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We show that the phase structure of certain staggered fermion theories can be understood on the basis of
exact anomalies. These anomalies arise when staggered fermions are coupled to gravity which can be
accomplished by replacing them by discrete Kähler-Dirac fermions. We first show the existence of a
perturbative anomaly in even dimensions which breaks an exact Uð1Þ symmetry of the massless theory
down to Z4. If we attempt to gauge this Z4 symmetry we find a ’t Hooft anomaly which can only be
canceled for multiples of two Kähler-Dirac fields. This result is consistent with the cancellation of a further
mixed nonperturbative ’t Hooft anomaly between the global Z4 and a reflection symmetry. In four-
dimensional flat space, theories of two staggered fields yield eight Dirac or 16 Majorana fermions in the
continuum limit and this critical number of fermions agrees with results in condensed matter theory
literature on the fermion content required to gap boundary fermions in 4þ 1-dimensional topological
superconductors. It is also consistent with constraints stemming from the cancellation of spin-Z4 anomalies
of Weyl fermions. Indeed, cancellation of ’t Hooft anomalies is a necessary requirement for symmetric
mass generation and this result gives a theoretical explanation of recent numerical work on the phase
diagram of interacting staggered fermions. As an application of these ideas we construct a lattice model
whose low-energy continuum limit is conjectured to yield the Pati-Salam grand unified theory.

DOI: 10.1103/PhysRevD.107.014501

I. INTRODUCTION

Staggered fermions are a well-known lattice discretiza-
tion of relativistic fermions. Their use dates from the
earliest days of lattice gauge theory [1] and they have
since become one of the most popular realizations of lattice
fermions employed in large-scale high-precision simula-
tions of QCD—see Ref. [2] and references therein. Given
this history one might imagine that there was little new to
say concerning theoretical aspects of staggered fermions. In
this paper we argue that this is not the case; staggered
fermions are subject to certain gravitational ’t Hooft
anomalies which can be captured exactly in the lattice
theory and which play a role in determining the infrared
dynamics in these theories.
Our work was driven, in part, by recent observations of

new phases of interacting staggered fermions in which the
fermions acquire mass without breaking any exact lattice
symmetries [3–8]. In this paper we will argue that the
existence of such massive symmetric phases requires the
cancellation of certain ’t Hooft anomalies. To see these

anomalies one needs to generalize staggered fermions to
curved space. Fortunately this is possible by exploiting
their known connection to Kähler-Dirac fermions. In spite
of the need for curved space to expose these anomalies we
should stress that they have direct consequences for the
possible phases of staggered fermions in flat space.
The plan of the paper is as follows. In the next section we

present a lightning summary of the essential features of
staggered fermions. This is followed by a review of Kähler-
Dirac fermions including their connection to staggered
fermions and their discretization on random triangulations
which are necessary to describe curved space. We then
show how discrete Kähler-Dirac fermions in even dimen-
sions suffer from an anomaly that breaks an exact global
Uð1Þ symmetry to Z4. This global symmetry is a gener-
alization of the usual Uð1Þϵ of staggered fermions to a
general random triangulation.
We then demonstrate how to gauge the Kähler-Dirac

action under this Z4 symmetry and show that in general
there is an obstruction to this process indicating the
presence of a ’t Hooft anomaly. We then show that this
anomaly can be canceled and the partition function
rendered gauge invariant if the theory contains multiples
of two Kähler-Dirac fields. Finally we use a spectral flow
argument to expose the presence of a further nonperturba-
tive ’t Hooft anomaly in the system corresponding to a
mixed anomaly between the Z4 symmetry and a reflection
symmetry. It can be seen by examining the propagation of
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Kähler-Dirac fermions on nonorientable triangulations. We
show that this anomaly can also be canceled if the number of
Kähler-Dirac fields is zeromod2.Finallyweuse these results
to construct a staggered latticemodelwhose low-energy limit
we argue targets the Pati-Salam grand unified theory (GUT).

II. REVIEW OF STAGGERED FERMIONS

In this section we briefly review the aspects of staggered
fermions which we will need for our later discussion of
Kähler-Dirac fermions. The free staggered fermion action
takes the form

S ¼
X
x;μ

ημðxÞχ̄ðxÞΔμχðxÞ þ
X
x

mχ̄ðxÞχðxÞ; ð1Þ

where Δμ is a symmetric difference operator defined by

ΔμfðxÞ ¼
1

2
ðfðxþ μÞ − fðx − μÞÞ ð2Þ

and ημðxÞ ¼ ð−1Þ
P

μ−1
i¼1

xi are the well-known staggered
fermion phases which depend on the coordinates of sites
in a hypercubic lattice. The staggered fields χðxÞ and χ̄ðxÞ
are single-component Grassmann fields. In addition to the
simple Uð1Þ phase invariance corresponding to χ → eiβχ
and χ̄ → χ̄e−iβ the staggered action at m ¼ 0 is also
invariant under an additional Uð1Þ symmetry which trans-
forms the fields according to

χðxÞ → eiαϵðxÞχðxÞ;
χ̄ðxÞ → χ̄ðxÞeiαϵðxÞ; ð3Þ

where ϵðxÞ ¼ ð−1Þ
P

d
i¼1 is the site parity. Indeed in this

limit the action decomposes into two independent pieces:

S ¼
X
x;μ

ημðxÞχ̄−ðxÞΔμχþðxÞ þ ημðxÞχ̄þðxÞΔμχ−ðxÞ; ð4Þ

where

χ�ðxÞ ¼
1

2
ð1� ϵðxÞÞχðxÞ: ð5Þ

If we retain just one of these pieces—say the first—we
obtain a reduced staggered action in which each lattice site
contains a single reduced fermion field—χþ on even lattice
sites and χ̄− for odd-parity sites. Renaming χ̄− → χ− we
can then write the reduced action in the simple form

Sred ¼
X
x;μ

ημðxÞχðxÞΔμχðxÞ: ð6Þ

The most common derivation of this action arises by spin
diagonalizing the continuum Dirac action but it is better for

our purposes to think of it as arising from discretization of
the continuum action for a Kähler-Dirac field. In the next
section we will review Kähler-Dirac fermions and their
connection to staggered fermions.

III. KÄHLER-DIRAC FERMIONS
ON AND OFF THE LATTICE

The Laplace–de Rham or Kähler-Dirac operator d − d†,
where d is the exterior derivative, is a natural square root of
the Laplacian and can be used to write down an equation for
fermions which is an alternative to the Dirac equation [9]:

ðd − d† þmÞΦ ¼ 0: ð7Þ

The Kähler-Dirac field Φ ¼ ðϕ;ϕμ;…ϕμ1…μDÞ is a collec-
tion of antisymmetric tensor (p-form) fields defined on a
general D-dimensional Riemannian manifold. In flat space
one can use these forms to build a 2D=2 × 2D=2 matrix Ψ
using elements of the Clifford algebra:

Ψ ¼
XD
n¼0

ϕμ1…μnγ
μ1…γμD: ð8Þ

It is then a straightforward exercise to show that this matrix
field satisfies the usual Dirac equation and describes 2D=2

degenerate Dirac spinors corresponding to the columns
of Ψ [10].
The fact that Kähler-Dirac fermions are equivalent to

multiplets of Dirac fermions in flat space ceases to be true
in curved space. One way to see this is to recognize that the
Kähler-Dirac equation [Eq. (7)] is well defined for any
smooth manifold—not just those supporting a spin struc-
ture. In fact the global properties of Kähler-Dirac fermions
are very different from Dirac—for example the zero modes
of the Kähler-Dirac equation on a compact space are simply
the harmonic forms. This means that there are zero modes
on spaces with positive curvature such as the sphere which
is not true of Dirac fermions.
The Kähler-Dirac equation possesses another key ad-

vantage over the Dirac equation; it can be discretized
without introducing spurious fermion doubler modes.1

We assume that any curved space can be approximated
by a suitable oriented triangulation and discretization
proceeds by mapping continuum p-forms to fields defined
on p-simplices in the triangulation (sometimes called
p-cochains in the literature). Each p-simplex is specified
by a list of (pþ 1) vertex labels ½a0;…ap� and the
p-simplex field ΦðpÞ is given by the formal sum

1Of course the resulting lattice theory leads to 2D=2 Dirac
spinors in the continuum limit but this is also a feature of the
continuum theory—discretization does not add to this existing
degeneracy.
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ΦðpÞ ¼
X

p-simplices

½a0;…; ap�ϕðpÞ
½a0;…;ap�: ð9Þ

Discrete analogs of d and its adjoint d† exist—the coboun-
dary δ̄ and boundary δ operators [11–14] with the action of
δ on a p-simplex field being given by

δpΦðpÞ ¼
X
p

Xp
k¼0

ð−1Þk½a0;… bak;…; ap�ϕðp−1Þ
½a0;…bak;…;ap�

;

ð10Þ

where âk denotes the vertex that is removed to get the kth
boundary (p − 1)-simplex. Using the abbreviated notation

Cp ≡ ½a0;…; ap�; ð11Þ

we can write this as

δpϕðCpÞ ¼
X
Cp−1

IðCp; Cp−1ÞϕðCp−1Þ; ð12Þ

where IðCp; Cp−1Þ is a Np × Np−1 incidence matrix whose
matrix elements areþ1 ifCp−1 is contained in the boundary
of Cp with the correct orientation, −1 if it occurs with
opposite orientation and zero otherwise. Similarly

δpϕðCpÞ ¼
X
Cpþ1

IðCpþ1; CpÞ†ϕðCpþ1Þ: ð13Þ

The Laplacian operator which maps p-simplex fields to
p-simplex fields is then

IðCp; Cp−1ÞIðCp; Cp−1ÞT þ IðCpþ1; CpÞTIðCpþ1; CpÞ:
ð14Þ

Zero modes of the Kähler-Dirac operator δ − δ̄ are simul-
taneously (discrete) harmonic forms.
Finally an oriented triangulation is one in which each

D-simplex is equipped with a additional Z2 element τðCDÞ
which represents the orientation inside the simplex. One
can think of it as classifying whether a given vertex
ordering is an odd or even permutation of some fixed
vertex ordering such as a0 < a1 < …aD. The boundary
operator is modified to δD → τδD. For an orientable
triangulation τðCDÞ can be chosen in such a way that
each face is held with opposite orientation in the two
D-simplices that share it.
The discrete Kähler-Dirac equation is simply

ðδ − δ̄þmÞΨ ¼ 0; ð15Þ

where δ ¼ P
p δp.

Both the continuum and discrete Kähler-Dirac operators
anticommute with an operator Γ which acts on a given p-
form field by multiplying it by ð−1Þp. This implies that the
associatedmasslessKähler-Dirac action is invariant under a
Uð1Þ symmetry which acts as

Φ → eiαΓΦ;

Φ̄ → Φ̄eiαΓ: ð16Þ
In the continuum its action on the matrix fermion Ψ
corresponds to γ5Ψγ5 and hence in flat space it is some-
times called a “twisted” chiral symmetry. Using Γ one can
build projectors and reduced Kähler-Dirac fields Φ� in
complete analogy to our earlier discussion of reduced
staggered fields. The reduced Kähler-Dirac action for four
reduced fields takes the form

SRKD ¼
Z

Φ̄þKΦ− with K ¼ δ − δ̄: ð17Þ

We can rewrite this in a useful form by introducing the
reduced field ΨT ¼ ðΦ̄þΨT

−Þ as

SRKD ¼
Z

ΨTKΨ; where K ¼
�

0 K

−KT 0

�
: ð18Þ

In flat space one can map the discrete p-form fields into
fields defined on the p-cells of a regular hypercubic lattice
rather than a triangulation. By introducing a new lattice
with half the lattice spacing one can replace these p-cell
fields with single-component fields on this finer lattice
according to the prescription

χðxþ μ̂1 þ μ̂2 þ � � � þ μ̂pÞ ¼ ϕ½μ1…μp�ðxÞ: ð19Þ

From these we can form a discrete Kähler-Dirac matrix
field using

ΨðxÞ ¼
X

χðxþ μ̂1 þ � � � þ μ̂pÞγμ1…γμD

¼
X
b

χðxþ bÞγxþb; ð20Þ

where b is a vector whose components are either zero or
one with the sum extending over the unit hypercube of the
lattice associated with lattice site x. We now plug this into
the continuum matrix action replacing integrals by lattice
sums and the derivative operator by a symmetric difference
operator to obtain

S ¼
X
x

X
b;b0

χ̄ðxþ bÞχðxþ b0 þ μÞTr½ðγxþbÞ†γμγxþb0þμ�

− ðμ → −μÞ: ð21Þ

Evaluating the trace we find a factor of ημðxþ bÞδb;b0 and
the action collapses to the usual one for staggered fermions.
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It can be seen that the staggered fermion phases ημðxÞ just
reflect the antisymmetry of the forms while the operator Γ
becomes just the usual site parity ϵðxÞ. Notice that this
Kähler-Dirac description makes clear how to assemble the
staggered fermion fields to rebuild the continuum Dirac
spinors—they are once again given by columns of the
matrix field Ψ in the given basis of Dirac matrices. At this
point it should be clear that the staggered fermion action is
merely a form of the discrete Kähler-Dirac action special-
ized to a flat hypercubic lattice.

IV. A PERTURBATIVE ANOMALY

The existence of Γ ensures that the spectrum of the
massless Kähler-Dirac operator on a general random
triangulation pairs a state with eigenvalue λ to another
with eigenvalue −λ and ensures that zero modes of the
Kähler-Dirac operator are eigenstates of Γ. Indeed, the
Kähler-Dirac operator on a general triangulation obeys an
index theorem

nþ − n− ¼ χ; ð22Þ
where n� denotes the numbers of zero modes with Γ ¼ �1
and χ is the Euler characteristic of the space.
This index theorem can be related to an anomaly for the

Uð1Þ symmetry given in Eq. (16) by examining the
variation of the lattice Kähler-Dirac fermion measure under
the symmetry [13]. The latter is given by

DΦDΦ̄ ¼
YD
p¼0

YNp

i¼1

dϕpðiÞdϕ̄pðiÞ: ð23Þ

Under eiαΓ this transforms as

DΦDΦ̄ → e2iαðN0−N1þ���þNDÞDΦDΦ̄ ¼ e2iαχDΦDΦ̄; ð24Þ
where χ is the Euler character of the space. Compactifying
RD to SD where χ ¼ 2 one discovers that this gravitational
anomaly breaks Uð1Þ → Z4. Notice that the appearance of
an anomaly in this lattice theory requires only the existence
of exact zero modes carrying well-defined charge under the
generator of the symmetry—it does not require an infinite
numbers of degrees of freedom—and the anomaly can be
computed precisely on the coarsest triangulation of a
manifold with a fixed topology. Ultimately this results
from the fact that the number and identity of zero modes of
the Kähler-Dirac operator are given by the ranks of the
homology groups of the space which are determined by its
triangulation [11]. Notice that this remaining Z4 symmetry
is sufficient to prohibit fermion bilinears from arising as
quantum corrections to the effective action but allows for
four-fermion terms.
One can think of this anomaly as a form of mixed

’t Hooft anomaly corresponding to the breaking of the
globalUð1Þ symmetry of staggered fermions in a nontrivial
background gauge field corresponding to curved space.

The existence of this anomaly has important consequences
for theories of reduced Kähler-Dirac fermions coupled to a
Uð1Þ gauge field and propagating on a curved background.
The anomaly in this case now reflects a violation of gauge
invariance and ruins the consistency of the theory. This is
analogous to the fact that the usual Adler-Bell-Jackiw (ABJ)
anomaly of Dirac fermions implies that it is not possible to
couple a single Weyl field to aUð1Þ gauge field. For a set of
reduced fields it can canceled if the sum of their Γ charges
vanishes.
Alternatively the anomaly can be canceled if the theory

lives on the boundary of a higher-dimensional space where
the bulk theory contains a topological Chern-Simons term
whose anomalous gauge variation cancels that of the
boundary fermions. Details of such an anomaly inflow
mechanism for the case of a three-dimensional bulk with
two-dimensional massless Kähler-Dirac boundary fermions
were given in [15]. This construction generalizes straight-
forwardly to yield a (4þ 1) topological insulator model for
Kähler-Dirac fermions. The bulk theory consists of a
topological gravity theory of Chern-Simons type [16–18]
whose boundary contains a massless four-dimensional
reduced Kähler-Dirac field gauged under a Uð1Þ symmetry
which is inherited from the de Sitter gauge symmetry of the
bulk gravity theory.

V. GAUGING Z4

Quite generally the presence of a ’t Hooft anomaly can be
understood as representing an obstruction to gauging global
symmetries.With this in mind it is instructive to see how one
would go about gauging the residual Z4 global symmetry
discussed in the last section. Again, we will carry out this
procedure directly in the lattice theory. To do this we must
first generalize the boundary operator given in Eq. (10) in
such a way the action is invariant under a local Z4 trans-
formation of the Kähler-Dirac field corresponding to

ϕðCpÞ→ ei
π
2
ð−1ÞpnðCpÞϕðCpÞ; nðCpÞ¼ 0;1;…;3: ð25Þ

This can be done if the incidence matrices IðCp; Cp−1Þ
introduced in Eq. (12) are generalized to Z4 gauge fields
UðCp; Cp−1Þ that transform under gauge transformations as

UðCp; Cp−1Þ → e−i
π
2
ð−1ÞpnðCpÞUðCp; Cp−1Þeiπ2ð−1ÞpnðCp−1Þ:

ð26Þ

In this way a locally Z4 invariant massless action can
be constructed.2 However, to check for gauge invariance of
the full quantum theory we also need to examine the

2It is not hard to take this prescription applied to a cubical cell
decomposition of a regular hypercubic lattice and show that the
fields UðCp;Up−1Þ become the usual gauge links of a staggered
fermion.

SIMON CATTERALL PHYS. REV. D 107, 014501 (2023)

014501-4



measure. For a single Kähler-Dirac field there are two
fermion integrations per p-simplex

R
dϕðCpÞdϕ̄ðCpÞ and

in general this changes by an element of Z2 under a local Z4

transformation. However, it should be clear that the
measure can be made locally invariant if the system
contains multiples of two Kähler-Dirac fields.
Since ’t Hooft anomalies are RG invariants a nonzero UV

anomaly generically requires either massless composite
fermions or Goldstone bosons to be present in the spectrum
of the low-energy theory.3 This implies that only theories
with vanishing UV ’t Hooft anomalies can have a trivial
gapped state in the IR that characterizes a massive sym-
metric phase.

VI. A NONPERTURBATIVE MIXED ANOMALY

We have shown that theories of Kähler-Dirac fermions in
even dimensions possess a discrete global Z4 symmetry on
coupling to gravity. Furthermore we inferred that the
system possesses a ’t Hooft anomaly which arises if we
try to gauge this Z4 symmetry. Cancellation of this anomaly
dictates that the theory must contain multiples of two
Kähler-Dirac fields. We can now ask whether this theory
possesses any additional anomalies. In particular we are
interested in possible mixed ’t Hooft anomalies that arise if
we attempt to gauge any additional global symmetries.
The staggered fermion theory in flat space is clearly

invariant under a reflection symmetry that inverts one
lattice direction.4 In the continuum a reflection operation
corresponds to changing from a right- to a left-handed
coordinate system and hence reverses the orientation.
We can now ask what happens if we now consider

gauging the reflection symmetry. This means allowing for
the freedom to choose the orientation locally on the space.
On an orientable space it is possible to choose a single
orientation for the entire space and this corresponds to a
constant (trivial) background for the corresponding Z2

orientation gauge field. However, on a nonorientable space
this is not possible. Propagation on such a space then
corresponds to choosing a nontrivial background for the
associated orientation gauge field. Notice that these state-
ments can be applied equally to a triangulation of the space.
One can ask whether the use of such a background breaks
any global symmetries of the theory. To answer this we will
consider a triangulation of a particular nonorientable space
—the real projective plane RPD. This has Euler character-
istic χ ¼ 1 corresponding to the fact that on RPD the
Kähler-Dirac operator possesses just a single zero mode (a
0-form). In fact the real projective plane is obtained by
identifying antipodal points on the sphere RPD ∼ SD=Z2.
The question is, what happens to the partition function of a

discrete Kähler-Dirac fermion propagating on such a
triangulation?
Let us decompose the Kähler-Dirac field into two

reduced fields Φ1 and Φ2. To allow for possible Z4

invariant four-fermion terms we couple these fields to a
scalar field σ. To generate four-fermion terms one would
need to add additional terms quadratic in σ to the action but
the argument we give below holds robustly for any action
which is even in σ including actions containing scalar
kinetic terms. The fermion operator is given by

M ¼ δabKþ σðxÞϵab: ð27Þ

We will assume that the total action is invariant under a
discrete symmetry which extends the fermionic Z4 dis-
cussed in the previous section:

Φa → iΓΦa; ð28Þ

σ → −σ: ð29Þ

Notice that this fermion operator is antisymmetric and real
and hence all eigenvalues of M lie on the imaginary axis.
The partition function is then given by the Pfaffian
PfðMðσÞÞ where we will define the latter as the product
of the eigenvalues of MðσÞ in the upper half plane in the
background of some reference configuration σ ¼ σ0. By
continuity we define the Pfaffian to be the product of these
same eigenvalues under fluctuations of σ and, in particular,
under the Z4 transformation σ → −σ. The question that
then arises is whether the Pfaffian is invariant under Z4.
At first glance it seems all is well since it is easy to prove

that

ΓMðσÞΓ ¼ −Mð−σÞ: ð30Þ

This result shows that the spectrum and hence the deter-
minant are indeed invariant under the Z4 transformation
σ → −σ. But this is not enough to show the Pfaffian itself is
unchanged since there remains the possibility that an odd
number of eigenvalues flow through the origin as σ0 is
deformed smoothly to −σ0 leading to a sign change. To
understand what happens we consider a smooth interpo-
lation of σ:

σðsÞ ¼ sσ0 with s ∈ ð−1;þ1Þ: ð31Þ

The question of eigenvalue flow can be decided by focusing
on the behavior of the eigenvalues of the fermion operator
closest to the origin at small s. In this region the eigenvalues
of smallest magnitude correspond to zero modes of the
Kähler-Dirac operator. There is a single such mode on RPD

which satisfies the eigenvalue equation:

σ0sϵabvb ¼ μva: ð32Þ

3Another possibility is that the IR phase corresponds to some
sort of nontrivial topological field theory.

4Note that in Euclidean space such a reflection symmetry and
time reversal invariance are equivalent.
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The two eigenvalues μ ¼ �iσ0s. Clearly these eigenvalues
change sign as s varies from positive to negative values
which indeed leads to a Pfaffian sign change. This can also
be seen explicitly from Eq. (30) since

Pf½Mð−σÞ� ¼ det½Γ�Pf½MðσÞ� ¼ −Pf½MðσÞ�: ð33Þ

We thus learn that the Pfaffian corresponding to two
reduced Kähler-Dirac fields or equivalently one full
Kähler-Dirac field indeed changes sign under the Z4

transformation. On integration over σ the value of any
Z4 invariant function of σ, including the partition function
itself, would then yield zero rendering expectation values of
such operators ill defined. This corresponds to a non-
perturbative mixed anomaly between the Z4 and reflection
symmetries. Our method of derivation is similar to that used
by Witten in discussing a nonperturbative anomaly for odd
numbers of Weyl fermions in SUð2Þ [19].
Again, we see that this anomaly can be canceled for

systems possessing multiples of two Kähler-Dirac fields
since then eigenvalues flow through the origin in pairs and
the sign of the partition function does not change. This is
true for a variety of four-fermion interactions since one can
always perform orthogonal rotations on 2N reduced fer-
mions to put the Yukawa interaction in the canonical
form ðλ1iσ2 ⊕ λ2iσ2 ⊕ � � � ⊕ λNiσ2Þ.
For staggered fermions in flat space one should think of

this breaking of Z4 as the manifestation of a mixed ’t Hooft
anomaly arising as a result of gauging the reflection
symmetry.
We learn from these arguments that the minimal model

of staggered fermions with no ’t Hooft anomalies, which is
hence capable of symmetric mass generation, contains two
staggered or equivalently four reduced staggered fields. In
the continuum limit such a lattice theory gives rise to four
or eight Dirac fermions in two and four dimensions,
respectively, which matches the number of fermions which
are needed to cancel off the discrete fermion parity and
spin-Z4 anomalies of Weyl fermions in two and four
dimensions, respectively [20].

VII. PATI-SALAM MODEL ON THE LATTICE

As an application of these results we will discuss a
possible construction of the Pati-Salam GUT model using
staggered fermions. We start by considering a four-dimen-
sional continuum theory of four massless Kähler-Dirac
fields in which the Z4 ’t Hooft anomaly discussed in the
previous section vanishes. The flat space action separates
into two independent pieces S ¼ S1 þ S2, where

S1 ¼
Z

d4xTr½Ψ̄þγμ∂μΨ−�;

S2 ¼
Z

d4xTr½Ψ̄−γμ∂μΨþ�; ð34Þ

where each term depends on four reduced Kähler-Dirac
fields that transform under separate global SUð4Þ sym-
metries and the trace in this expression extends over both
the SUð4Þ and internal matrix indices for each reduced
field. Suppressing the SUð4Þ indices and adopting a
Euclidean chiral basis for the Dirac matrices

γμ ¼
�

0 σμ

σ̄μ 0

�
ð35Þ

with σμ ¼ ðI; iσiÞ and σ̄μ ¼ ðI;−iσiÞ we find that the
reduced fermion field ðΨ̄þ;Ψ−Þ appearing in S1 can be
written in the block form

Ψ− ¼
�

0 ψR

ψL 0

�
; Ψ̄þ ¼

�
ψ̄L 0

0 ψ̄R

�
:

Evaluating the (internal) trace the action becomes

S ¼
Z

d4x½trðψ̄Rσ̄
μ
∂μψRÞ þ trðψ̄Lσ

μ
∂μψLÞ�:

We see that each 2 × 2 block corresponds to a doublet of
Weyl spinors transforming under a SUð2Þ × SUð2Þ flavor
symmetry in addition to the SUð4Þ symmetry. Thus Ψ−
contains the spinor representations ð4; 2; 1ÞL ⊕ ð4; 1; 2ÞR
which makes explicit the fact that the two blocks transform
under separate SUð2Þ flavor groups. In Minkowski space
we can then trade the right-handed fermions in the usual
way for left-handed fermions via ψR ¼ iσ2ψ 0�

L . After doing
this it is clear that the reduced Kähler-Dirac field decom-
poses into a set of left-handed Weyl fields in the repre-
sentations ð4; 2; 1Þ ⊕ ð4̄; 1; 2Þ. Thus both the symmetries
and representations of this reduced Kähler-Dirac field in
flat space clearly match those of the Pati-Salam GUT
model [21].
However this connection to Pati-Salam is lost if we add

in the other sector corresponding to the reduced field
ðΨ̄−;ΨþÞ. To recover the Pati-Salam model we must ensure
that this mirror sector decouples from low-energy physics
by adding suitable interactions that are capable of gapping
just this sector without breaking any symmetries either
explicitly or spontaneously. To avoid spontaneous sym-
metry breaking we require that all ’t Hooft anomalies
vanish—which from our previous arguments will hold here
because the fermions come in multiples of four. To avoid
explicitly breaking the symmetry we add a Z4 symmetric
four-fermion term of the form

G2

2

Z
d4xϵabcd½trðΨ̄a

−Ψ̄b
−ÞtrðΨ̄c

−Ψ̄d
−Þ

þ trðΨaþΨbþÞtrðΨcþΨdþÞ�; ð36Þ
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where we have made make explicit the SUð4Þ indices in the
mirror sector and retain only a trace tr over internal
SUð2Þ × SUð2Þ indices. Equivalently we can introduce a
scalar field ϕ that transforms in the real six-dimensional
representation of SUð4Þ and rewrite the four-fermion term
as a Yukawa interaction:

δS ¼ G
Z

d4xϕ̂abtr½Ψ̄a
−Ψ̄b

− þΨaþΨbþ�; ð37Þ

where ϕ̂ satisfies

ϕ̂ab ¼
1

2

�
ϕab þ

1

2
ϵabcdϕcd

�
: ð38Þ

Using this interaction we might hope to generate masses for
the mirrors for large coupling G due to the formation of a
condensate of mirror SUð4Þ baryons. One immediate objec-
tion to this strategy for gapping the mirror sector is that any
four-fermion interaction corresponds to a perturbatively
irrelevant operator and hence should not be capable of
changing the IR behavior of a theory. However, numerical
work on a related Higgs-Yukawa model with SOð4Þ rather
than SUð4Þ symmetry provides evidence that it this may be
possible nonperturbatively with a symmetric four-fermion
condensate forming for sufficiently strong coupling [8,22].
Furthermore, it may be possible to evade the question of

whether such four-fermion terms are relevant by instead
gauging the SUð4Þ symmetry of the mirror sector. In that
case confinement can drive the mirror sector into a
symmetric gapped phase with four-fermion condensate
even for small Yukawa coupling—a scenario that has been
advocated by Razamat and Tong in the context of chiral
fermions [23]. Again, there is evidence in favor of this
scenario from lattice simulations of a gauged SOð4Þ Higgs-
Yukawa model [24].
It should be clear at this point how to construct a lattice

mirror model that targets the Pati-Salam theory in the naive
continuum limit—simply replace the continuum Kähler-
Dirac field Ψ by a staggered lattice field χ transforming in
the fundamental representation of an SUð4Þ × SUð4Þ
symmetry together with suitable Yukawa interactions
targeting a reduced component of the full staggered field.
In detail the proposed lattice action is

S ¼
X
x;μ

ημðxÞ½χ̄þΔμχ− þ χ̄−Δc
μχþ�; ð39Þ

G
X
x

ϕ̂ab½χ̄a−χ̄b− þ χaþχbþ� þ
1

2

X
x

ϕ̂2
ab; ð40Þ

and the lattice covariant difference operator in the mirror
sector is given by

Δc
μχþðxÞ ¼ UμðxÞχþðxþ μÞ −U†

μðx − μÞχþðx − μÞ ð41Þ

with UμðxÞ an SUð4Þ lattice gauge field. The mirror sector
should confine and produce a four-fermion condensate for
any nonzeroGwithout breaking symmetries while the low-
energy sector should be a free theory whose continuum
limit corresponds to 16 chiral fermions transforming in the
Pati-Salam representations of an SUð4Þ × SUð2Þ × SUð2Þ
global symmetry.5 Notice that it is not possible to write
down couplings of the Pati-Salam and mirror sectors that
are SUð4Þ gauge invariant so that the Pati-Salam sector
should remain completely decoupled from the mirror sector
in flat space.

VIII. CONCLUSIONS

In this paper we have shown that staggered fermions
experience both perturbative and nonperturbative gravita-
tional anomalies. To see these anomalies we need to
generalize staggered fields to discrete curved spaces by
promoting them to Kähler-Dirac fields. The perturbative
anomaly breaks an exact global Uð1Þ symmetry of the
massless theory down to Z4 in even dimensions. If we try to
gauge this Z4 symmetry, we detect the presence of a further
’t Hooft anomaly. Cancellation of this anomaly requires the
theory to contain multiples of two Kähler-Dirac fields. This
constraint can also be seen in the presence of a mixed
anomaly between the global Z4 symmetry and a reflection
symmetry when the latter is gauged by considering the
propagation of Kähler-Dirac fields on nonorientable trian-
gulations. It is quite remarkable that these anomalies are
manifest even in these discrete systems and place direct
constraints on the continuum infrared behavior of these
theories.
Similar exact lattice ’t Hooft anomalies have been found

for central branch Wilson fermions in two dimensions [26].
In this case it is again an exact staggered Uð1Þ symmetry,
similar to the usual staggered Uϵð1Þ encountered in this
analysis that plays a crucial role.
In the continuum limit two staggered fields give rise to

four or eight Dirac fermions in two and four dimensions,
respectively, which matches the number of fermions which
are needed to cancel off the discrete fermion parity and
spin-Z4 anomalies of Weyl fermions in two and four
dimensions, respectively [20]. In odd dimensions the story
is similar. Staggered fermion theories with four-fermion
interactions experience a ’t Hooft anomaly associated with
the Z4 symmetry that can be canceled only for multiples of
two staggered fields. In one and three dimensions such
theories yield eight and 16 Majorana fermions in the
continuum limit which again matches the number needed
to cancel ’t Hooft anomalies arising from time reversal
invariance. It appears that the constraints arising from
canceling gravitational anomalies of Kähler-Dirac fermions

5The current proposal differs from that given in [25] where the
staggered field transforms in the eight-dimensional representation
of a spin(7) group with a different set of Yukawa interactions.
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match those associated with the vanishing of a variety of
discrete anomalies for Weyl or Majorana fermions.
As discussed earlier the cancellation of all ’t Hooft

anomalies is a necessary condition for symmetric mass
generation—the appearance of a trivial gapped phase in
theories of interacting fermions and the constraints
described in this paper agree with results for gapping
boundary states in topological superconductors [27,28]. A
general review that summarizes and synthesizes these
results can be found in [29]. The cancellation of these
anomalies also explains recent numerical studies of sym-
metric mass generation with staggered fermions [8,22].
Finally we show how to construct a simple continuum

Kähler-Dirac theory satisfying these constraints that sep-
arates into a mirror sector which can be decoupled from
low-energy physics and a light sector whose matter
representations and global symmetries match those of the
Pati-Salam GUT model. It is interesting that considerations
of gravitational anomaly cancellation for Kähler-Dirac

fermions yield a well-known GUT model. Furthermore,
the Kähler-Dirac construction suggests the existence of a
massive mirror or dark sector whose vacuum consists of a
condensate of SUð4Þ baryons together with massive excita-
tions that couple only gravitationally to the Pati-Salam fields
in the low-energy sector. Clearly more work is needed to
clarify whether these features can be exploited to construct
models of relevance to cosmology.
Finally the fact that the anomaly structure survives intact

under discretization naturally leads to a proposal for a
staggered fermion model that targets the Pati-Salam GUT
in the continuum limit.
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