps, which is prohibitive in lattice
perturbation theory without the approach of Sec. VI.
The applicability of the method can encompass a wide

range of operators for both quark and gluon external fields,
local and nonlocal cases. For gauge-invariant nonlocal
operators, other choices of Wilson lines can be accom-
modated. Perturbative and nonperturbative results exist in
the literature, such as nonlocal operators with staple-shaped
Wilson lines [56–58], and could be an interesting extension
of this work. Another direction that can be immediately
pursued is the incorporation of the improved RI scheme

within the hybrid scheme [28], in which an RI-type
prescription can be employed in the small-z region.
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