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Inspired by recent work by Tarasov and Venugopalan, we calculate the one-loop quark box diagrams
relevant to polarized and unpolarized deep inelastic scattering (DIS) by introducing off-forward momentum
lμ as an infrared regulator. In the polarized case, we rederive the pole 1=l2 related to the axial (chiral)
anomaly. In addition, we obtain the usual logarithmic term and the DIS coefficient function. We interpret
the result in terms of the generalized parton distributions (GPDs) H̃ and Ẽ and discuss the possible violation
of QCD factorization for the Compton scattering amplitude. Remarkably, we also find poles in the
unpolarized case which are remnants of the trace anomaly. We argue that these poles are canceled by the
would-be massless glueball poles in the GPDs H and E as well as in their moments, the nucleon
gravitational form factors A, B and D. This mechanism sheds light on the connection between the
gravitational form factors and the gluon condensate operator FμνFμν.
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I. INTRODUCTION

The role of the UAð1Þ axial (chiral) anomaly in polarized
deep inelastic scattering (DIS) has a long and winding
history. Originally in the late 1970s it was used to constrain
the one-loop gluonic correction to the first moment of the
singlet g1ðxÞ structure function, as well as the two-loop
anomalous dimension of the quark helicity contribution ΔΣ
to the proton spin [1]. Soon after the discovery of the “spin
crisis” by the European Muon Collaboration in 1988 [2], it
was suggested that an anomaly-induced gluon helicity ΔG
contribution to the “intrinsic” quark helicity ΔΣ̃

ΔΣ ¼ ΔΣ̃ −
nfαs
2π

ΔG; ð1Þ

could be the key to explaining the unexpectedly small value
of ΔΣ [3,4]. While such a scenario became popular at the
time, subsequent decades-long experiments and global
analyses did not find evidence for a sufficiently large
ΔG to make it phenomenologically viable [5–7]. More
importantly, the identification of the axial anomaly

contribution as gluon helicity also met with much theo-
retical objection from the very start [8–11]. The gluonic
contribution in (1) comes from the infrared region of the
triangle diagram which contains the Adler-Bell-Jackiw
anomaly. As pointed out by Jaffe and Manohar [8], a
proper way to regulate the infrared singularity of this
diagram is to calculate it in off-forward kinematics. The
anomaly then manifests itself as a pole in momentum
transfer l¼p2−p1 in the matrix element of the singlet axial
current Jμ5 ¼

P
f ψ̄fγ

μγ5ψf,

hp2jJμ5jp1i ¼
nfαs
4π

ilμ

l2
hp2jFαβ

a F̃a
αβjp1i; ð2Þ

where the incoming and outgoing gluons are on shell and
the nf quarks in the loop are massless. The appearance of
the pole 1=l2 and the twist-four pseudoscalar operator FF̃
seem alarming, as they signal some underlying nonpertur-
bative physics that does not fit into the standard perturba-
tive QCD framework. Yet, in ordinary perturbative
calculations done in forward kinematics, this problem is
superficially avoided by certain choices of infrared regu-
larization such as dimensional regularization.
Decades after the initial controversy, infrared sensitivity

and the subtleties of taking the forward limit seemed to
have been largely forgotten. Nowadays, forward kinematics
is routinely used in the higher-order computations of
polarized cross sections and asymmetries. However,
recently the issue of the anomaly pole has been rekindled
by Tarasov and Venugopalan [12,13] who pursued and
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crystallized the original suggestion by Jaffe and Manohar.
They have demonstrated, within the worldline formalism,
that the box diagram (see the left diagram in Fig. 1)
contains a pole 1=l2 if it is calculated in off-forward
kinematics. This may be viewed as a nonlocal generaliza-
tion of the local relation (2) unintegrated in the Bjorken
variable x. As envisaged in [8] and elaborated in [13], at
least after the x integration, the pole should be canceled by
another massless pole due to the exchange of the η0 meson,
the would-be Nambu-Goldstone boson of UAð1Þ symmetry
breaking. This requirement leads to an independent deri-
vation of the UAð1Þ Goldberger-Treiman relation [14–16]
between the pseudoscalar and pseudovector form factors.
Motivated by these developments, in this paper we

further explore the physics of anomaly poles in two
different directions. First, we calculate the box diagram
in off-forward kinematics in the standard perturbation
theory. This is a useful cross-check of the result obtained
in the worldline formalism [12]. In addition to reproducing
the pole term, we obtain the “usual” perturbative correc-
tions to the g1ðxÞ structure function which features the
DGLAP splitting function and a coefficient function. We
then interpret the result in terms of the generalized parton
distributions (GPDs) H̃ and Ẽ. The emergence of the pole is
potentially problematic for the QCD factorization of the
Compton amplitude. We discuss how factorization may
still be justified following the possibility of cancellation
of poles.
Second, we point out that entirely analogous poles can

arise in unpolarizedDIS, ormore precisely, in the symmetric
(in Lorentz indices μν) part of the Compton scattering
amplitude Tμν in off-forward kinematics. Just as the pole in
the polarized sector is related to the axial (chiral) anomaly,
that in the unpolarized sector is related to the trace anomaly.
Indeed, it is known inQEDand other gauge theories [17–19]
that the off-forward photon matrix element of the energy
momentum tensor Θμν has an anomaly pole:

hp2jΘμνjp1i ∼
1

l2
hp2jFαβFαβjp1i; ð3Þ

again from the triangle diagram. The residue is proportional
to the matrix element of the twist-four scalar operator
hFαβFαβi [or the “gluon condensate” in QCD] which
characterizes the trace anomaly. We shall derive the unin-
tegrated (in x) version of (3) by evaluating the quark box
diagrams and interpret the result in terms of the unpolarized
GPDs H and E. We then make a connection to the
gravitational form factors of the proton and discuss the
possibility of cancellation of poles.

II. PRELIMINARIES

In this section, we set up our notations for the kinemati-
cal variables that enter the calculation of the quark box
diagrams in DIS. More precisely, since we generalize
the calculation to off-forward kinematics as explained in
the Introduction, we consider the Compton scattering
amplitude

Tμν ¼ i
Z

d4y
2π

eiq·yhP2jTfJμðy=2ÞJνð−y=2ÞgjP1i

¼ Tμν
sym þ iTμν

asym; ð4Þ

where Jμ ¼Pf efψ̄fγ
μψf, with f ¼ u; d; s; :: being a

flavor index, is the electromagnetic current and the sub-
script “sym/asym” refers to the symmetric/antisymmetric
part in the photon polarization indices μ, ν. jP1;2i are the
proton single-particle states. q ¼ q1þq2

2
is the average of the

incoming and outgoing virtual photon momenta, and the
momentum transfer is denoted by P2 − P1 ¼ q1 − q2 ¼ l.
We assume −q2 ≡Q2 > 0 is large and neglect “higher-
twist” terms of order OðM2=Q2Þ where M2 ¼ P2

1 ¼ P2
2 is

the proton mass squared. Their inclusion is understood in
the literature [20]. We also assume that t≡ l2 < 0 is much
smaller than the hard scale jtj ≪ Q2 and neglect terms of
order l2=Q2. We define the following variables:

P¼P1þP2

2
; xB ¼

Q2

2P ·q
; ξ¼ q22−q21

4P ·q
≈
−lþ

2Pþ ; ð5Þ

FIG. 1. Box diagrams for the Compton amplitude in off-forward kinematics.
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where xB is the generalized Bjorken variable and ξ is the
skewness parameter. In forward scattering, xB coincides
with the usual Bjorken variable in DIS. In Deeply Virtual
Compton Scattering (DVCS) where q22 ¼ 0, xB ≈ ξ.
The quark box diagrams of interest are part of the

perturbative expansion of (4) at one loop. There are three
topologies; see Fig. 1. The diagrams consist of two
insertions of photon fields with momenta (q1, q2) and
two insertions of gluon fields with partonic momenta
(p1, p2) which we parametrize as

p1 ¼ p −
l
2
; p2 ¼ pþ l

2
; x≡ p · q

P · q
: ð6Þ

Note that p2 − p1 ¼ P2 − P1 ¼ l, so the momentum trans-
fer t ¼ l2 < 0 is the same in both the hadronic and partonic
processes. We assume the incoming partons to be massless,
p2
1 ¼ p2

2 ¼ 0, which means p · l ¼ 0 and p2 ¼ −l2=4. The
kinematical variables at the partonic level are defined as

x̂ ¼ Q2

2p · q
¼ xB

x
; ξ̂ ¼ q22 − q21

4p · q
¼ −q · l

2p · q
¼ ξ

x
: ð7Þ

The relation x̂q · l ¼ −ξ̂Q2 will be used in the calculation
below. The photon virtualities can be written as

q21 ¼ −Q2
x̂þ ξ̂

x̂
þ l2

4
; q22 ¼ Q2

ξ̂ − x̂
x̂

þ l2

4
: ð8Þ

Finally, the polarization vectors of the incoming and
outgoing gluons, ϵðp1Þ≡ ϵ1, ϵ�ðp2Þ≡ ϵ�2, respectively,
satisfy the physical conditions

ϵ1 · ðp − l=2Þ ¼ 0 → ϵ1 · p ¼ ϵ1 · l
2

;

ϵ�2 · ðpþ l=2Þ ¼ 0 → ϵ�2 · p ¼ −
ϵ�2 · l
2

: ð9Þ

We note that throughout this paper we use the conventions
γ5 ¼ iγ0γ1γ2γ3 and ϵ0123 ¼ þ1. This becomes relevant for
the antisymmetric part of the Compton amplitude (4), to
which we turn first.

III. ANTISYMMETRIC PART

In the antisymmetric case we define

J α ≡ −ϵαβμνPβImTasym
μν : ð10Þ

In the forward limit lμ → 0, J α ¼ g1ðxBÞūðPÞγαγ5uðPÞ ¼
2g1ðxBÞSα is proportional to the g1 structure function in
polarized DIS. We have calculated the box diagrams in
the near-forward region jlμj ≪ Q, using the Mathematica
package “Package-X” [21]. The result is, for massless quarks
in the loop,

J αjbox ≈
1

2

αs
2π

�X
f

e2f

�
ūðP2Þ

×

��
ΔPqg ln

Q2

−l2
þ δCoff

g

�
⊗ ΔGðxBÞγαγ5

þ lα

l2
δCanom

g ⊗ F̃ ðxBÞγ5
�
uðP1Þ; ð11Þ

where A ⊗ BðxBÞ≡ R 1xB dx
x AðxBx ÞBðxÞ. In (11), we have

neglected all terms that vanish in the limit l → 0, including
the ξ dependenceof various coefficients. (Thedependenceon
ξwill be kept in the next section.)ΔPqgðx̂Þ ¼ 2TRð2x̂ − 1Þ is
the polarized g → q splitting function with TR ¼ 1

2
being the

color factor, and

δCoff
g ðx̂Þ ¼ 2TRð2x̂ − 1Þ

�
ln

1

x̂ð1 − x̂Þ − 1

�
ð12Þ

is the coefficient function. (In both ΔPqg and δCoff
g the

explicit factor of 2 accounts for the quark and antiquark
contributions.) F̃ ðxÞ is the twist-four pseudoscalar parton
distribution [13,22,23]:

F̃ ðx; l2Þ≡ iPþ

ūðP2Þγ5uðP1Þ
Z

dz−

2π
eixP

þz−

× hP2jFμν
a ð−z−=2ÞF̃a

μνðz−=2ÞjP1i; ð13Þ

entering Eq. (11) with

δCanom
g ðx̂Þ ¼ 4TRð1 − x̂Þ: ð14Þ

We note that in the one-loop calculation, ΔGðxÞ
and F̃ ðxÞ have been identified via the tensor struc-
tures −i

pþ hp2jFþμF̃þ
μ jp1i ∝ iϵþναβpνϵ

�
2αϵ1β ≡ iϵþpϵ�

2
ϵ1 and

hp2jFμνF̃μνjp1i ∝ ϵμναβlμpνϵ1αϵ
�
2β ≡ ϵlpϵ1ϵ

�
2 , respectively.

The pole term 1=l2 in (11) agrees with the result derived
in Ref. [13] using the worldline formalism. In the
Appendix, we also rederive this result via an ordinary
Feynman diagram calculation. Although not manifest, the
numerator actually contains an extra factor of l, so this term
is singular in the sense that the limit liml→0lαlβ=l2 depends
on the direction of lμ. In addition, we find the expected
contribution to the g1 structure function where l2 plays the
role of an infrared cutoff. Both ΔPqg and δCoff

g satisfyR
1
0 dx̂ΔPqgðx̂Þ ¼

R
1
0 dx̂δCoff

g ðx̂Þ ¼ 0. They thus do not
contribute to the first moment of g1. This is a necessary
condition in order to be consistent with the perturbative
result (2) for the local operator Jμ5. Note that in dimensional
regularization in 4 − 2ϵ dimensions, one has instead
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ΔPqg
−1
ϵ
þδCMS

g ;

δCMS
g ðx̂Þ¼ 2TRð2x̂−1Þ

�
ln
1− x̂
x̂

−1

�
þ4TRð1− x̂Þ; ð15Þ

in the coefficient ofΔGðxBÞ. As pointed out in [11], the last
term 4TRð1 − x̂Þ is of infrared origin. In off-forward
regularization, this term becomes the pole term.
The cancellation of the pole in (11) and its implications

have been discussed in [12]. Here we point out that the
description of the pole is most naturally phrased in terms of
the GPDs. For this purpose we return to (4) and fully treat it
as an off-forward amplitude. In the GPD factorization
framework [24,25], the imaginary part of the Compton
amplitude can be expanded as

J α ¼ 1

2

X
f

e2fūðP2Þ
�
γαγ5ðH̃fðxB; ξ; l2Þ þ H̃fð−xB; ξ; l2ÞÞ

þ lαγ5
2M

ðẼbare
f ðxB; ξ; l2Þ þ Ẽbare

f ð−xB; ξ; l2ÞÞ
�
uðP1Þ

þOðαsÞ þOð1=Q2Þ; ð16Þ

where H̃f and Ẽf are the polarized quark GPDs for flavor f.
The meaning of the superscript “bare” will be explained
shortly. In the forward limit, the polarized quark and
antiquark Parton Distribution Functions (PDFs) are recov-
ered, H̃qðxBÞ¼ΔqðxBÞ and H̃qð−xBÞ ¼ Δq̄ðxBÞ, so that
J α¼Pf e

2
fðΔqfðxBÞ þΔq̄fðxBÞÞSαþ���≈2g1ðxBÞSα. It

is tempting to regard (11) as part of the OðαsÞ corrections
in (16). However, clearly the pole term 1=l2 does not fit into
the general structure of factorization. This term remained
unnoticed in the calculation of the antisymmetric part of the
one-loop corrections to the Compton amplitude [25,26]. The
reason is that in the GPD-based calculations in the literature,
one sets lμ ≈ −2ξ̂pμ before the loop integration. Since l2 ¼ 0

in this approximation, thepole1=l2 cannot arise.Without this
regulator, the box diagrams are power divergent in the
infrared unless some cancellation mechanism is at work.
In the present case, the matrix element of the twist-four
operator hp2jFμνF̃μνjp1i ∝ ϵμναβlμpνϵ1αϵ

�
2β vanishes if one

assumes lμ ∝ pμ.1

The problem is that, despite the proportionality to the
twist-four distribution, the pole term in (11) cannot be
dismissed as a higher twist contribution because there is no
suppression factor 1=Q2. In fact, it is parametrically of the
same order as the twist-two ΔGðxÞ term in (11) since
lαhFF̃i=l2 ∼ lαlβ=l2 ∼Oð1Þ as mentioned above. Note also
that the pole term has the same Lorentz structure ∝ lα as the

GPD Ẽ in (16). Clearly, this poses a threat to QCD
factorization for the Compton amplitude in the GPD Ẽ
sector.2

On the other hand, the Compton amplitude must have a
well-defined forward limit. Thus, there must be a mecha-
nism to cancel the pole at l2 ¼ 0 which could ultimately
“rescue” the factorization theorem. Noticing that the pole
term comes entirely from the infrared region of the box
diagram, we absorb it into the definition of the GPD Ẽ and
let it cancel with a “primordial” pole in Ẽbare. Namely, we
redefine as

ẼfðxB; l2Þ þ Ẽfð−xB; l2Þ ¼ Ẽbare
f ðxB; l2Þ þ Ẽbare

f ð−xB; l2Þ

þ αs
2π

2M
l2

δCanom
g ⊗ F̃ ðxB; l2Þ;

ð17Þ

and postulate that Ẽbare is dominated by a pole

Ẽbare
f ðxB; l2Þ þ Ẽbare

f ð−xB; l2Þ

≈ −
αs
2π

2M
l2

δCanom
g ⊗ F̃ ðxB; l2 ¼ 0Þ; ð18Þ

which exactly cancels the perturbative pole in the last term.
We further postulate that it is this “renormalized” Ẽ that
integrates to the pseudoscalar form factor. Namely,

gAðl2Þ ¼
X
f

Z
1

−1
dxH̃fðx; ξ; l2Þ

¼
X
f

Z
1

0

dxðH̃fðx; ξ; l2Þ þ H̃fð−x; ξ; l2ÞÞ; ð19Þ

gPðl2Þ ¼
X
f

Z
1

−1
dxẼfðx; ξ; l2Þ

¼
X
f

Z
1

0

dxðẼfðx; ξ; l2Þ þ Ẽfð−x; ξ; l2ÞÞ; ð20Þ

where gA and gP are the singlet axial form factors defined by

hP2jJα5jP1i¼ ūðP2Þ
�
γαγ5gAðl2Þþ

lαγ5
2M

gPðl2Þ
�
uðP1Þ: ð21Þ

The prescription (17) is outside the conventional logarith-
mic renormalization of twist-two GPDs. In order to better
justify it, we show in the Appendix [see Eq. (A13)] that

1Introducing the current quark mass mq may regularize the
pole 1=l2, but only when

ffiffiffiffiffiffiffi
jl2j

p
∼mq, so the problem persists. We

leave the calculation with finite quark mass to future work.

2Note that the experimentally accessible Compton amplitude
corresponds to q22 ≥ 0 or ξ ≳ xB, whereas we approximated ξ ≈ 0
in (11). However, we have checked that the pole 1=l2 exists also
for ξ > 0. Besides, the general argument for factorization does
not rely on the relative magnitude of xB and ξ.
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exactly the same pole structure arises in the one-loop
calculation of the polarized quark GPD of a gluon3:

pþ
Z

dz−

4π
eix̂p

þz−hp2jψ̄ð−z−=2Þγþγ5ψðz−=2Þjp1ijpole

∼
αs
2π

TR
2ilþ

l2
ð1 − x̂Þ ⊗ δð1 − x̂Þϵϵ1ϵ�2lp: ð22Þ

Moreover, performing the x integral in (20), we obtain

gPðl2Þ
2M

¼ −
i
l2

�hP2j nfαs4π FF̃jP1i
ūðP2Þγ5uðP1Þ

����
l2¼0

−
hP2j nfαs4π FF̃jP1i
ūðP2Þγ5uðP1Þ

�
:

ð23Þ

By construction, this is finite at l2 ¼ 0. One can check
that (23) is consistent with the following exact relation
obtained by taking the divergence of (21):

2MgAðl2Þ þ
l2gPðl2Þ
2M

¼ i
hP2j nfαs4π FF̃jP1i
ūðP2Þγ5uðP1Þ

; ð24Þ

under the assumption that gAðl2Þ ≈ gAð0Þ ¼ ΔΣ slowly
varies with l2. These arguments suggest that the pole
should indeed be regarded as a part of the quark GPD
Ẽ, although a more rigorous, field-theoretic justification
of (17) is needed.
The cancellation of poles within the form factor gP is the

central argument of [12] following the earlier suggestion
in [8]. The massless pole in the first term of (23) can be
nonperturbatively generated by the t-channel exchange of
the would-be Nambu-Goldstone boson of spontaneous
UAð1Þ symmetry breaking, the primordial η0 meson.
This is analogous to the pion pole in the SUAð2Þ pseudo-
scalar form factor gð3ÞP ∼ 1

l2−m2
π
. The difference, however, is

that the latter is physical while the former is not. In reality,
theUAð1Þ symmetry is explicitly broken by the anomaly. In
the present context, this effect is represented by the second
term in (23), turning the massless pole into a massive one at
the physical η0 meson mass m2

η. Indeed, the form factor
hP2jFF̃jP1i has a pole at l2 ¼ m2

η0 , and in the single-pole
approximation (24) is satisfied by

gPðl2Þ
2M

≈
−2MΔΣ
l2 −m2

η0
;

i
hP2j nfαs4π FF̃jP1i
ūðP2Þγ5uðP1Þ

≈ −2MΔΣ
m2

η0

l2 −m2
η0
: ð25Þ

Returning to GPDs, we add that, in order to guarantee the
finiteness of the Compton amplitude, there must be a

massless pole already in the GPD Ẽ.4 Moreover, the
cancellation of poles in (17) must somehow occur for all
values of xB andQ2 (the latter enters as the renormalization
scale), or else the factorization of the Compton amplitude is
in danger. On the other hand, since the cancellation of poles
occurs within the GPD Ẽ sector alone, we do not see any
issues with the usual factorization of the g1 structure
function in polarized DIS. In this sense, the above off-
forward calculation may be regarded as an alternative to
other regularization schemes such as the MS scheme.

IV. SYMMETRIC PART

Remarkably, the 1=l2 pole is also present in the sym-
metric (in μν) part of the Compton amplitude (4). As
mentioned in the Introduction, and will be studied in detail
below, in this case the pole is related to the QCD trace
anomaly. In this section we obtain the fully analytic
expression of the pole terms and discuss their implications
for the Compton amplitude and the gravitational form
factors.
Let us first recall that in the forward limit, the imaginary

part of the symmetric Compton amplitude Tμν
sym is related to

the F1 and F2 structure functions,

ImTμν
sym ¼

�
−gμν þ qμqν

q2

�
F1ðxBÞ

þ
�
Pμ −

P · q
q2

qμ
��

Pν −
P · q
q2

qν
�
2xBF2ðxBÞ

Q2
:

ð26Þ

To leading order,

F2ðxÞ ¼
X
f

e2fxðqfðxÞ þ q̄fðxÞÞ ¼ 2xF1ðxÞ; ð27Þ

where qfðxÞ (q̄fðxÞÞ) is the unpolarized quark (antiquark)
PDF. The first moment of F2 is related to the matrix
element of the quark part of the QCD energy momentum
tensor Θμν

f ¼ q̄fγðμiDνÞqf:

hPjΘþþ
f jPi ¼ 2ðPþÞ2Af;

Af ¼
Z

1

0

dxxðqfðxÞ þ q̄fðxÞÞ: ð28Þ

Physically, Af is the momentum fraction of the proton
carried by f quarks and antiquarks.
Turning to the off-forward case, we have calculated the

contribution from the box diagrams using Package-X [21] and
found a more complicated tensor structure,

3We thank Swagato Mukherjee for suggesting this calculation.

4The pion pole is argued to exist also in the GPD Ẽ in the
isovector channel Ẽu − Ẽd ∼ 1

l2−m2
π
[27].
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ImTμν
symjbox¼

�
−gμνþqμqν

q2

�
Foff
1 ðxB;lÞ

þ
�
Pμ−

P ·q
q2

qμ
��

Pν−
P ·q
q2

qν
�
2xBFoff

2 ðxB;lÞ
Q2

þ���; ð29Þ

where the ellipses denote terms proportional to tensors like
lðμPνÞ, lðμqνÞ and lμlν such that they satisfy the conservation
law qμImTμν

sym ¼ 0. This time Foff
1;2 are related to the

unpolarized GPDs instead of the PDFs. Different from
the polarized case, for a reason to become clear shortly,
here we shall keep the full dependence on the skewness
parameter ξ. For this purpose, we will make the replace-
ment lμ ≈ −2ξPμ ≈ −2ξ̂pμ in the tensors lðμPνÞ, lðμqνÞ and
lμlν, but not in potential pole terms ∝ 1=l2. In doing so, we
find that Eq. (29) takes the simple form

ImTμν
symjbox ≈

�
−gμν þ qμqν

q2

�
F̄off
1 ðxB; lÞ

þ
�
Pμ −

P · q
q2

qμ
��

Pν −
P · q
q2

qν
�

×
2xBF̄off

2 ðxB; lÞ
Q2

; ð30Þ

where (setting ξ ¼ 0 in nonpole terms)

F̄off
1 ðxB;lÞ≈

1

2

αs
2π

�X
f

e2f

���
Pqg ln

Q2

−l2
þCoff

1g

�
⊗ gðxBÞ

þ 1

l2
Canom⊗0 F ðxB;ξ; l2Þ

ūðP2ÞuðP1Þ
2M

�
;

F̄off
2 ðxB;lÞ≈xB

αs
2π

�X
f

e2f

���
Pqg ln

Q2

−l2
þCoff

2g

�
⊗ gðxBÞ

þ 1

l2
Canom⊗0 F ðxB;ξ; l2Þ

ūðP2ÞuðP1Þ
2M

�
: ð31Þ

We recognize the expected structure of the one-loop correc-
tions associated with the unpolarized gluon PDF gðxÞ, with
the splitting function Pqgðx̂Þ ¼ 2TRðð1 − x̂Þ2 þ x̂2Þ. The
coefficient functions are given by

Coff
1g ðx̂Þ ¼ 2TRðð1 − x̂Þ2 þ x̂2Þ

�
ln

1

x̂ð1 − x̂Þ − 1

�
;

Coff
2g ðx̂Þ ¼ 2TRðð1 − x̂Þ2 þ x̂2Þ

�
ln

1

x̂ð1 − x̂Þ − 1

�
þ 8TRx̂ð1 − x̂Þ: ð32Þ

In addition, we find a pole 1=l2 in both F̄off
1 and F̄off

2

(but not in the difference F̄off
2 − 2xBF̄off

1 relevant to the

longitudinal structure function), with the following con-
volution formula:

Canom⊗0 F ðxB;ξ; l2Þ≡
Z

1

xB

dx
x
Kðx̂; ξ̂ÞF ðx;ξ; l2Þ

−
θðξ−xBÞ

2

Z
1

−1

dx
x
Lðx̂; ξ̂ÞF ðx;ξ; l2Þ;

ð33Þ

where

Kðx̂; ξ̂Þ¼ 2TR
x̂ð1− x̂Þ
1− ξ̂2

; Lðx̂; ξ̂Þ¼ 2TR
x̂ðξ̂− x̂Þ
1− ξ̂2

: ð34Þ

The twist-four scalar gluon GPD is defined as

F ðx; ξ; l2Þ ¼ −4xPþM
Z

dz−

2π
eixP

þz−

×
hP2jFμνð−z−=2ÞFμνðz−=2ÞjP1i

ūðP2ÞuðP1Þ
: ð35Þ

Several comments are in order. First, the two terms in (33)
come from the first and third diagrams in Fig. 1, respec-
tively. The imaginary part of the latter is nonvanishing only
in the region 0 < xB < ξ where the outgoing virtual photon
becomes timelike, q22 > 0; see Eq. (8). The structure of the
convolution (33) has been inferred from the analysis of
Compton scattering in a related context [28]. Second,
concerning the twist-four gluon GPD (35), the original
definition in [29] was a forward matrix element hPj…jPi.
The necessity to define F in off-forward kinematics was
later emphasized in [30], and this turns out to be relevant to
the present discussion. Accordingly, we have rescaled the
distribution by ūðP2ÞuðP1Þ. We have also introduced the
prefactor x to compensate for the 1=x factor in (33). This
factor makes F ðx; ξ; l2Þ an odd function in x, just like gðxÞ.
Finally, in the actual one-loop calculation the gluon PDF
can be identified as gðxÞ ∼ h−FþμFþ

μ i ∝ ϵ1 · ϵ�2, while the
pole term 1

l2 F ðx; ξ; l2Þ comes from the structure5

5Actually the box diagram generates an additional tensor
structure

ϵ�μ2 ϵν1 þ ϵ�ν2 ϵμ1 − gμν⊥ ϵ�2 · ϵ1; ð36Þ

and this has been taken into account when determining the
coefficient functions (32). For spin-1 hadrons, (36) induces an
additional structure function in (29) [31]. For spin-1

2
hadrons, the

structure (36) is neglected in inclusive DIS because it vanishes
after averaging over the gluon polarizations (38). In Compton
scattering, it becomes part of the gluon transversity GPD [32].
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1

l2
hp2;ϵ2jFμνFμνjp1;ϵ1i∝

1

l2
ð−ϵ1 ·p2ϵ

�
2 ·p1þp1 ·p2ϵ1 · ϵ�2Þ

¼ 1

l2

�
ϵ1 · lϵ�2 · l−

l2

2
ϵ1 · ϵ�2

�
: ð37Þ

This is again order unity lαlβ=l2 ∼Oð1Þ, the same order as
the twist-two gðxÞ term in (31). Equation (37) shows that,
for on-shell gluon states, the tree-level matrix element
hFμνFμνi is nonvanishing only in off-forward kinematics
lμ ≠ 0. If one averages over the two gluon polarization
states by making the replacement

ϵ�2αϵ1β → −
1

2
g⊥αβ; ð38Þ

where g⊥αβ ≡ gαβ − nαn̄β − n̄αnβ with the lightlike vectors

n ¼ ð1; 0; 0;−1Þ= ffiffiffi
2

p
and n̄ ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

, the pole
disappears because

1

l2

�
ϵ1 · lϵ�2 · l −

l2

2
ϵ1 · ϵ�2

�
→

1

2l2
ð⃗l2⊥ þ l2Þ ¼ ξ̂2

2
: ð39Þ

Again, this is the reason why the pole has remained
unnoticed in the one-loop GPD calculations in the unpo-
larized sector [26,33–35] (see also a recent two-loop
calculation in DVCS [36]) where one projects onto the
twist-two gluon GPDs Hg and Eg via (38). Without this
projection, the loop integral is power divergent if one sets
lμ ¼ −2ξ̂pμ from the outset.
While the replacement (38) may be justified for the

unpolarized DIS structure functions where the initial
and final proton spins are equal and averaged over asP

ShPSj…jPSi, this is not the case for GPDs
hP2S2j…jP1S1i in Compton scattering where the initial
and final spin states S1 and S2 are typically unconstrained.
Moreover, in contrast to the partonic matrix element
hp2jFμνFμνjp1i [see Ref. (37),] the nonperturbative proton
matrix element hP2jFμνFμνjP1i does not vanish in the
forward limit, not even after averaging over the proton spin
states. In particular, the zeroth moment ofF ðx;ξ¼0;l2¼0Þ
is the so-called gluon condensate:

Z
dx
x
F ðx; 0; 0Þ ∝ hPjFμνFμνjPi; ð40Þ

responsible for the generation of the proton mass via the
QCD trace anomaly. As a matter of fact, the connection
between trace anomalies and massless poles 1=l2 is known
in the literature [17–19]. An explicit calculation of the
triangle diagram shows that the matrix element of the QED
energy momentum tensor between on-shell photon states
has a pole:

hp2jΘμν
QEDjp1i ¼ −

e2

24π2l2

�
pμpν þ lμlν − l2gμν

4

�
× hp2jFαβFαβjp1i þ � � � : ð41Þ

If one introduces the usual color factor TR ¼ 1
2
on the right-

hand side, essentially the same formula holds for the one-
loop gluon matrix element of the quark energy momentum
tensor Θμν

f in QCD. Taking the þþ component, one finds a
relation

hp2jΘþþ
f jp1i ∼ −

TRαsðpþÞ2
6πl2

ð1þ ξ̂2Þhp2jF2jp1i: ð42Þ

On the other hand, if one takes the trace of (41), the pole
disappears. Applied to the QCD case we find

hp2jðΘfÞμμjp1i ¼ hp2j
TRαs
6π

F2jp1i; ð43Þ

and the right-hand side is nothing but the contribution to the
QCD trace anomaly from the single-flavor quark energy
momentum tensor to one-loop6

Θμ
μ ¼

X
f

ðΘfÞμμ þ ðΘgÞμμ ¼
βðgÞ
2g

F2

¼ −
αs
8π

�
11Nc

3
−
4TRnf

3

�
F2 þOðα2sÞ: ð44Þ

These observations suggest that the poles in (31) are
physically there, at least in Compton scattering, and may
carry profound implications possibly touching the issue of
nonperturbative mass generation in QCD.
Let us now explore the consequences of (31). Treating

(4) as a fully off-forward amplitude, we find from the
operator product expansion

ImTμν
sym¼

X
f

e2f
4Pþ

�
4x2B
Q2

�
Pμ−

P ·q
q2

qμ
��

Pν−
P ·q
q2

qν
�

−gμνþqμqν

q2

�

× ūðP2Þ
�
ðHbare

f ðxB;ξ; l2Þ−Hbare
f ð−xB;ξ; l2ÞÞγþ

þ iσþλlλ
2M

ðEbare
f ðxB;ξ; l2Þ−Ebare

f ð−xB;ξ; l2ÞÞ
�
uðp1Þ

þOðαsÞþOð1=Q2Þ; ð45Þ

where, as before, Hbare
f and Ebare

f are the bare versions
of the standard unpolarized quark GPDs Hf and Ef. In the

6The separation of the total trace Θμ
μ into the quark and gluon

parts ðΘfÞμμ and ðΘgÞμμ is scheme dependent [37]. At one loop, the
quark part simply accounts for the nf term in the beta function.
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forward limit, HfðxÞ ¼ qfðxÞ and −Hfð−xÞ ¼ q̄fðxÞ are
the quark and antiquark PDFs. According to QCD factori-
zation theorems [24,25], higher-order corrections to (45)
not suppressed by 1=Q2 consist only of the twist-two quark
and gluon GPDs to all orders. However, our result (31)
shows that there are diverging corrections already in the
OðαsÞ terms which cannot be simply dismissed as higher
twist, nor be absorbed into the (usual) renormalization of
twist-two GPDs. From the Gordon identity

ūðP2ÞuðP1Þ
2M

¼ 1

2Pþ ūðP2Þ
�
γþ −

iσþλlλ
2M

�
uðP1Þ; ð46Þ

we see that the pole affects both Hf and Ef, with opposite
signs. This raises the concern that factorization is violated
also in the symmetric part of the Compton amplitude.
Nevertheless, the Compton amplitude must have a

smooth forward limit. Similar to the antisymmetric case
discussed above [cf. (17)], we absorb the pole in (31) into
the definitions of the GPDs

X
f

e2fxBðHfðxB; ξ; l2Þ −Hfð−xB; ξ; l2ÞÞ

¼
X
f

e2fxBðHbare
f ðxB; ξ; l2Þ −Hbare

f ð−xB; ξ; l2ÞÞ

þ αs
2π

�X
f

e2f

�
xB
l2

Canom ⊗0 F ðxB; ξ; l2Þ; ð47Þ

X
f

e2fxBðEfðxB; ξ; l2Þ − Efð−xB; ξ; l2ÞÞ

¼
X
f

e2fxBðEbare
f ðxB; ξ; l2Þ − Ebare

f ð−xB; ξ; l2ÞÞ

−
αs
2π

�X
f

e2f

�
xB
l2

Canom ⊗0 F ðxB; ξ; l2Þ; ð48Þ

and let it cancel with nonperturbative, preexisting poles in
Hbare

f and Ebare
f :

X
f

e2fxBðHbare
f ðxB; ξ; l2Þ −Hbare

f ð−xB; ξ; l2ÞÞ

≈ −
αs
2π

�X
f

e2f

�
xB
l2

Canom ⊗0 F ðxB; ξ; l2 ¼ 0Þ;
X
f

e2fxBðEbare
f ðxB; ξ; l2Þ − Ebare

f ð−xB; ξ; l2ÞÞ

≈
αs
2π

�X
f

e2f

�
xB
l2

Canom ⊗0 F ðxB; ξ; l2 ¼ 0Þ: ð49Þ

Again, this cancellation must occur for all values of xB and
Q2 in order to save the QCD factorization of the Compton

amplitude. The second moments of the “renormalized”
GPDs thus defined are

Z
1

0

dxBxBðHfðxB; ξ; l2Þ −Hfð−xB; ξ; l2ÞÞ

¼
Z

1

−1
dxBxBHfðxB; ξ; l2Þ ¼ Afðl2Þ þ ξ2Dfðl2Þ;Z

1

0

dxBxBðEfðxB; ξ; l2Þ − Efð−xB; ξ; l2ÞÞ

¼
Z

1

−1
dxBxBEfðx; ξ; l2Þ ¼ Bfðl2Þ − ξ2Dfðl2Þ; ð50Þ

where Af, Bf, Df are the gravitational form factors defined
by the off-forward matrix element of the (quark part of the)
QCD energy momentum tensor [38],

hP2jΘμν
f jP1i¼

1

M
ūðP2Þ

�
PμPνAfþðAfþBfÞ

PðμiσνÞρlρ
2

þDf

4
ðlμlν−gμνl2ÞþM2C̄fgμν

�
uðP1Þ: ð51Þ

On the other hand, the second moment of the pole term
contains the following integral:

Z
1

0

dxBxB

�Z
1

xB

dx
x
K

�
xB
x
;
ξ

x

�

−
θðξ − xBÞ

2

Z
1

−1

dx
x
L

�
xB
x
;
ξ

x

��
F ðx; ξ; l2Þ

¼ TR

6

Z
1

0

dx
x

1 − ξ2

x2

�
1 −

ξ4

x4

�
F ðx; ξ; l2Þ

¼ TR

12

Z
1

−1
dxx

�
1þ ξ2

x2

�
F ðx; ξ; l2Þ: ð52Þ

Note that if it were not for the second term, the result would
contain infinitely many powers of ξ from the expansion

1

1 − ξ2

x2

¼ 1þ ξ2

x2
þ ξ4

x4
þ � � � ; ð53Þ

which would violate the polynomiality of GPD moments.
In fact, the only role of the second term is to subtract all the
higher-order terms ξn with n ≥ 4. The final result is thus
quadratic in ξ, consistent with the right-hand sides of (50).
A cancellation of this sort is known in the GPD literature;
see Ref. [28]. Interestingly, our result (34) coincides with
the “simple model” employed in [28].

BHATTACHARYA, HATTA, and VOGELSANG PHYS. REV. D 107, 014026 (2023)

014026-8



The last integral in (52) reads

Z
1

−1
dxx

�
1þ ξ2

x2

�
F ðx; ξ; l2Þ

¼ −
4M

ðPþÞ2
hP2jFαβðiD↔þÞ2FαβjP1i

ūðP2ÞuðP1Þ

− 4ξ2M
hP2jFμνFμνjP1i
ūðP2ÞuðP1Þ

; ð54Þ

where D
↔þ ≡ D⃗þ−D⃖þ

2
. We thus arrive at

X
f

e2fðAbare
f ðl2Þþξ2Dbare

f ðl2ÞÞ

≈
TRαs
12πl2

�X
f

e2f

��hPjFαβðiD↔þÞ2FαβjPi
ðPþÞ2 þξ2hPjF2jPi

�
;

X
f

e2fðBbare
f ðl2Þ−ξ2Dbare

f ðl2ÞÞ

≈−
TRαs
12πl2

�X
f

e2f

��hPjFαβðiD↔þÞ2FαβjPi
ðPþÞ2 þξ2hPjF2jPi

�
:

ð55Þ

Therefore, Abare
f , Bbare

f and Dbare
f all develop a pole 1=l2, but

not in the linear combination Abare
f þ Bbare

f ¼ Af þ Bf

relevant to the Ji sum rule [38]. By construction, these
poles cancel against the poles in (31) from the box
diagrams. The total form factors Af, Bf and Df are free
of a massless pole, as they should.
We now see a clear connection between our results

(31), (55) and the “trace anomaly pole” (42) known in the
literature after taking into account the factor of 2 from (28)
[and also the sign difference between (31) and (55)].
This shows that the pole in the box diagram originates
from the QCD trace anomaly. The Oðξ2Þ terms match
straightforwardly, but for the Oðξ0Þ terms there is an
additional complication due to the convolution integral
in x.
Let us finally speculate on the origin of the nonpertur-

bative poles introduced in (49) in an ad hoc way. Just like
the massless pole in gP is induced by the would-be Nambu-
Goldstone boson of unbroken UAð1Þ symmetry, the η0
meson, those in the gravitational form factors might be
induced by the would-be massless tensor (2þþ) and scalar

(0þþ) glueballs Gð2Þ
0 and Gð0Þ

0 in conformally symmetric
QCD. Indeed, the exchange of a massless tensor glueball
gives, schematically,

hP2jΘμνjP1i ∼ hP2jP1G
ð2Þ
0 i 1

l2
hGð2Þ

0 jΘμνj0i

∼ gð2ÞGNNf
ð2Þ
G

ūðP2ÞPðαγβÞuðP1Þ
l2

X
pol

ϵαβϵ
μν

∼ gð2ÞGNNf
ð2Þ
G

1

l2
ūðP2ÞPðμγνÞuðP1Þ; ð56Þ

where gð2ÞGNN and fð2ÞG are the effective glueball-nucleon
coupling and the glueball decay constant, respectively. ϵμν

is the glueball polarization tensor. Likewise, the exchange
of a scalar glueball gives7

hP2jP1G
ð0Þ
0 i 1

l2
hGð0Þ

0 jΘμνj0i ∼ gð0ÞGNNf
ð0Þ
G

lμlν

l2
ūðP2ÞuðP1Þ:

ð57Þ

Comparing with (55), we find

gð2ÞGNNf
ð2Þ
G ∼

hPjαsFαβðiD↔þÞ2FαβjPi
ðPþÞ2 ;

Mgð0ÞGNNf
ð0Þ
G ∼ hPjαsF2jPi: ð58Þ

Of course, in QCD conformal symmetry is explicitly
broken by the trace anomaly and glueballs acquire nonzero
masses. After the cancellation, poles in the gravitational
form factors are shifted to the physical glueball masses

X
f

Dfðl2Þ ≈M
TRnfαs
6πl2

� hP2jF2jP1i
ūðP2ÞuðP1Þ

����
l2¼0

−
hP2jF2jP1i
ūðP2ÞuðP1Þ

�

∼M
X
n

gð0ÞGnNNf
ð0Þ
Gn

l2 −m2
Gn

; ð59Þ

and similarly for the Af, Bf form factors. This is in
accord with the recently advocated “glueball dominance”
picture [39] of the gravitational form factors (similar to the
vector meson dominance of the electromagnetic form
factors). Further investigations and discussions of these
ideas are certainly needed.

V. SUMMARY

We have calculated the imaginary part of the one-loop
quark box diagrams for the antisymmetric and symmetric
parts of the Compton amplitude relevant to DVCS. The
results in the forward limit correspond to the DIS structure
functions. Our calculations are distinct from all previous
work in the GPD literature in the sense that we have kept
t ¼ l2 finite. This is mandatory in order to correctly isolate

7A careful analysis shows that both 2þþ and 0þþ glueballs
contribute to the D-form factor [39]; see also [40,41].
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the infrared 1=l2 poles related to the chiral anomaly (in the
antisymmetric channel) and the trace anomaly (in the
symmetric channel). The need to keep t ¼ l2 finite was
pointed out in Refs. [12,13] in the context of polarized DIS.
Below we summarize our main findings:
(1) Antisymmetric case: Ourmain result is Eq. (11)which

features (i) a pole 1=l2 coupled to the gluon fields
through the pseudoscalar operator FμνF̃μν, (ii) the
usual logarithmic term and the coefficient function in
polarized DIS. We interpret this result in terms of the
GPDs H̃ and Ẽ by mapping (11) to the QCD
factorization formula for the Compton amplitude.
The appearance of a genuine pole 1=l2 is a serious
concern in this context since such a termdoes not fit in
this framework. However, in order to still justify
factorization and to ensure a well-defined forward
limit for the Compton amplitude, we have introduced
a renormalized definition of the GPD Ẽ (17) in which
this perturbative pole cancels with a nonperturbative
pole present a priori in the bare GPD Ẽbare. We have
further postulated that it is the integral of this
renormalized Ẽ that defines the pseudoscalar form
factor gP. This requirement has nevertheless led to the
relation (23) which we view as correct and is con-
sistent with the pole cancellation argument in [8,12].

(2) Symmetric case: Our main result is Eq. (31) which
features (i) a pole 1=l2 coupled to the gluon fields
through the scalar operator FμνFμν, (ii) the usual
logarithmic term and the coefficient functions in
unpolarized DIS. We again interpret this result in
terms of the GPDs H and E by mapping (31) to the
QCD factorization formula. To the best of our
knowledge, the observation of such a genuine pole
in the symmetric sector is new, but once again this
raises concerns for the validity of QCD factorization.
Following the same line of reasoning as in the
antisymmetric case, we have introduced renormal-
ized definitions of the GPDsH and Ewhich undergo
cancellation of the perturbative poles with the non-
perturbative, preexisting poles from massless glue-
ball exchanges. The same cancellation occurs in the
gravitational form factors, shifting massless poles to
massive glueball poles (59).

We emphasize that, while the above arguments are to
some extent speculative, without such arguments the QCD
factorization of the Compton amplitude is violated or at
least requires revisions in both the symmetric and anti-
symmetric parts. On the other hand, from these one-loop
calculations we do not foresee problems with the QCD
factorization in inclusive DIS. In the polarized case, the pole
term (11) has a distinct Lorentz structure ∝ lα from the ΔG
term ∝ Sα. The cancellation of poles occurs entirely within
the GPD Ẽ sector while g1 is renormalized in the usual way.
In the unpolarized case, the pole vanishes after averaging

over the gluon polarizations (39) appropriate to unpolarized
DIS. [See however a caveat above (40)].
In the future, we plan to extend our calculation to the real

part of the Compton amplitude as well as the quark-
initiated diagrams in DVCS and DIS. The implications
of our result for the gravitational form factors will also be
further investigated. We hope that our work will motivate
further studies that shed additional light on the role of
anomalous contributions to DVCS and their potential
impact on factorization.
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APPENDIX: ANALYTICAL DERIVATION
OF THE POLE TERM

In the body of the paper, we have used the Mathematica
package ‘Package-X’ [21] to compute the imaginary part of
the relevant Feynman diagrams. It is instructive to dem-
onstrate analytically how the pole term 1=l2 arises. This has
been done in [13] in the “worldline” formalism. In this
appendix, we rederive the same result from an ordinary
Feynman diagram calculation.
For definiteness, we consider the antisymmetric case.

Our approach is similar to that in [3] except that we
regularize the infrared singularity by off-forward momen-
tum transfer lμ instead of the current quark mass mq. The
relevant integral is

ϵαβμνpβ

Z
d4k
ð2πÞ4 δððqþ kÞ2Þððk − pÞ2Þ

×
Tr½γμð=kþ =qÞγνð=k − =l=2Þγρð=k − =pÞγλð=kþ =l=2Þ�

ðk − l=2Þ2ðkþ l=2Þ2 ϵ1ρϵ
�
2λ;

ðA1Þ
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where we have already taken the imaginary part by putting
the final state partons on shell. The delta function con-
straints can be solved as

δððp − kÞ2Þδððqþ kÞ2Þ

≈
x̂

2ð1 − x̂ÞQ2
ðδðkþ − kþ1 Þδðk− − k−1 Þ

þ δðkþ − kþ2 Þδðk− − k−2 ÞÞ; ðA2Þ

where

kþ1;2 ¼
pþ

2

 
1þ x̂ ∓ ð1 − x̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16x̂k2⊥
ð1 − x̂Þð4Q2 − x̂l2Þ

s !
;

k−1;2 ¼ −
1

16x̂pþ

 
4Q2 þ x̂l2 ∓ ð4Q2 − x̂l2Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16x̂k2⊥
ð1 − x̂Þð4Q2 − x̂l2Þ

s !
: ðA3Þ

The pole comes from the first set of roots, k�1 , in the k⊥ → 0

region. In this region, we can approximate

kþ1 ≈ x̂pþ; k−1 ≈
−k2⊥

2ð1 − x̂Þpþ −
l2

8pþ : ðA4Þ

After performing the k� integrals using the delta functions,
we are left with an integral of the formZ

d2k⊥
fðk⊥Þ

ðk − l=2Þ2ðkþ l=2Þ2

¼
Z

1

0

da
Z

d2k⊥
fðk⊥Þ

ðk2 þ l2
4
þ ð1 − 2aÞk · lÞ2 : ðA5Þ

Using

k2 þ l2

4
≈

−k2⊥
1 − x̂

þ ð1 − x̂Þl2
4

;

kþl− þ k−lþ ≈
ð1 − x̂Þl2ξ̂

4
þ k2⊥ξ̂
1 − x̂

; ðA6Þ
we can evaluate (A5) as

Z
1

0

da
Z 1−x̂

4x̂ Q
2

d2k⊥
fðk⊥Þ�

k2⊥
1−x̂−

ð1−x̂Þl2
4

þð1−2aÞ
�
k⊥ · l⊥− ð1−x̂Þl2 ξ̂

4
− k2⊥ ξ̂

1−x̂

		
2
¼
Z

1

0

da
Z 1−x̂

4x̂ Q
2

d2k0⊥
fðk0⊥− ð1−x̂Þð1−2aÞ

2ð1−ξ̂ð1−2aÞÞ l⊥Þ�
1−ξ̂ð1−2aÞ

1−x̂ k02⊥− ð1−x̂Það1−aÞ
1−ξ̂ð1−2aÞ l

2
	
2

≈π

Z
1

0

da
fð−1

2
ð1− x̂Þð1−2aÞl⊥Þ
−að1−aÞl2 ; ðA7Þ

where we have neglected k0⊥ in the numerator since the
pole comes from the infrared. We have also used the
relation

l2 ¼ −
⃗l2⊥

1 − ξ̂2
; ðA8Þ

to obtain the second line. This relation is crucial to restore
Lorentz covariance which was not manifest after perform-
ing the k� integrations. The apparent singularities in (A7) at
a ¼ 0, 1 are innocuous because the trace in the numerator
gives

fð…Þ ∼ að1 − aÞp · qð1 − x̂Þ2ðϵ1 · lϵαϵ�2lp − ϵ�2 · lϵ
αϵ1lpÞ

þ � � � : ðA9Þ

This term is quadratic in l, so it can be easily missed if
one is not careful in taking the forward limit. With the
help of the Schouten identity, the tensors in (A9) can be
rewritten as

ϵ1 · lϵαϵ
�
2
lp − ϵ�2 · le

αϵ1lp þ l2ϵαϵ1ϵ
�
2
p ¼ lαϵϵ1ϵ

�
2
lp; ðA10Þ

where we included a nonpole term proportional to l2. This
term is beyond the accuracy of the present schematic
derivation, but it must be there due to gauge invariance.
Combining with the prefactor x̂

ð1−x̂ÞQ2 from (A2), we recover

the anomaly pole

p · q
Q2

x̂ð1 − x̂Þ l
α

l2
ϵϵ1ϵ

�
2
lp ∼ ð1 − x̂Þ l

α

l2
ϵϵ1ϵ

�
2
lp: ðA11Þ

It is easy to see that the same pole arises in the polarized
quark GPD of a single gluon

Aþ
g ≡ pþ

Z
dz−

4π
eix̂p

þz−hp2jψ̄ð−z−=2Þγþγ5ψðz−=2Þjp1i;

ðA12Þ

evaluated to one loop. For 0 < x̂ < 1, this can be obtained
by replacing ϵþβ

μνpβγ
μð=kþ=qÞγν→γþγ5 and δððqþkÞ2Þ→

δðkþ− x̂pþÞ in (A1) so that the roots (A4) remain
unchanged. The calculation is simpler and here we report
the complete analytic result in the limit lμ → 0:
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Aþ
g ≈

αs
2π

TR

�
ð2x̂−1Þ

�
ln

4Λ2

−l2ð1− x̂Þ2−1

�
⊗δð1− x̂Þiϵþpϵ�

2
ϵ1

þ2ilþ

l2
ð1− x̂Þ⊗δð1− x̂Þϵϵ1ϵ�2lp

�
: ðA13Þ

The cutoff Λ of the transverse momentum integral has
to be chosen such that the x̂ integral of the first term
vanishes. This is analogous to fixing the ambiguity of the
triangle diagram for hJμ5i by requiring gauge invariance
(vector current conservation). In particular, with the choice
Λ2 ¼ 1−x̂

4x̂ Q2 [cf. (A7)], Eq. (A13) has exactly the same
structure as (11) including even the finite terms. Adding the
contribution from the region −1 < x̂ < 0 and integrating
over x̂, one then recovers (2).
Let us finally comment on the connection to semi-

inclusive DIS (SIDIS). Since the inclusive cross section
has a pole, there must be a trace of it in the SIDIS cross
section. This can be seen by undoing the integral over
k⊥ ≈ k0⊥ in (A7) which is the transverse component of the

final-state quark momentum kq ¼ qþ k. k⊥ is related to

the standard variable ẑ ¼ p·kq
p·q in SIDIS as

k2⊥
1 − x̂

¼ ẑð1 − ẑÞQ
2

x̂
ðA14Þ

so that dk2⊥ ∼ j1 − 2ẑjdẑ. We thus see that the pole comes
from the integral

π

2

x̂ð1 − x̂Þ
Q2

Z
1

0

dẑ
j1 − 2ẑj

ðẑð1 − ẑÞ − x̂ð1 − x̂Það1 − aÞl2=Q2Þ2

≈
π

−að1 − aÞl2 : ðA15Þ

This shows that the two end points ẑ → 0, 1 equally
contribute to the pole. We again emphasize that to access
this pole in SIDIS, one has to keep terms quadratic in lμ in
the numerator.
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