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We show that methods developed in the context of perturbative calculations can be transferred to
nonperturbative calculations. We demonstrate that correlation functions on the lattice can be computed
with the method of differential equations, supplemented with techniques from twisted cohomology. We
derive differential equations for the variation with the coupling or—more generally—with the parameters
of the action. Already simple examples show that the differential equation with respect to the coupling has
an essential singularity at zero coupling and a regular singularity at infinite coupling. The properties of
the differential equation at zero coupling can be used to prove that the perturbative series is only an
asymptotic series.
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I. INTRODUCTION

Correlation functions (or scattering amplitudes in
momentum space) are fundamental objects in quantum
field theory. Standard methods to compute them are
perturbation theory in the small coupling regime or
numerical lattice simulations in the strong coupling regime.
Not much is known for the analytic computation of
correlation functions at finite coupling; some approaches
in this direction have been considered in [1–4].
Correlations functions usually require a regularization

scheme to regulate ultraviolet and/or infrared singularities.
In this paper we use lattice regularization. Lattice regu-
larization also implies that the space of all correlation
functions is a finite-dimensional vector space [5] and in this
paper we exploit the finite dimensionality of this vector
space.
We show how to derive a first-order system of differ-

ential equations for the lattice correlation functions with
respect to the parameters appearing in the action (like the
couplings). Integration of the system of differential equa-
tions with appropriate boundary values gives the lattice
correlation functions at finite coupling without resorting to
perturbation theory.
Although the treatment in this paper is entirely non-

perturbative, we transfer methods which are known from
the computation of Feynman integrals to the computation

of lattice integrals. These are the well-established technique
of integration by parts [6,7], the method of differential
equations [8–11] and the formulation in terms of twisted
cohomology [12–30]. The following dictionary is useful:
The lattice integrals span a finite-dimensional vector
space, as do the Feynman integrals belonging to a specific
topology. Lattice integrals depend on parameters (the
parameters appearing in the action, for example the
coupling) and so do Feynman integrals (they depend on
kinematic variables). In both cases we set up a differential
equation, describing the variation with respect to these
parameters. In deriving this differential equation, integra-
tion-by-parts identities are used in both cases. In a more
mathematical language we have a vector bundle, where the
parameters are coordinates on the base manifold and the
fiber is the above-mentioned finite-dimensional vector
space. Instead of looking at integrals it is convenient to
focus on the integrands and here, in particular, on equiv-
alence classes of integrands with respect to a covariant
derivative. These equivalence classes are called twisted
cocycles and both lattice integrals and Feynman integrals
can be discussed in this framework.
Our method works in principle for any space-time

dimension and any lattice size. However, with current
algorithms the complexity grows exponentially with the
number of lattice points and in practice one is limited to
small lattices in low dimensions. For these examples our
method gives access to analytic properties of lattice
correlation functions not available from numerical
Monte Carlo simulations.
Although the method to obtain the differential equations

is similar between lattice correlation functions and
Feynman integrals, the resulting systems of differential
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equations are not: The known differential equations for
Feynman integrals have only regular singularities. This is
not the case for the differential equations for lattice
integrals: Already in simple examples we encounter essen-
tial singularities. This is expected in the continuum limit as
it is believed that the perturbative series in the continuum
limit is only an asymptotic series (for a review see
Ref. [31]). It is remarkable that already simple lattice
systems show this behavior: We demonstrate that the
perturbative series for a simple lattice example is only
an asymptotic series.

II. NOTATION

We review the setup from [5]. We consider a lattice Λ
with lattice spacing a in D ∈ N Euclidean space-time
dimensions. For simplicity we assume that the lattice
consists of L points in any direction. We assume periodic
boundary conditions. The lattice has N ¼ LD points. We
label the lattice points by x1;…; xN and denote the field at a
lattice point x by ϕx. The field at the next lattice point in the
(positive) μ direction modulo L is denoted by ϕxþaeμ. We
consider a scalar theory with Euclidean lattice action SE
given by

SE ¼
X
x∈Λ

�
−
XD−1

μ¼0

ϕxϕxþaeμ þDϕ2
xþ

Xjmax

j¼2

λj
j!
ϕj
x

�
; ð1Þ

with λj ≥ 0 and λjmax
≠ 0. We call λjmax

the leading
coupling. Of particular interest are the cases jmax ¼ 3,
which is called a ϕ3-theory and jmax ¼ 4, which is called a
ϕ4-theory.
We are interested in the lattice integrals

Iν1ν2…νN ¼
Z
CN

dNϕ

�YN
k¼1

ϕνk
xk

�
expð−SEÞ: ð2Þ

The integration contour C is a curve in C and the same for
every field variable ϕx. The integration contour is chosen
such that expð−SEÞ goes to zero as we approach the
boundary. The correlation functions are then given by

Gν1ν2…νN ¼ Iν1ν2…νN

I00…0

: ð3Þ

III. THE DIFFERENTIAL EQUATION

We may reformulate the lattice integrals in the language
of twisted cocycles. We define a function u, a one-form ω
and a N-form Φ by

u ¼ exp ð−SEÞ;
ω ¼ d ln u ¼ −dSE ¼

X
x∈Λ

ωxdϕx;

Φ ¼
�YN

k¼1

ϕνk
xk

�
dNϕ: ð4Þ

In terms of these quantities we may rewrite the integral in
Eq. (2) as

Iν1ν2…νN ¼
Z
CN

uΦ: ð5Þ

The one-form ω defines a covariant derivative∇ω ¼ dþ ω.
By assumption, the integrandvanishes on theboundary of the
integration. This leads to integration-by-parts identities. In
terms of Φ this translates to the statement that the integral is
invariant under transformations

Φ0 ¼ Φþ∇ωΞ; ð6Þ

for any (N − 1)-form Ξ. In addition, Φ is obviously ∇ω-
closed. It is therefore natural to consider the twisted coho-
mology groupHN

ω defined as the equivalence classes of∇ω-
closed N-forms modulo exact ones. We denote the equiv-
alence classes by hΦj and refer to these as twisted cocycles. In
a similar way we denote the integration cycle by jCNi and
refer to it as a twisted cycle. We also write

Iν1ν2…νN ¼ hΦjCNi ð7Þ

to emphasize that the integral is a pairing between a twisted
cocycle and a twisted cycle. In the following we focus on the
twisted cocycles hΦj. Our method relies on the fact that the
twisted cohomology group HN

ω is finite dimensional. For
ϕjmax-theory the dimension is given by

NF ¼ dimHN
ω ¼ ðjmax − 1ÞN: ð8Þ

A basis he1j;…; heNF
j is given by [5]

�YN
k¼1

ϕνk
xk

�
dNϕ; 0 ≤ νk ≤ jmax − 2: ð9Þ

Using intersection numbers we may express any hΦj as a
linear combination of the basis heij:

hΦj ¼
XNF

i¼1

ciheij: ð10Þ

The coefficients ci are independent of the field variables ϕx.
Integrating both sides over the twisted cycle jCNiwe see that
we may write any lattice integral as
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hΦjCNi ¼
XNF

i¼1

ciheijCNi: ð11Þ

Let us denote by

I1 ¼ he1jCNi;…; INF
¼ heNF

jCNi ð12Þ

the set of lattice integrals corresponding to the basis of
twisted cocycles in Eq. (9). This set spans the vector space
of all lattice integrals. It does not need to be a basis: There
could be additional (trivial) relations due to integration,
not seen at the level of the integrands (e.g., dz1 ≠ dz2
but

R
1
0 dz1 ¼

R
1
0 dz2).

Let us now consider the derivative of Iν1…νN with respect
to the coupling λj. Taking the derivative of the exponential
brings down extra factors of the field variables and we
obtain for the scalar theory of Eq. (1)

d
dλj

Iν1…νN ¼ −
1

j!

XN
i¼1

Iν1…ðνiþjÞ…νN : ð13Þ

With the help of Eq. (11) we may reexpress the right-hand
side as a linear combination of the spanning set I1;…; INF

.
Doing this for every element Ii of the spanning set yields

d
dλj

Ii ¼
XNF

k¼1

AikIk: ð14Þ

This is the sought-after differential equation. Readers
familiar with the method of differential equations for
Feynman integrals will certainly recognize the analogy.
We emphasize that the same technique can be applied to a
nonperturbative problem. The differential equation (14) and
appropriate boundary values determine the correlation
functions at all values of the coupling and in particular
at nonsmall values of the coupling.

IV. EXAMPLE 1: ϕ3-THEORY

As our first example we consider massless ϕ3-theory in
D ¼ 1 space-time dimensions with L ¼ 2 lattice points.
We set λ3 ¼ κ. The action is given by

SE ¼ ðϕx1 − ϕx2Þ2 þ
κ

6
ðϕ3

x1 þ ϕ3
x2Þ: ð15Þ

The potential in ϕ3-theory is not bounded from below for
real values of the field variables. In order to satisfy the
condition that expð−SEÞ goes to zero as we approach the
boundary, we take as integration contour a contour with
asymptotic values argϕ ¼ 2π=3 and argϕ ¼ 0, as shown
in Fig. 1. The space of twisted cocycles is four dimensional.
A possible spanning set of lattice integrals is given by

I00; I01; I10; I11: ð16Þ

However, it is more convenient to work with the
spanning set

J1¼ I00; J2¼ I10þ I01; J3¼ I11; J4¼ I10− I01;

ð17Þ

as this spanning set will decouple the differential equation
into a ð3 × 3Þ block and a 1 × 1 block. We find the
differential equations

d
dκ

0
B@

J1
J2
J3

1
CA ¼

0
B@

− 2
3κ 0 − 4

3κ

8
3κ2

− 1
κ

32
3κ2

− 32
3κ3

4
3κ2

− 128
3κ3

− 4
3κ

1
CA
0
B@

J1
J2
J3

1
CA;

d
dκ

J4 ¼
�
−
128

3κ3
−
1

κ

�
J4: ð18Þ

These differential equations have an essential singularity at
κ ¼ 0 and a regular singularity at κ ¼ ∞. It is no surprise
that the differential equations have a singularity at κ ¼ 0, as
for κ ¼ 0 the factor expð−SEÞ no longer tends to zero as we
approach the boundary of the integration contour.
The differential equations have the solution

J1 ¼
c1
κ2 2F2

�
5

6
;
7

6
;
4

3
;
5

3
;
64

3κ2

�

þ c2
κ
4
3
2F2

�
1

2
;
5

6
;
2

3
;
4

3
;
64

3κ2

�

þ c3
κ
2
3
2F2

�
1

6
;
1

2
;
1

3
;
2

3
;
64

3κ2

�
;

J4 ¼
c4
κ
exp

�
64

3κ2

�
; ð19Þ

where 2F2 denotes a hypergeometric function. c1–c4 are
four boundary constants. The integrals J2 and J3 are
obtained by differentiation of J1:

FIG. 1. The integration contour for ϕ3-theory. The asymptotic
values are argϕ ¼ 2π=3 and argϕ ¼ 0.
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J2 ¼ −
9κ3

16

d2J1
dκ2

−
�
24þ 27κ2

16

�
dJ1
dκ

−
�
8

κ
þ κ

2

�
J1;

J3 ¼ −
3κ

4

dJ1
dκ

−
1

2
J1: ð20Þ

The lattice integrals have the symmetry

Iν1ν2 ¼ Iν2ν1 ; ð21Þ

which implies J4 ¼ 0 and c4 ¼ 0. Note however that the
differential equation is derived from the integrands. The
integrand of I10 is not identical to the integrand of I01.
It is possible to go to larger lattices and we give some

indications for the required CPU time on a standard laptop:
For example, it takes about 190 s to compute the differential
equation for D ¼ 1 space-time dimensions with L ¼ 10
lattice points and about 160 s to compute the differential
equation for D ¼ 3 space-time dimensions with L ¼ 2
lattice points in each direction.

V. EXAMPLE 2: ϕ4-THEORY

As our second example we consider massive ϕ4-theory
in D ¼ 1 space-time dimensions with L ¼ 2 lattice points.
We set λ2 ¼ m2 and λ4 ¼ λ. The action is given by

SE ¼ ðϕx1 − ϕx2Þ2 þ
m2

2
ðϕ2

x1 þ ϕ2
x2Þ þ

λ

24
ðϕ4

x1 þ ϕ4
x2Þ:

As integration contour C we take the real axis. The space of
twisted cocycles is nine dimensional. A possible spanning
set of lattice integrals is given by

I00; I01; I02; I10; I11; I12; I20; I21; I22: ð22Þ

Again, it is more convenient to work with the spanning set

J1 ¼ I00; J2 ¼ I11; J3 ¼ I22;

J4 ¼ I20þ I02; J5 ¼ I10þ I01; J6 ¼ I21þ I12;

J7 ¼ I10− I01; J8 ¼ I21− I12; J9 ¼ I20− I02: ð23Þ

This decouples the differential equation with respect to λ
into a ð4 × 4Þ block consisting of ðJ1; J2; J3; J4Þ, a ð2 × 2Þ
block consisting of ðJ5; J6Þ, another ð2 × 2Þ block con-
sisting of ðJ7; J8Þ and a ð1 × 1Þ block consisting of (J9). As
before we have the symmetry of Eq. (21); hence, J7, J8 and
J9 are identical zero. In addition we have that the integrands
of I10, I01, I21 and I12 are antisymmetric under ϕx1 → −ϕx1,
ϕx2 → −ϕx2 . It follows that for the integration contour C
along the real axis J5 and J6 are zero as well. Hence, the
interesting differential equation is the one for the integrals
ðJ1; J2; J3; J4Þ. This differential equation reads

d
dλ

0
BBBB@

J1
J2
J3
J4

1
CCCCA ¼

0
BBBB@

− 1
2λ − 1

λ 0 2þm2

4λ

0 − 3ð2þm2Þ2
λ2

− 1
λ − 1

λ
3ð2þm2Þ

λ2

− 72
λ3

− 72ð6þ4m2þm4Þ
λ3

− 3ð2þm2Þ2
λ2

− 3
2λ

3ð2þm2Þð72þλÞ
2λ3

3ð2þm2Þ
λ2

18ð2þm2Þ
λ2

2þm2

2λ − 3ð12þ4m2þm4Þ
2λ2

− 1
λ

1
CCCCA

0
BBBB@

J1
J2
J3
J4

1
CCCCA: ð24Þ

This differential equation has a regular singularity at λ ¼ ∞
and an essential singularity at λ ¼ 0.
We may rewrite the system of four coupled first-order

differential equations as an ordinary fourth-order differ-
ential equation for one specific integral, say, J1 ¼ I00:

�
d4

dλ4
þ p3

d3

dλ3
þ p2

d2

dλ2
þ p1

d
dλ

þ p0

�
I00 ¼ 0: ð25Þ

p3–p0 are rational functions of λ and m2 and given in an
ancillary file attached to the arXiv version of this article.
We now investigate if this differential equation has a

convergent series solution of the form

λρ
X∞
n¼0

anλn: ð26Þ

We call such a solution a regular solution. Let us denote by
oj the order of the pole of pj at λ ¼ 0 and set gj ¼ jþ oj.
We find

ðg3; g2; g1; g0Þ ¼ ð5; 6; 7; 6Þ: ð27Þ

As g1 ¼ 7 is the maximum among these numbers, it follows
that there is at most one regular solution around λ ¼ 0 (see
Ref. [32], p. 417).
Let us now assume that a solution of the form as in

Eq. (26) exists. From the indicial equation it follows that
ρ ¼ 0. From the differential equation in Eq. (25) we obtain
a recursion relation for the coefficients an:

an ¼ r1an−1 þ r2an−2 þ r3an−3 þ r4an−4: ð28Þ
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The rj are rational functions of n and m2 and given in an
ancillary file attached to the arXiv version of this article.
The recursion relation determines together with the initial
condition an ¼ 0 for n < 0 all coefficients in terms of one
unknown coefficient a0. The function r4 is given by

r4 ¼ −
ðn − 2Þðn − 3Þð2n − 5Þð2n − 7Þ

216n

×
ðm4 þ 4m2 þ 12Þ

m6ðm2 − 2Þðm2 þ 4Þ3ðm2 þ 6Þðm4 þ 4m2 − 4Þ
ð29Þ

and is nonzero for n ≥ 4. Together with the fact that a4 ≠ 0
this shows that the series does not terminate. The proof is
simple: Assume that the series terminates and let ak be the
last nonzero value. We then have akþ4 ¼ r4ak. The left-
hand side is zero due to our assumption, and the right-hand
side is nonzero. This is a contradiction and our assumption
is wrong.
As the series does not terminate it necessarily diverges

for any nonzero value of λ (see Ref. [32], p. 421). The
radius of convergence of the series in Eq. (26) is therefore
zero, contradicting our assumption that a regular solution
around λ ¼ 0 exists.
The series

X∞
n¼0

anλn ð30Þ

is an asymptotic series and coincides with the perturbative
series. For this simple example it is easy to compute the
perturbative series as all integrals reduce to Gaussian
integrals. One finds

an ¼
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2ð4þm2Þ
p ð−1Þn

n!24n
Xn
k¼0

�
n

k

�

×

�
∂

∂S1

�
4k
�

∂

∂S2

�
4ðn−kÞ

e
2ðS1þS2Þ2þm2ðS2

1
þS2

2
Þ

2m2ð4þm2Þ jS1¼S2¼0 ð31Þ

and in particular

a0 ¼
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2ð4þm2Þ
p : ð32Þ

One may verify that the coefficients an computed from
Eq. (31) satisfy the recurrence relation of Eq. (28).
Truncating an asymptotic series to the first few terms gives
approximations, which improve with the number of
included terms up to a certain truncation order. Beyond
this order the series will start to diverge. We have checked
that this happens for λ ¼ 1=2 and m ¼ 1 around n ¼ 15
and for λ ¼ 1=5 and m ¼ 1 around n ¼ 45.

We may compare the solution of the differential equation
with lattice Monte Carlo results. This is shown in Fig. 2 for
the lattice integral I00 as a function of the coupling λ for the
fixed value of the mass parameter m ¼ 1. For the solution
of the differential equation we use boundary values at small
coupling obtained from the perturbative series. Figure 2
shows that the solution of the differential equation and the
lattice Monte Carlo results agree perfectly for all values
of λ. Figure 2 also shows truncated perturbative series
predictions: We plot the NNLO and N3LO predictions. As
expected, they agree reasonably at small values of the
coupling but differ significantly at nonsmall values of the
coupling.
Let us summarize: The perturbative series of Eq. (30)

with the coefficients given by Eq. (31) is just an asymptotic
series for I00 around λ ¼ 0. On the other hand, I00 satisfies
the fourth-order differential equation in Eq. (25) [or
equivalently the system in Eq. (24)]. The differential
equation is more general, as it contains information on
I00 at any value of the coupling.
Also for ϕ4-theory we give some indications for the

required CPU time on a standard laptop for larger lattices:
For example, it takes about 280 s to compute the differential
equation for D ¼ 1 space-time dimensions with L ¼ 8
lattice points and about 1400 s to compute the differential
equation for D ¼ 3 space-time dimensions with L ¼ 2
lattice points in each direction.

VI. CONCLUSIONS

In this article we have shown how to obtain differential
equations for lattice integrals, describing the variation of
these integrals with the parameters appearing in the action.
Supplemented with appropriate boundary values the differ-
ential equations determine the lattice integrals for any

Monte Carlo
N3LO
NNLO

differential equation

�

I 0
0

1086420

3

2.5

2

1.5

1

0.5

0

FIG. 2. The lattice integral I00 as a function of the coupling λ
obtained from the differential equation (green) and lattice
Monte Carlo integration (red). In addition, the plot shows the
perturbative result truncated to third (cyan) and fourth (blue) order.
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values of the action parameters and thus go beyond
perturbation theory.
Analyzing the differential equation for a simple system

already shows that the perturbative series for this system is
only an asymptotic series.
The dimension of the vector space of lattice integrals can

be smaller than the dimension of the twisted cohomology

group. We observe that by an appropriate choice of basis
for the twisted cohomology classes we may decouple the
system of differential equations.
The techniques used to derive the differential equations

are transferred from methods developed in the context of
perturbative calculations. We expect that further refine-
ments of these methods will be beneficial to both fields.
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