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We investigate how the masses of singly heavy baryons undergo changes in nuclear matter. The mass
spectrum of the singly heavy baryons was successfully described in a pion mean field approach even with
isospin symmetry breaking, based on which we extend the investigation to the medium modification of the
singly heavy baryons. Since all dynamical parameters were determined by explaining the mass spectrum of
the SU(3) light and singly heavy baryons in free space, we can directly implement the density-dependent
functionals for the dynamical parameters, of which the density dependence was already fixed by
reproducing the bulk properties of nuclear matter and medium modification of the SU(3) light baryons.
We predict and discuss the density dependence of the masses of the singly heavy baryons.
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I. INTRODUCTION

Understanding hadrons in nuclear medium has been one
of the most important issues in hadronic and nuclear
physics, since it is deeply connected to the nonperturbative
aspects of quantum chromodynamics (QCD): the restora-
tion of chiral symmetry and quark confinement [1–4]. The
quark condensate, an order parameter of spontaneous
breakdown of chiral symmetry, is known to decrease in
nuclear medium, which indicates that chiral symmetry
tends to be restored as the nuclear density increases [1].
Experimentally, it has also been observed that the proper-
ties of the nucleon undergo a change in nuclei [5–10]. It
implies that other baryons may be modified in nuclear
matter. In the present work, we want to focus on how the
masses of the singly heavy baryons change in nuclear
matter. The heavy flavors in nuclei were already inves-
tigated right after the J=ψ was found [11–16]. The singly
heavy baryons Λc and Σc in nuclear matter were examined
in relativistic mean-field theory [17], the quark-meson
coupling model [18–20], and QCD sum rules [21–24]

(see also a recent review and references therein [25]).
Recently, the SU(3) Skyrme model with a bound-state
approach was applied to the masses of the singly heavy
baryons in nuclear matter [26].
Recently, we investigated how the masses of the SU(3)

baryon octet and decuplet undergo changes in nuclear
medium, based on the medium-modified pion mean field
approach [27]. We first examined baryonic matter including
symmetric matter, asymmetric matter, neutron matter, and
strange baryonic matter, taking empirical information on
the bulk properties of nuclear matter as a guiding principle.
By describing the various matters and masses of the octet
and decuplet in nuclear medium, we were able to fix all
density-dependent parameters. Thus, we can proceed to
study the masses of the singly heavy baryons in nuclear
mediumwith parameters already fixed. The pion mean field
approach, also known as the chiral quark-soliton model
(χQSM), was constructed by Witten’s seminal idea [28]: in
the large Nc (the number of colors) limit, the nucleon can
be regarded as a state of Nc valence quarks bound by the
pion mean field generated self-consistently by the presence
of the Nc valence quarks. The same idea can be applied to
the singly heavy baryons. If we take the limit of the
infinitely heavy-quark mass (mQ → ∞), a heavy quark
resided in a singly heavy baryon can be decoupled from the
Nc − 1 valence quarks inside it. Thus, the heavy quark
inside a singly heavy baryon is considered as a mere static
color source and the quark dynamics inside it is governed
by the light quarks. Since the heavy quark is infinitely
heavy, the heavy-quark spin is conserved, which leads to
the conservation of the light-quark spin. It is known as the
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heavy-quark spin symmetry. In this heavy-quark mass
limit, the singly heavy baryon is independent of the
heavy flavor, which is called the heavy-quark flavor
symmetry [29–31]. In this picture, the singly heavy baryons
are represented by a baryon antitriplet (3̄) and two baryon
sextets (6) with spin 1=2 and 3=2. Thus, the singly heavy
baryons can be considered as a bound state of the Nc − 1
valence quarks with the single heavy quark detached. The
heavy quark is required only for making the singly heavy
baryon a color singlet.
Based on this idea, the pion mean field approach was

directly extended to the singly heavy baryons [32]. It has
successfully described various properties of the singly
heavy baryons in free space [33–44] (see also a recent
review [45]). As mentioned previously, using the pion
mean field approach, we were able to describe how the
masses of the baryon octet and decuplet are modified in
nuclear medium [27]. The bulk properties of nuclear matter
evaluated from the present approach were in good agree-
ment with empirical and experimental data. We proceed
now to describing the masses of the singly heavy baryons
with both spin 1=2 and 3=2.
The paper is organized as follows: In the next section, we

briefly review the general formalism for the pion mean field
approach. In Sec. III, we show how to implement the
density dependence into the dynamical parameters. In
Sec. IV we present the numerical results and discuss them.
The last section is devoted to the summary and conclusions
of the present work. The explicit expressions for the baryon
masses are presented in the Appendix.

II. GENERAL FORMALISM

The pion mean field approach allows one to describe
both the light and singly heavy baryons on an equal footing.
Replacing one light quark by a heavy quark with the
infinitely heavy mass, we can construct a state for the singly
heavy baryon [42]. We first define the normalization of the
baryon state in the large Nc limit as

hBðp0; J03ÞjBðp; J3Þi ¼ 2MBδJ0
3
J3ð2πÞ3δð3Þðp0 − pÞ; ð1Þ

where MB denotes the corresponding baryon mass. A state
of the singly heavy baryon is then expressed as

jB; pi ¼ lim
x4→−∞

expðip4x4ÞN ðpÞ

×
Z

d3x expðip · xÞð−iΨ†
hðx; x4Þγ4ÞJ†Bðx; x4Þj0i;

hB; pj ¼ lim
y4→∞

expð−ip0
4y4ÞN �ðp0Þ

×
Z

d3y expð−ip0 · yÞh0jJBðy; y4ÞΨhðy; y4Þ; ð2Þ

where N ðpÞðN �ðp0ÞÞ denotes the normalization factor
depending on the initial (final) momentum. JBðxÞ and
J†BðyÞ represent the Ioffe-type current of the Nc − 1 valence
quarks [46] defined by

JBðxÞ ¼
1

ðNc − 1Þ! ϵα1���αNc−1
Γf1���fNc−1
ðTT3YÞðJJ3YRÞ

× ψf1α1ðxÞ � � �ψfNc−1αNc−1
ðxÞ;

J†BðyÞ ¼
1

ðNc − 1Þ! ϵα1���αNc−1
Γf1���fNc−1
ðTT3YÞðJJ03YRÞ

× ð−iψ†ðyÞγ4Þf1α1 � � � ð−iψ†ðyÞγ4ÞfNc−1αNc−1
; ð3Þ

where f1 � � � fNc−1 and α1 � � � αNc−1 designate respectively
the spin-isospin and color indices. The matrices
ΓðTT3YÞðJJ3YRÞ carry the quantum numbers ðTT3YÞðJJ3YRÞ
for the corresponding baryon. ψfkαkðxÞ denotes the light-
quark field andΨhðxÞ stands for the heavy-quark field. In the
limit ofmQ → ∞, a singly heavy baryon satisfies the heavy-
quark flavor symmetry. Then the heavy-quark field can be
written as

ΨhðxÞ ¼ expð−imQv · xÞΨ̃hðxÞ; ð4Þ

where Ψ̃hðxÞ is a rescaled heavy-quark field almost on mass
shell. It carries no information on the heavy-quarkmass in the
leadingorder approximation in the heavy-quark expansion.v
denotes the velocity of the heavy quark [29–31].

We now prove that the normalization factor N �ðp0ÞN ðpÞ is correctly reduced to 2MB, which can be computed as

hBðp0; J03ÞjBðp; J3Þi ¼
1

Zeff
N �ðp0ÞN ðpÞ × lim

x4→−∞
lim
y4→∞

exp ð−iy4p0
4 þ ix4p4Þ ×

Z
d3xd3y expð−ip0 · yþ ip · xÞ

×
Z

DUDψDψ†DΨ̃hDΨ̃†
hJBðyÞ × ΨhðyÞð−iΨ†

hðxÞγ4ÞJ†BðxÞ

× exp

�Z
d4zf × ðψ†ðzÞÞfαði∂þ iMUγ5 þ im̂Þfg ψgαðzÞ þΨ†

hðzÞv · ∂ΨhðzÞg
�

¼ 1

Zeff
N �ðp0ÞN ðpÞ lim

x4→−∞
lim
y4→∞

× exp ð−iy4p0
4 þ ix4p4Þ ×

Z
d3xd3y expð−ip0 · yþ ip · xÞ

× hJBðyÞΨhðyÞð−iΨ†
hðxÞγ4ÞJ†BðxÞi0: ð5Þ
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Here, Zeff is the low-energy effective QCD partition
function defined as

Zeff ¼
Z

DU expð−SeffÞ: ð6Þ

Seff is called the effective chiral action expressed as

Seff ¼ −Nc Tr ln ½i∂þ iMUγ5 þ im̂�: ð7Þ

h� � �i0 in Eq. (5) expresses the vacuum expectation value of
the baryon correlation function. M denotes the dynamical
quark mass and theUγ5 represents the chiral field defined by

Uγ5ðzÞ ¼ 1 − γ5
2

UðzÞ þ U†ðzÞ 1þ γ5
2

ð8Þ

with

UðzÞ ¼ exp½iπaðzÞλa�: ð9Þ

πaðzÞ are the pseudo-Nambu-Goldstone (pNG) fields and λa

the flavor Gall-Mann matrices. m̂ is the mass matrix of
current quarks m̂ ¼ diagðmu; md; msÞ. The propagators of a
light quark in the χQSM [46] is obtained to be

Gðy; xÞ ¼
�
y

���� 1

i=∂þ iMUγ5 þ im̄
ðiγ4Þ

����x
�

¼ Θðy4 − x4Þ
X
En>0

e−Enðy4−x4ÞψnðyÞψ†
nðxÞ

− Θðx4 − y4Þ
X
En<0

e−Enðy4−x4ÞψnðyÞψ†
nðxÞ; ð10Þ

where Θðy4 − x4Þ is the Heaviside step function. We
introduce m̄, which is the average mass of the up and down
current quarks: m̄ ¼ ðmu þmdÞ=2. It properly generates the
Yukawa tail of the pion mean field, when we later solve the
equation of motion. We define the one-body Dirac
Hamiltonian as

H ¼ γ4γi∂i þ γ4MUγ5 þ γ4m̄1: ð11Þ

Solving the eigenvalue problem of H, we find the energy
eigenvalues corresponding to the single-quark eigenstate

HψnðxÞ ¼ EnψnðxÞ: ð12Þ

We now deal with the heavy-quark propagator in the
limit of mQ → ∞:

Ghðy; xÞ ¼
�
y

���� 1
∂4

����x
�

¼ Θðy4 − x4Þδð3Þðy − xÞ: ð13Þ

Using these quark propagators and taking the limit of
y4 − x4 ¼ T → ∞, we evaluate the baryon correlation

function hJBðyÞΨhðyÞð−iΨ†
hðxÞγ4ÞJ†BðxÞi0 as follows

[46,47]:

hJBðyÞΨhðyÞð−iΨ†
hðxÞγ4ÞJ†BðxÞi0

∼ exp ½−fðNc − 1ÞEval þ Esea þmQgT�
¼ exp½−MBT�; ð14Þ

which cancels the term exp ð−iy4p0
4 þ ix4p4Þ ¼ exp½MBT�

in the large Nc limit. Therefore, we prove that the
normalization factor becomes N �ðp0ÞN ðpÞ ¼ 2MB.
Utilizing this normalization and Eq. (14), we derive the
classical mass of the singly heavy baryon [34] as

MB ¼ ðNc − 1ÞEval þ Esea þmQ: ð15Þ

Before we proceed to compute the mass spectrum of the
singly heavy baryons, we want to mention the ordering of
the two limits: Nc → ∞ and mQ → ∞. We first take the
limit of mQ → ∞ and then we carry out Nc → ∞. This
ordering is compatible with the present pion mean field
approach. If we had taken the ordering inversely, we would
not have detached the heavy quark from the singly heavy
baryons.
We restate Seff in Eq. (7) in the following form:

SeffðUÞ ¼ −NcTr ln DðUÞ; ð16Þ

where the trace operator Tr runs over spacetime and all
relevant internal spaces. The Nc stands for the number of
colors, and DðUÞ the one-body Dirac differential operator
is defined by

DðUÞ ¼ γ4ði∂þ im̂þ iMUγ5Þ; ð17Þ

where ∂4 is the time derivative in Euclidean space. The
mass matrix of the current quarks m̂ can be expressed in
terms of the Gell-Mann matrices,

m̂ ¼ m11þm3λ3 þm8λ8; ð18Þ

where

m0 ¼
mu þmd þms

3
;

m3 ¼
mu −md

2
;

m8 ¼
mu þmd − 2ms

2
ffiffiffi
3

p : ð19Þ

Uγ5 denotes the SU(3) chiral field,

Uγ5 ¼ exp½iπaλaγ5� ¼
1þ γ5

2
U þ 1 − γ5

2
U†; ð20Þ
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where πaðrÞ is the pNG field with flavor indices
a ¼ 1;…N2

f − 1. Nf is the number of flavors. Since the
hedgehog symmetry constrains the form of the classical
pion field as πðxÞ ¼ n̂ · τPðrÞ, where PðrÞ is called the
profile function of the soliton, we keep only the pion fields
πa with a ¼ 1, 2, 3.
We want to mention that the ms term does not appear in

the equation of motion. It is regarded as a small perturba-
tion that breaks flavor SU(3) symmetry explicitly. We will
explain the linear ms corrections later. As pointed out in a
recent work [48], the kaon clouds provide a better descrip-
tion for the SU(3) baryons with multiple strangeness such
as the Ω− and Ωc. However, since we fix all the dynamical
variables not by solving the equation of motion but by
using the experimental data, the tail problem discussed in
Ref. [48] does not enter in the present work.
Thus, we have the SU(2) chiral U field as

USUð2Þ ¼ expðin̂ · τPðrÞÞ. We now embed the SU(2) sol-
iton into SU(3) by Witten’s ansatz [49],

Uγ5ðxÞ ¼
�
Uγ5

SUð2ÞðxÞ 0

0 1

	
: ð21Þ

Since we consider the mean field approximation, we can
carry out the integration overU in Eq. (6) around the saddle
point (δSeff=δπa ¼ 0). This saddle-point approximation
yields the equation of motion that can be solved self-
consistently. The solution provides the self-consistent
profile function PcðrÞ, which is just the pion mean field.
Compared to the SU(3) light baryons, it is weaker than that
produced by the Nc valence quarks.
Since the classical Ucl field is not invariant under

translation and rotation, we need to restore these sym-
metries such that we have the singly heavy baryons with
correct quantum numbers. Thus, we perform the zero-mode
quantization or the semiclassical quantization for the chiral
soliton. Since the angular velocity is of order 1=Nc and
strange quark mass is small in comparison with the soliton
mass, we treat them perturbatively. Having carried out the
zero-mode quantization, the effective chiral action has a
form of

Seff ¼ −Ncði∂þ iMUγ5
c þ iγ4R† _Rþ iR†m̂RÞ; ð22Þ

where Uγ5
c is a SU(3) classical soliton field given in

Eq. (21), RðtÞ belongs to a SU(3) rotational unitary group,
and R† _R is a angular velocity that is of order 1=Nc. Since
the angular velocity and the strange current quark mass are
parametrically small, we expand the effective chiral action
in Eq. (22) with respect to them. We consider the
contribution of the strange current quark to linear order.
A detailed formalism for the zero-mode quantization can be
found in Refs. [47,50]. Having quantized the soliton, we
obtain the collective Hamiltonian as

Hcoll ¼ Mcl þHcoll þHsb; ð23Þ

where the rotational part of the collective Hamiltonian is
given as

Hrot ¼
1

2Ī1

X3
i¼1

Ĵ2i þ
1

2Ī2

X7
p¼4

Ĵ2p: ð24Þ

Here Ī1 and Ī2 have forms

Ī1 ¼ ηI1; Ī2 ¼ ηI2; ð25Þ

where I1 and I2 are the usual moments of inertia. Since we
take a “model-independent” approach [51], we do not
compute all the dynamical parameters such as I1 and I2 but
determine them by using the experimental data on the mass
splitting of the baryon octet and decuplet. In the case of the
singly heavy baryons, we only know that Ī1 and Ī2 should
be smaller than I1 and I2 because the pion mean field from
the Nc − 1 valence quarks is weaker than that with the Nc
ones. Thus, we fit η to the masses of the singly heavy
baryons in free space [32]. The Ji are the generators of the
SU(3) group of which the first three components are the
ordinary spin operators. More details can be found in
Refs. [52,53].
In representation R ¼ ðp; qÞ, the eigenvalues of Hrot in

Eq. (24) are given as

Erot
ðp;qÞ ¼

�
1

2Ī1
−

1

2Ī2

	
JðJ þ 1Þ

þ p2 þ q2 þ 3ðpþ qÞ þ pq
6Ī2

−
3

8Ī2
Y 02; ð26Þ

where Y 0 denotes the right hypercharge. In the case of the
SU(3) light baryons, the presence of Nc valence quarks
imposes a constraint on the collective Hamiltonian:
Y 0 ¼ Nc=3, which selects allowed representations: the octet
(8) and decuplet (10). Since the singly heavy baryon
consists of theNc − 1 valence quarks, the right hypercharge
is constrained to be Y 0 ¼ ðNc − 1Þ=3 [32] that allows the
antitriplet (3̄) and sextet (6). The center masses for the
baryon antitriplet and sextet are then given by

MQ
3̄
¼ Mcl þ

1

2Ī2
; MQ

6 ¼ MQ
3̄
þ 1

Ī1
: ð27Þ

Note that the center masses are flavor independent.
To describe the mass splitting in a representation, it is

essential to introduce the effects of isospin breaking and
explicit flavor SU(3) symmetry breaking. They make
degenerate baryons split. There are two independent origins
of isospin symmetry breaking:

ΔMB ¼ ðΔMBÞH þ ðΔMBÞEM; ð28Þ
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where the first term in Eq. (28) denotes the hadronic part,
and the second corresponds to the electromagnetic (EM)
one [54–56]. Thus, we have to consider both the hadronic
and EM effects on the isospin symmetry breaking within
the same theoretical framework. The isospin mass
differences were already investigated within the pion mean
field approach in Refs. [39,57].
Expanding the effective chiral action to the linear order

of m̂ and carrying out the quantization, we obtain the
symmetry-breaking part of the collective Hamiltonian as

Hsb ¼ ðmd −muÞ
� ffiffiffi

3
p

2
ᾱDð8Þ

38 ðRÞ þ βT̂3 þ
γ

2

X3
i¼1

Dð8Þ
3i ðRÞĴi

	

þ ðms − m̄Þ

×

�
ᾱDð8Þ

88 ðRÞ þ βŶ þ γffiffiffi
3

p
X3
i¼1

Dð8Þ
8i ðRÞĴi

	
; ð29Þ

where the first term arises from the isospin symmetry
breaking to linear order, and the second term comes from
the SU(3) symmetry breaking also to linear order. Once we
introduce the isospin symmetry breaking, we need to include
the contributions from the electromagnetic (EM) self-ener-

gies of the soliton [39,57]. Dð8Þ
ij denote SU(3) Wigner

functions. The parameters α, β, and γ are expressed as

ᾱ ¼ Nc − 1

Nc
α; α ¼ −

2

3

ΣπN

mu þmd
− β;

β ¼ −
K2

I2
; γ ¼ 2

K1

I1
þ 2β; ð30Þ

where K1 and K2 designate the anomalous moments of
inertia.ΣπN stands for the pion-nucleon sigma term.Note that
α should be rescaled by ðNc − 1Þ=Nc, because the singly
heavy baryon containsNc − 1 valence quarks, whichmodify
the pion mean field. More discussion of ᾱ, β, and γ can be
found in Ref. [32].
In the limit of mQ → ∞, the spin 1=2 and 3=2 sextet

states are degenerate. To remove the degeneracy, we have to
introduce the hyperfine chromomagnetic interaction (spin-
spin interaction) to order 1=mQ,

HHF
LQ ¼ 2

3

κ

mQMcl
SL · SQ ¼ 2

3

ϰ

mq
SL · SQ; ð31Þ

where the κ stands for the anomalous chromomagnetic
moment. The operators SL and SQ designate respectively
the spin operators for the soliton and heavy quark. Taking
into account the hyperfine mass splitting, the center mass of
the sextet in Eq. (27) can be decomposed into those for the
spin 1=2 and spin 3=2:

MQ
61=2

¼ MQ
6 −

2

3

ϰ

mQ
;

MQ
63=2

¼ MQ
6 þ 1

3

ϰ

mQ
: ð32Þ

In addition to the EM self-energies of the soliton for the
effects of the isospin symmetry breaking, we introduce the
EM interaction between the soliton and the heavy quark,
which can be formulated in the following expression:

HCoul
LQ ¼ αLQQ̂LQ̂Q; ð33Þ

where the Q̂L and Q̂Q represent charge operators acting on
the soliton and heavy quark. The parameter αLQ includes
the expectation value of the inverse distance between the
soliton and heavy quark, and the fine structure constants.
We can fix it by reproducing the existing data on the masses
of the singly heavy baryons [32].
Since almost all the dynamical parameters have already

been fixed in the light baryon sector, and their density
dependences have also been set up in the previous work
[27], we will proceed directly to the masses of the singly
heavy baryons in baryonic matter.

III. SINGLY HEAVY BARYONS
IN BARYONIC MATTER

We now recapitulate the formalism with which we have
described bulk properties of various baryonic matters, and
the masses of the SU(3) light baryons [27]. We introduce
three density-dependent free parameters λ, δ, and δs, which
are respectively related to the normalized density of infinite
nuclear matter, the parameter for isospin asymmetry, and
that for the strangeness mixing. They are defined as

λ ¼ ρ

ρ0
; δ ¼ N − Z

A
; δs ¼

Ns

A
; ð34Þ

where the ρ0 stands for the normal nuclear matter density,
N is the number of neutrons, Z the number of protons, A the
baryon number, and Ns the number of baryons with the
strangeness s ¼ jSj. The strangeness is only an external
free parameter, of which the fraction identifies strange
matter. We introduce the strangeness-mixing parameter χ,
which is defined as δs ¼ sχ such that we do not need to
concern specific strange particles that consist of strange
matter. Thus, by taking the nonzero value of χ, we can
consider the strange matter.
Following Ref. [27], we have the following density-

dependent classical mass, moments of inertia, effects of
isospin and SU(3) symmetry breaking:

M�
cl ¼ Mclfclðλ; δ; δ1; δ2; δ3Þ; ð35Þ

Ī�1 ¼ Ī1f1ðλ; δ; δ1; δ2; δ3Þ; ð36Þ
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Ī�2 ¼ Ī2f2ðλ; δ; δ1; δ2; δ3Þ; ð37Þ

E�
iso ¼ ðmd −muÞ

K1;2

I1;2
f0ðλ; δ; δ1; δ2; δ3Þ; ð38Þ

E�
str ¼ ðms − m̄ÞK1;2

I1;2
fsðλ; δ; δ1; δ2; δ3Þ; ð39Þ

where fcl, f0;1;2, and fs are given as the functions of the
baryon density and other medium variables. They are
explicitly written as

fclðλÞ ¼ ð1þ CclλÞ; ð40Þ

f1;2ðλÞ ¼ ð1þ C1;2λÞ; ð41Þ

f0ðλ; δÞ ¼ 1þ Cnumλδ

1þ Cdenλ
; ð42Þ

fsðλ; δsÞ ¼ 1þ gsðλÞδs; ð43Þ

gsðλÞ ¼ sgðλÞ; ð44Þ

gðλÞ ¼ −
�
6
K2

I2
þ K1

I1

	
−1

×
5ðM�

cl −Mcl þ E�
ð1;1Þ1=2 − Eð1;1Þ1=2Þ

3ðms − m̂Þ : ð45Þ

Once these functions are plugged in the equations of state,
the bulk properties of nuclear matter are well described up
to the density ∼3ρ0. The parameters for the nuclear
environment are fixed as follows [27]:

Ccl ¼ −0.0561; C1 ¼ 0.6434; C2 ¼ −0.1218;

Cnum ¼ 65.60; Cden ¼ 0.60; ð46Þ

where Ccl, C1, and C2 were determined by using the
empirical data on the volume energy, pressure at the
saturation point, and compressibility for symmetric
nuclear matter. The volume energy is known to be aV ¼
−16 MeV from the semiempirical Bethe-Weizsäker for-
mula [58,59]. The stability condition for nuclear matter
requires the pressure to vanish, i.e., P ¼ 0 near the
saturation point. The compressibility for nuclear matter
was predicted to be K0 ≃ ð290� 70Þ MeV within various
frameworks [60–65], whereas a slightly lower value of K0,
i.e., K0 ∼ ð240� 20Þ, was suggested from the data on the
energies of the giant monopole resonance in even-even
112−124Sn and 106;100−116Cd [66], and from earlier data on
58 ≤ A ≤ 208 nuclei in Ref. [67].
The parametersCnum andCden are relevant to the effects of

isospin symmetry breaking. Since asymmetric nuclear
matter appears when isospin symmetry is broken, The

Cnum and Cden play an essential role in reproducing the
properties of asymmetric nuclear matter such as the sym-
metry energy εsymðλÞ and the slope parameter Lsym. The
symmetry energy at the saturation density εsymðλ ¼ 1Þ is
known to be in the range of ∼30–34 MeV. The slope
parameter taken from the experiments of 68Ni, 120Sn, and
208Pb for the neutron skin thickness indicates that the heavier
the nucleus is, the larger the value of Lsym [68] is observed.
Thus, we choose the values of symmetry energy and slope
parameter as εsym ¼ 32 MeV and Lsym ¼ 60 MeV. For
more details about the medium functions and their param-
eters, we refer to Ref. [27].
The medium modification of the EM part of the isospin

symmetry breaking is found to be small [69] and, therefore,
we ignore it in the present work. However, the spin-spin
interaction given in Eq. (31) contains the classical mass of
the nucleon, which varies in nuclear medium. So, we
consider its mediummodification and redefine the ratio of κ
and M�

cl as ϰ
�:

ϰ� ¼ κ

M�
cl
: ð47Þ

We neglect the medium dependence of κ, since it is only
involved in lifting the degeneracy in the baryon sextet.

IV. RESULTS AND DISCUSSIONS

Since all the parameters were already fixed in the light-
baryon sector, we can straightforwardly evaluate the masses
of the baryon antitriplet and sextet. In Table I, we list the
results for the masses of the singly charmed baryons. In the
fourth column, we first present their numerical values in free
space, which have been derived in Ref. [39]. They are in
remarkable agreement with the experimental data. From the
fifth column to the last one, we list the results for the
medium-modified values for the masses of the singly
charmed baryons. In the column, their results in symmetric
nuclear matter are listed at the normal nuclear matter
density. As expected from the previous work [27], the
masses of the singly charmed baryons consistently decrease
in nuclear matter. We now consider the mass modification in
asymmetric nuclear matter with δ ¼ 1 set. Then, as shown
in the sixth column, we find a very interesting aspect in the
change of the Ξc masses. In the asymmetric nuclear matter,
the proton and neutron undergo changes in a different
manner: the proton mass starts to decrease as δ increases,
whereas the neutron mass gets enhanced with larger values
of δ. The down quarks outnumber the up quarks in
asymmetric nuclear matter. If one puts a down quark in
it, the Pauli exclusion principle brings about the repulsion
between the down quarks. Thus, competition between up
and down quarks will govern how the mass of a singly
charmed quark is modified in asymmetric nuclear matter. It
explains why the mass of Ξ0

c increases as δ increases
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whereas Ξþ
c behaves opposedly in asymmetric nuclear

matter. A similar propensity can also be observed in the
baryon sextet, though it is not as prominent as in the baryon
antitriplet. In the last column, we examine how the masses
of the singly charmed baryons experience the medium
modification in strange matter with χ ¼ 0.15. As discussed
above, now the number of the strange quarks increases and

hence a singly charmed baryon containing the strange quark
may decrease less than the nonstrange ones. We observe this
feature in the last column of Table I. We will later discuss
the density dependences of the antitriplet and sextet masses
quantitatively.
For completeness, we list the results for the mass

modification of the singly bottom baryons in Table II.

TABLE I. Masses of the singly charmed baryons in free space and in different baryonic matters at the normal nuclear matter density
λ ¼ 1. The experimental data are taken from the PDG [70]. In the fifth column, the results in symmetric nuclear matter (λ ¼ 1) are listed,
whereas, in the sixth and seventh columns, those in asymmetric matter (δ ¼ 1) and strange matter (χ ¼ 0.15) are respectively given. All
the masses are given in unit of MeV.

Baryonic matter at λ ¼ 1

Multiplet and spin Baryon Experimental Free space δ ¼ 0, χ ¼ 0 δ ¼ 1, χ ¼ 0 δ ¼ 0, χ ¼ 0.15

3̄1=2 Λc 2286.46� 0.14 2272.84 2268.71 2268.71 2264.49
Ξþ
c 2467.71� 0.23 2475.20 2472.97 2411.19 2475.09

Ξ0
c 2470.44� 0.28 2478.18 2472.16 2533.94 2474.27

61=2 Σþþ
c 2453.91� 0.14 2445.67 2372.37 2285.03 2368.51
Σþ
c 2452.9� 0.4 2444.65 2370.47 2370.47 2366.62

Σ0
c 2453.75� 0.14 2445.55 2370.50 2457.83 2366.64

Ξ0þ
c 2578.2� 0.5 2579.83 2506.09 2462.42 2508.01

Ξ00
c 2578.7� 0.5 2580.73 2506.11 2549.78 2508.04

Ωc 2695.2� 1.7 2715.46 2641.28 2641.28 2648.99

63=2 Σ�þþ
c 2518.41þ0.21

−0.19 2513.77 2444.52 2357.18 2440.66
Σ�þ
c 2517.5� 2.3 2512.75 2442.62 2442.62 2438.77

Σ�0
c 2518.48� 0.20 2513.65 2442.64 2529.98 2438.79

Ξ�þ
c 2645.10� 0.30 2647.93 2578.23 2534.57 2580.16

Ξ�0
c 2646.16� 0.25 2648.83 2578.26 2621.92 2580.18

Ω�
c 2765.9� 2.0 2784.52 2714.38 2714.38 2722.09

TABLE II. Masses of the singly bottom baryons in free space and in different baryonic matters at the normal nuclear matter density
λ ¼ 1. The experimental data are taken from the PDG [70]. In the fifth column, the results in symmetric nuclear matter (λ ¼ 1) are listed,
whereas, in the sixth and seventh columns, those in asymmetric nuclear matter (δ ¼ 1) and strange matter (χ ¼ 0.15) are respectively
given. All the masses are given in the unit of MeV.

Baryonic matter at λ ¼ 1

Multiplet and spin Baryon Experimental Free space δ ¼ 0, χ ¼ 0 δ ¼ 1, χ ¼ 0 δ ¼ 0, χ ¼ 0.15

3̄1=2 Λb 5619.60� 0.17 5599.30 5595.17 5595.17 5590.95
Ξ0
b 5791.9� 0.5 5800.28 5798.05 5736.27 5800.17

Ξ−
b 5797.0� 0.6 5806.02 5800.00 5861.78 5802.11

61=2 Σþ
b 5810.56� 0.25 5801.24 5729.83 5642.49 5725.98

Σ0
b � � � 5802.98 5730.69 5730.69 5726.84

Σ−
b 5815.64� 0.18 5806.64 5733.48 5820.81 5729.62

Ξ00
b � � � 5936.78 5864.93 5821.26 5866.85

Ξ0−
b 5935.02� 0.05 5940.44 5867.71 5911.38 5869.64

Ωb 6046.1� 1.7 6074.74 6002.46 6002.46 6010.16

63=2 Σ�þ
b 5830.32� 0.27 5821.54 5751.34 5664.00 5747.48

Σ�0
b � � � 5823.28 5752.20 5752.20 5748.35

Σ�−
b 5834.74� 0.30 5826.94 5754.98 5842.32 5751.13

Ξ�0
b 5952.3� 0.6 5957.08 5886.43 5842.77 5888.36

Ξ�−
b 5955.33� 0.13 5960.74 5889.22 5932.88 5891.14
Ω�

b � � � 6095.04 6023.96 6023.96 6031.67
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Except for the spin-spin interaction that is proportional to
1=mQ, we respect in the current work the heavy-quark
flavor symmetry. Thus, the changes of the masses of the
singly bottom baryons are in conformity with those of the
charmed baryons.
Figure 1 draws the mass shifts of the center masses, i.e.,

ΔMR
c ¼ MR�

c −MR
c , where the superscript R denotes the

corresponding representation. The expressions for MR
c are

given in Eqs. (27) and (32), as functions of λ. Note that the
center ΔM3̄

c decreases as λ increases until λ ≈ 1.2, and then

gets enhanced. On the other hand, ΔM61=2
c (ΔM63=2

c ) is
diminished rapidly until λ reaches around 2.2 (2.5) and then
starts to increase. It implies that when the nucleons inside
nuclear matter get more closely packed the repulsion
overcomes the attractive interaction in the presence of
the singly charmed baryons. The difference between the
density dependences of the antitriplet and sextet can be
understood as follows: the density dependences of Ī1 and Ī2
are different from each other. While Ī1 increases as λ

FIG. 1. Shifts of the center masses for the singly heavy baryons.
The solid curve draws the mass shift of the baryon antitriplet. The
dashed and dotted ones depict respectively the mass shifts for the
baryon sextet with spin 1=2 and spin 3=2. The results are given in
the unit of MeV.

FIG. 2. Mass shifts of singly charmed baryons in symmetric nuclear matter (δ ¼ 1, χ ¼ 0). In the upper left panel, the λ dependences
of the baryon antitriplet are drawn. In the right upper panel, those of the baryon sextet with spin 1=2 are depicted, whereas in the lower
panel, those of the baryon sextet with spin 3=2 are shown. The results are given in the unit of MeV.
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increases, Ī2 is lessened with the λ grown. Mcl decreases
linearly as the nuclear density increases. When λ reaches
around 1.2, the second term 1=2Ī2 overtakesMcl, so thatM3̄
starts to increase. However, the second term for M61=2 and
M63=2 in (27) is suppressed as λ increases. Thus, M61=2 and
M63=2 follow the behavior of Mcl. When λ further increases,
the termwith ϰ� comes into play. In Fig. 2, we draw themass
shifts of the charmed baryon antitriplet and sextet, ΔMBc

, in
symmetric nuclear matter. The λ dependences of ΔMBc

follow those of the center masses shown in Fig. 1. This is
natural, because the effects of the flavor SU(3) symmetry
breaking, which causes the mass splitting in the representa-
tions, are changed only in strange matter. This is the reason
why the mass shift in each representation is degenerate.
In Fig. 3, we depict the mass shifts of the singly charmed

baryons in asymmetric neutron matter with δ ¼ 1 and
χ ¼ 0. The neutral and positively charged baryons gen-
erally show rather different behaviors as λ increases. The
charmed baryons in the antitriplet exhibit the difference
prominently. While Ξ0

c increases rather rapidly as λ
increases, Ξþ

c decreases until λ reaches around λ ¼ 2.0

in asymmetric nuclear matter. It indicates that the effects of
isospin symmetry breaking stand out in neutron matter
(δ ¼ 1). This has profound physical implications. The
density-dependent function f0ðλ; 1; 0Þ in Eq. (42) increases
as δ grows. It contributes to the ᾱ, β, and γ in Eq. (30), so
that d3 and d6 in Eq. (A8) become δ dependent. The terms
containing d3 d6 in mass formulas in Eqs. (A1)–(A7) are
proportional to the third component of the isospin operator,
T3, which brings about the isospin symmetry breaking.
Thus, the differences between the neutral and positively
charged baryons demonstrated in Fig. 3 arise from these
terms. As explained above, the underlying physics in these
differences comes from the Pauli exclusion principle.
Figure 4 illustrates how the masses of the singly charmed

baryons are shifted as λ increases. Interestingly, the mass
shifts of the singly charmed baryon show a general
tendency: They first start to decrease as λ increases, and
then increase when λ gets to some specific values.
However, those of Ωc and Ω�

c monotonically fall off as λ
increases. Inspecting Eqs. (A1)–(A7), we find that the
terms with D3 in the antitriplet and D6 in the sextet cause
respectively the mass splittings in the corresponding

FIG. 3. Mass shifts of singly charmed baryons in asymmetric nuclear matter (δ ¼ 1, χ ¼ 0). In the upper left panel, the λ dependences
of the baryon antitriplet, i.e., Λc, Ξ0

c, and Ξþ
c , are drawn in the solid curve, the dashed curve, and the dotted curve, respectively. In the

right upper panel, those of the baryon sextet with spin 1=2 are depicted, whereas in the lower panel, those of the baryon sextet with spin
3=2 are shown. The results are given in the unit of MeV.
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representations. We also observe that the λ dependences of
the baryon sextet with spin 1=2 are almost the same as those
with spin 3=2. Note that the sextet baryons with spin 1=2
and 3=2 are degenerate before we introduce the hyperfine
interaction in Eq. (32). Though the parameter ϰ� in Eq. (47)
is also density dependent, its effect is marginal. The
prefactor in the D6 term of the Ωc (Ω�

c) baryons is
−4=3, whereas the those of Σc (Σ�

c) and Ξ0
c (Ξ�

c) are
respectively þ2=3 and −1=3. This leads to the different
λ dependences of the sextet baryons as shown in Fig. 4.

V. SUMMARY AND OUTLOOK

In the present work, we aimed at investigating the mass
shifts of the singly heavy baryons within a pion mean field
approach (χQSM) in various nuclear matters. In the limit of
the infinite heavy-quark mass, the dynamics in a singly
heavy baryon is governed by the light quarks whereas the
heavy remains as the mere static color source with the
heavy quark spin-flavor symmetry satisfied. The light
quarks, which yield the right hypercharge Y 0 ¼ 2=3, select

the proper representations of the singly heavy baryons. This
allows one to describe the light and singly heavy baryons
on an equal footing. Since all the density-dependent
variables had been determined in describing the bulk
properties of nuclear matter and the mass shifts of the
baryon octet and decuplet, we were able to evaluate those of
the baryon antitriplet and sextet without fitting the param-
eters. Then, we first computed the medium-modified
masses of the singly charmed baryons in symmetric nuclear
matter. The center masses of the baryon antitriplet and
sextet govern the density dependences of the singly
charmed baryon masses. In the case of asymmetric nuclear
matter, the neutral and positively charged baryons reveal
different density dependences: The neutral baryons tend to
increase as the nuclear density increases, whereas the
positively charged ones decrease as the nuclear density
grows. We explained the reason and discussed its physical
implications. As a result, the effects of isospin symmetry
breaking are more strengthened as the density increases in
asymmetric nuclear matter. We also presented the mass
shifts of the singly charmed baryons in strange matter.

FIG. 4. Mass shifts of singly charmed baryons in strange matter (δ ¼ 0, χ ¼ 0.15). In the upper left panel, the λ dependences of the
baryon antitriplet, i.e., Λc and Ξc, are drawn in the solid curve and dashed curve, respectively. In the right upper panel, those of the
baryon sextet with spin 1=2 are depicted, whereas in the lower panel, those of the baryon sextet with spin 3=2 are shown. The results are
given in the unit of MeV.
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APPENDIX: EXPRESSIONS FOR THE MASSES
OF THE SINGLY HEAVY BARYONS

The masses of the antitriplet baryon are expressed as

MΛQ
¼ Mcl þ Erot

ð0;1Þ þmQ þ 2

3
D3 þ

1

4
c8;

MΞQ
¼ Mcl þ Erot

ð0;1Þ þmQ −
1

3
D3 þ d3T3

þ 3

4

�
T3 þ

1

6

	
c8 − Q̂qαLQT3; ðA1Þ

where the Erot
0;1 can be obtained from Eq. (26). The masses

of the spin 1=2 sextet baryon are given by the following
expression:

MΣQ
¼ Mcl þ Erot

ð2;0Þ þmq −
2

3

ϰ

mQ

þ 2

3
D6 þ d6T3 þ

3

10

�
T3 þ

1

3

	
c8

þ 1

9

�
T2
3 þ

1

5
T3 −

3

5

	
c27 þ Q̂qαLQT3; ðA2Þ

MΞ0
Q
¼ Mcl þ Erot

ð2;0Þ þmQ −
2

3

ϰ

mQ

−
1

3
D6 þ d6T3 þ

3

10

�
T3 −

1

6

	
c8;

−
2

45

�
T2
3 þ 2T3 þ

1

4

	
c27 þ Q̂qαLQT3; ðA3Þ

MΩQ
¼ Mcl þ Erot

ð2;0Þ þmQ −
2

3

ϰ

mQ
−
4

3
D6 þ

1

5
c8 −

1

45
c27;

ðA4Þ

where the Erot
2;0 can be obtained from Eq. (26). The masses

of the spin 3=2 baryon sextet mass can be written as the
following expression:

MΣ�
Q
¼ Mcl þ Erot

ð2;0Þ þmQ −
1

3

ϰ

mQ

þ 2

3
D6 þ d6T3 þ

3

10

�
T3 þ

1

3

	
c8

þ 1

9

�
T2
3 þ

1

5
T3 −

3

5

	
c27 þ Q̂qαLQT3; ðA5Þ

MΞ�
Q
¼ Mcl þ Erot

ð2;0Þ þmQ −
1

3

ϰ

mQ

−
1

3
D6 þ d6T3 þ

3

10

�
T3 −

1

6

	
c8

−
2

45

�
T2
3 þ 2T3 þ

1

4

	
c27 þ Q̂qαLQT3; ðA6Þ

MΩ�
Q
¼ Mcl þ Erot

ð2;0Þ þmQ −
1

3

ϰ

mQ
−
4

3
D6 þ

1

5
c8 −

1

45
c27:

ðA7Þ

Here d3;6 and D3;6 are defined as

D3 ¼ ðms − m̂Þ
�
3

8
ᾱþ β

	
;

D6 ¼ ðms − m̂Þ
�
3

20
ᾱþ β −

3

10
γ

	
;

d3 ¼ ðmd −muÞ
�
3

8
ᾱþ β

	
;

d6 ¼ ðmd −muÞ
�
3

20
ᾱþ β −

3

10
γ

	
: ðA8Þ
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