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We propose a new analytical expression for the transverse-momentum-dependent (TMD, or unin-
tegrated) gluon density in the proton. Essential phenomenological parameters are extracted from the LHC
data on inclusive hadron production in pp collisions at low transverse momenta pT ≤ 1 GeV. The latter are
described in the framework of a modified soft quark-gluon string model, where the gluonic state and
nonzero transverse momentum of partons inside the proton are taken into account. To determine the
parameters important at moderate and large x, we use the measurements of inclusive b-jet and Higgs boson
production at the LHC as well as the latest HERA data on proton structure functions Fc

2ðx;Q2Þ and
Fb
2ðx;Q2Þ and reduced cross sections σcredðx;Q2Þ and σbredðx;Q2Þ. The Catani-Ciafaloni-Fiorani-Marchesini

evolution equation is applied to extend the initial gluon distribution to the whole kinematical region. We
achieve a simultaneous description of all considered processes with χ2=d:o:f: ¼ 2.2, thus moving toward
the global fit of the TMD gluon density from collider data. The obtained TMD gluon distribution in a
proton is available for public usage and implemented in the TMDLIB package and Monte Carlo event
generator PEGASUS.
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I. INTRODUCTION

It is known that the theoretical description of any
physical observables measured in the collider experiments
is mainly based on different factorization theorems in
quantum chromodynamics (QCD). These theorems pro-
vide the necessary framework to separate hard partonic
physics, described with the perturbative QCD expansion,
from soft hadronic physics, described in terms of parton
density functions (PDFs). The latter contain information
on the nonperturbative structure of a hadron (proton). The
most popular framework is provided by the conventional
(so-called collinear) QCD factorization. In this approach,
gluon and quark densities depend only on the longitudinal
momentum fraction x of the proton momentum carried by
a parton. An appropriate QCD evolution describing the
dependence of PDFs on the resolution scale μ2 is given by
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [1]. Such a formalism is usually successful for
sufficiently inclusive processes, like deep-inelastic lepton-
hadron scattering (DIS), if a few higher-order terms in
perturbative QCD expansion are taken into account.
However, in order to describe less inclusive processes

proceeding at high energies with large momentum transfer
and/or containing multiple hard scales, the transverse-
momentum-dependent (TMD, or unintegrated) parton den-
sities faðx;k2

T; μ
2Þ with a ¼ q or g are required (for more

information, see, for example, Ref. [2] and references
therein). These quantities encode additional transverse
momentum and polarization degrees of freedom and
satisfy the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [3] or
Catani-Ciafaloni-Fiorani-Marchesini (CCFM) [4] evolution
equations. In this way, one can effectively resum large
logarithmic terms proportional to αns lnn s=Λ2

QCD∼αns lnn1=x
which are expected to become equally (or even more)
important in comparison with conventional DGLAP con-
tributions proportional to αns lnn μ2=Λ2

QCD. Such a high-
energy factorization [5], or kT-factorization [6] formalism,
was formulated and it is becoming a widely exploited tool in
high-energy physics. A certain advantage of this approach is
that one can quite easily take into account a large piece
of higher-order perturbative quantum chromodynamics
(PQCD) corrections in the calculations. Several Monte
Carlo event generators based on the kT-factorization formal-
ism, like CASCADE [7], KATIE [8], and PEGASUS [9], are
developed and a number of corresponding phenomenologi-
cal applications are known in the literature. Thus, the
kT-factorization approach becomes an essential tool which
allows one to make theoretical predictions for future experi-
ments at modern (LHC) and future (FCC, EiC, EicC)
colliders.
In this sense, special interest is connected with the

selection of the TMD parton density in the proton best
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suited to describe the currently available collider data
and which therefore can be used to generate the necessary
realistic predictions. However, in contrast to much of
our knowledge about the conventional PDFs accumulated
in theoretical and experimental studies over the past
years, the TMD parton densities are still poorly
known quantities. There are some popular approaches to
evaluate the latter, for example, the Kimber-Martin-Ryskin
prescription [10,11], Balitsky-Kovchegov [12] or Gribov-
Levin-Ryskin (GLR) [13] evolution equations,1 CCFM-
based formalism [15], and the parton branching (PB)
approach [16,17]. A variety of currently available TMD
sets are collected in the TMDLIB package [18], which is a
C++ library providing a framework and an interface for the
different parametrizations.
It is known that the appropriate choice of the non-

perturbative input fð0Þa ðx;k2
T; μ

2
0Þ, which is used as the

initial condition for subsequent QCD evolution [19–22],
plays an important role in the derivation of TMD parton
densities in a proton. In fact, its influence on the description
of experimental data can be significant [23–26]. Similar to
collinear PDFs, starting TMD parton distributions are
usually parametrized in a rather general form (see
Sec. II below) and then fitted to some experimental data.
Such procedures were carried out for the CCFM [15] and
PB [27] approaches with the XFITTER tool [28], where the
latest precision HERA measurements of the proton struc-
ture function F2ðx;Q2Þ were used. In contrast, in our
previous studies [23–26], the modified soft quark-gluon
string model (QGSM) [29,30] was applied to determine the
parameters of an analytical expression for the starting TMD

gluon density in a proton fð0Þg ðx;k2
T; μ

2
0Þ. In the modified

QGSM, both the longitudinal and transverse motion of
quarks and gluons [31,32] as well as the saturation effects
at small x and low scales can be taken into account. The
essential phenomenological parameters were obtained from
the best description of RHIC and LHC data on the inclusive
spectra of hadrons produced in pp and AA collisions at low
transverse momenta, and the CCFM evolution equation
was applied to extend the proposed TMD gluon density in
the whole kinematical region. It was shown that such an
approach is able to describe the HERA data on proton
structure functions Fc

2ðx;Q2Þ, Fb
2ðx;Q2Þ, and FLðx;Q2Þ

and LHC data on several processes, in particular, single top
production and inclusive Higgs boson production atffiffiffi
s

p ¼ 8 and 13 TeV.
In the present paper, we continue our study and recalcu-

late fð0Þg ðx;k2
T; μ

2
0Þ more accurately using the modified

QGSM. Moreover, we determine the parameters of the
initial gluon density using the LHC data on soft hadron

(kaon and pion), inclusive b-jet and Higgs boson production
in pp collisions at different energies as well as the latest
HERA data on proton structure functions Fc

2ðx;Q2Þ and
Fb
2ðx;Q2Þ and reduced cross sections σcredðx;Q2Þ and

σbredðx;Q2Þ. Thus, we take a step toward the global fit of
the TMD gluon density from the collider data that signifi-
cantly improves our earlier analyses [23–26].
The paper is organized as follows. In Sec. II, we briefly

describe our theoretical input and discuss the basic steps of
the calculations of soft hadron spectra in the modified
QGSM. Then, from the best description of the LHC data on
the latter, we derive an updated analytical expression for the
initial TMD gluon density in a proton. In Sec. III, we
perform a fit of several phenomenological parameters from
the LHC and HERA data and compare our results with the
known ones. We give conclusions in Sec. IV.

II. THE MODEL

Similar to conventional PDFs, a construction of the
TMD parton distributions in a proton starts from the input
densities, which are further used as the initial conditions for
subsequent noncollinear QCD evolution. As mentioned
above, usually the initial TMD gluon density at some
starting scale μ20 (which is of order of the hadron scale) is
taken in the rather general empirical form with factorized
Gauss smearing in transverse momentum k2

T (see, for
example, [15]):

fð0Þg ðx;k2
T; μ

2
0Þ ¼ a1xa2ð1 − xÞa3e−k2

T=q
2
0 ; ð1Þ

where all the parameters have to be extracted from
the experimental data. Alternatively, a more physically

motivated nonfactorized expression for fð0Þg ðx;k2
T; μ

2
0Þ

can be taken from the Golec-Biernat-Wüsthoff (GBW)
approach [33,34] based on color dipole picture for DIS:

fð0Þg ðx;k2
T; μ

2
0Þ ¼ cgR2

0ðxÞk2
Te

−R2
0
ðxÞk2

T ;

R0ðxÞ ¼
1

Q0

ð x
x0
Þλ=2; ð2Þ

where cg ¼ 3σ0=ð4π2αsÞ, σ0 ¼ 29.12 mb, αs ¼ 0.2,
Q0 ¼ 1 GeV, x0 ¼ 4.1 × 10−5, and λ ¼ 0.277. In this
approach, the effect of the saturation of the qq̄ dipole cross
section at large distance r between the quark and antiquark
in the dipole or small μ is assumed. This saturation of the
dipole cross section is a direct consequence of the saturation
of the cross section of virtual photon-proton scattering
(γ�p) [33]. It leads to the scale-independent behavior of the

TMD gluon density fð0Þg ðx;k2
T; μ

2
0Þ at μ < μsat, where μsat is

the saturation scale. The GBW model was successfully
applied to both inclusive and diffractive ep scattering at
HERA. However, we face some difficulties in determining
an accurate description of several hard LHC processes.

1Very recently, a new Monte Carlo algorithm to simulate the
initial state parton branching in the small-x region according to
the GLR equation has been proposed [14].
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In our previous studies [23–25], to describe successfully the
LHC data on soft hadron production in pp collisions, we
modified the starting form of the gluon density (2) as the
following:

fð0Þg ðx;k2
T;μ

2
0Þ ¼ c0c1ð1− xÞb½R2

0ðxÞk2
T þ c2ðR2

0ðxÞk2
TÞa=2�

× exp ð−R0ðxÞjkT j− d½R2
0ðxÞk2

T �3=2Þ: ð3Þ

Then, to extend the consideration to a region of larger pT we
added to (3) some function dependent on kT and low x,
which was matched with the exact solution [35] of the
BFKL equation outside of the saturation region. As we
mentioned above, in this way one could provide a reason-
ably good description [26] of some HERA and LHC data
using the proposed analytical expression (nonfactorized
with respect to x and k2

T) for the initial TMD gluon
density with parameters obtained in the modified QGSM
approach [31,32]. However, in the present paper we suggest
a new approach for the calculation of pT spectra of soft
hadron production. Below, we discuss our suggestion based
on the scale-independent behavior of the starting gluon

density fð0Þg ðx;k2
T; μ

2
0Þ at μ ≤ μ0 and low x. After that, we

find the corresponding phenomenological parameters from
the best description of soft hadron spectra measured at
different LHC energies. For the reader’s convenience, below
we briefly recall the basic formulas with a short review of
the calculation steps.

A. Hadron spectra at low pT in the midrapidity region

As is well known, the soft hadron production in pp
collisions at small momentum transfer and large Feynman
variables xF can be analyzed successfully within the soft
QCD models, such as the QGSM [29,30] or dual parton
model [36]. It is based on the Regge behavior of the cross
section at large xF. In the QGSM, the interaction dynamics
is based on two colorless strings formed between the quark/
diquark (q=qq) and diquark/quark (qq=q) of the colliding
protons.2 At their breaking, the quark-antiquark and
diquark-antidiquark pairs are created in the chromostatic
QCD field, and then they fragment into final hadrons h. The
corresponding quark and diquark distribution functions
and their fragmentation functions into hadrons were calcu-
lated [29,30]. Such an approach allows one to describe the
experimental observables at nonzero xF and low transverse
momenta pT quite satisfactorily.
In the midrapidity region, according to the Abramovsky-

Gribov-Kancheli (AGK) cutting rules [37], only one-
Pomeron Mueller-Kancheli diagrams contribute to the

inclusive hadron spectrum. However, we face some difficul-
ties in determining a description of inclusive hadron spectra
measured in this kinematical region. In fact, the predicted
hadron transversemomentumdistributions fall downvery fast
with the increase of pT compared to the data [32]. To avoid
these difficulties, theQGSMwasmodified [31,32]. So, it was
suggested that there are soft gluons in a protonwhich split into
qq̄ pairs and therefore give additional contribution to the
hadron spectrum. The contribution of the one-Pomeron
exchange graph between gluons in the colliding protons
and the contribution of one-Pomeron Mueller-Kancheli
diagrams to the inclusive pT spectrum were taken into
account. However, the application of the AGK cutting rules
in the casewhere soft gluons as well as quarks are included in
the calculation is very questionable. In [31,32], these con-
tributions of quarks, diquarks, and gluons were calculated
separately, independent of each other assuming that the
contribution of gluons to the spectrum vanishes at zero
transverse momenta of the produced hadrons. Additionally,
the splitting function of gluons into qq̄ pairs was calculated
ignoring the dependence of gluon distribution on the trans-
verse momentum kT . Therefore, in this paper we recalculate
the inclusive pT spectra of charged hadrons produced in pp
collisions at midrapidity and small pT .
As mentioned above, the data [38,39] on the γ�p cross

section show its saturation at low Q2 and low x [33]. It
leads to the saturation of the dipole cross section and
scale-independent behavior of the starting gluon density at
low Q2 less than the saturation transfer square Q2

sat.
Therefore, the colliding protons at low Q2 can be
considered as two systems consisting of three valence
quarks and a gluon environment with the wave function
Ψg, and its square is related to the starting gluon

distribution as jΨgj2 ∼ f̃ð0Þg ðx;k2
T; μ

2
0Þ. Then, the pp inter-

action amplitude can be presented in the simple spectator

form Fpp ¼ fð0Þ3qΨg, where fð0Þ3q is the amplitude of the
interaction of two 3q systems. To calculate the inclusive
spectrum ρðx; pTÞ≡ E d3σ

d3p ≡ 1
π

d3σ
d2pTdy

of hadrons h, we have

to calculate the sum of the quark contribution ρq and the
gluon one ρg, i.e.,

ρðx; pTÞ ¼ ρqðx; pTÞ þ ρgðx; pTÞ: ð4Þ

The first term in (4) was calculated within the QGSM [29,30]
using only the one-Pomeron exchange or the cylinder graph
because in the midrapidity and small xT ¼ 2pT=

ffiffiffi
s

p
the multi-Pomeron exchanges result in negligibly small
contributions, as shown in [32]. It is presented in the
following form:

ρqðs; x; pTÞ ¼ σ1ϕqðs; x; pTÞ; ð5Þ

where σ1 is the cross section of the one-Pomeron exchange
(see [29] and references therein)

2These two colorless strings can be stretched between valence
quarks and diquarks corresponding to the one-Pomeron exchange
between colliding protons. Also, many strings can be stretched
between sea quarks and antiquarks in the interacting protons,
which correspond to n-Pomeron exchanges.
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σ1 ¼
σP
z
ð1 − e−zÞ; σP ¼ 8πγPðs=s0ÞΔ;

z ¼ 2CγPðs=s0ÞΔ
R2 þ α0P ln s=s0

: ð6Þ

All the parameters in (6) are found [40] from experimental
data on the total and differential cross sections of elastic
pp and pp̄ scattering at high energies: γP ¼ 1.27 GeV−2,
Δ ¼ 0.156, C ¼ 1.8, R2 ¼ 4.0 GeV−2, α0P ¼ 0.25 GeV−2.
The function ϕqðs; x; pTÞ is calculated within the QGSM
and presented in Eq. (8). The second one, ρgðx; pTÞ, is the
convolution of the modified gluon distribution Fgðx; kTÞ
with the fragmentation function of gluons to hadrons Dg→h

multiplied by the integral from jfð0Þ3q j2 over the intrinsic
phase space, which results in approximately the inelastic
pp cross section σppin because the LHC data described in
this paper exclude the elastic pp collisions. The modified
gluon distribution Fgðx; kTÞ as well as the modified quark
and diquark distributions Fqðx; kTÞ; Fqqðx; kTÞ are calcu-
lated taking into account the energy-momentum conser-
vation law; see Eqs. (15)–(20). So, we can write

ρgðx; pTÞ ¼ Fg ⊗ Dg→h × σppin : ð7Þ

Finally the hadron spectrum at low x and low pT can be
presented as the following:

ρðx; pTÞ ¼ σ1ϕqðs; x; pTÞ þ σinϕgðs; x; pTÞ: ð8Þ

The first and second terms in (8) represent the quark/
diquark and gluon contributions, respectively,

ϕqðs; x; pTÞ ¼ fΦqðxþ; pTÞΦqqðx−; pTÞ
þΦqqðxþ; pTÞΦqðx−; pTÞg; ð9Þ

ϕgðs; x; pTÞ ¼ fΦgðxþ; pTÞ þΦgðx−; pTÞg; ð10Þ

where

x� ¼ 1

2
ð�xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4ðm2

h þ p2
TÞ=s

q
Þ;

x ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ p2
T

s

r
sinh y; ð11Þ

mh is the produced hadron mass, and the phenomenological
parameters Cq and Cg have to be determined from the data.
Keeping in mind that the proton consists of two up quarks
and one down quark and taking into account the nonzero
parton transverse momenta, the contributions of the quark,
diquark, and gluon fragmentations within the modified
QGSM approach are calculated as convolutions [31,32]:

Φqðx; pTÞ ¼
Z1

x

dξ
Z∞

0

dk2
T

Z2π

0

dϕ

×
�
2

3
Fuðξ;k2

TÞGu→hðz; jpT − zkT jÞ

þ 1

3
Fdðξ;k2

TÞGd→hðz; jpT − zkT jÞ
�
; ð12Þ

Φqqðx; pTÞ ¼
Z1

x

dξ
Z∞

0

dk2
T

Z2π

0

dϕ

×

�
2

3
Fudðξ;k2

TÞGud→hðz; jpT − zkT jÞ

þ 1

3
Fuuðξ;k2

TÞGuu→hðz; jpT − zkT jÞ
�
; ð13Þ

Φgðx; pTÞ ¼
Z1

x

dξ
Z∞

0

dk2
T

Z2π

0

dϕFgðξ;k2
TÞ

×Gg→hðz; jpT − zkT jÞ; ð14Þ

where kT is the transverse momentum of the quark,
diquark, and/or gluon, z ¼ x=ξ, and ϕ is the azimuthal
angle between pT and kT . The quark, diquark, and gluon
fragmentation functions to hadrons (namely, to pions and
kaons), Ga→hðz; jpT jÞ with a ¼ q, qq, or g, were calculated
in the QGSM at leading- (LO) and next-to-leading (NLO)
orders [41]. The corresponding analytical expressions are
collected in Appendix A. The functions Faðx;k2

TÞ involved
in (12)–(14) are related to the TMD parton distributions in a
proton taken at some scale determined by the produced
hadron transverse momentum.3 The functions Fqðx;k2

TÞ,
Fqqðx;k2

TÞ, and Fgðx;k2
TÞ were calculated using the

energy-momentum conservation law for the quark, diquark,
and gluon. So, for example,

Fqðx;k2
TÞ ¼

Z1

x�

dξ1dξ2δð1 − x − ξ1 − ξ2Þ

×
Z

d2pTd2qTδ
ð2ÞðkT þ pT þ qTÞ

× f̃qðx;k2
TÞf̃qqðξ1;p2

TÞf̃gðξ2;q2
TÞ; ð15Þ

where f̃aðx;k2
TÞ≡faðxÞgaðk2

TÞ and f̃gðx;k2
TÞ≡fgðx;k2

TÞ=x
are the kT-dependent quark, diquark, and gluon densities,
respectively (see below). Performing integration over ξ1 and
p2
T in (15), one can easily obtain

3As mentioned above, this scale could be considered as the
starting scale for subsequent QCD evolution due to small hadron
transverse momentum, pT ∼ 1 GeV.
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Fuðx;k2
TÞ ¼ f̃uðxÞgqðk2

TÞ
Z1−x

x�

dξ2

Z∞

0

dq2
T

Z2π

0

dφ

× f̃udð1 − x − ξ2ÞgqqðjkT þ qT j2Þf̃gðξ2;q2
TÞ;
ð16Þ

Fdðx;k2
TÞ ¼ f̃dðxÞgqðk2

TÞ
Z1−x

1x�

dξ2

Z∞

0

dq2
T

Z2π

0

dφ

× f̃uuð1 − x − ξ2ÞgqqðjkT þ qT j2Þf̃gðξ2;q2
TÞ;
ð17Þ

where φ is the azimuthal angle between kT and qT .
Similarly, one can derive expressions for Fqqðx;k2

TÞ:

Fudðx;k2
TÞ ¼ f̃udðxÞgqqðk2

TÞ
Z1−x

x�

dξ2

Z∞

0

dq2
T

Z2π

0

dφ

× f̃uð1 − x − ξ2ÞgqqðjkT þ qT j2Þf̃gðξ2;q2
TÞ;
ð18Þ

Fuuðx;k2
TÞ ¼ f̃uuðxÞgqqðk2

TÞ
Z1−x

x�

dξ2

Z∞

0

dq2
T

Z2π

0

dφ

× f̃dð1 − x − ξ2ÞgqqðjkT þ qT j2Þf̃gðξ2;q2
TÞ:
ð19Þ

For Fgðx;k2
TÞ, we have the following formula including the

charge and isotopic invariance:

Fgðx;k2
TÞ ¼ f̃gðx;k2

TÞ
Z1−x

x�

dξ2

Z∞

0

dq2
T

Z2π

0

dφ

�
2

3
f̃uð1 − x − ξ2ÞgqðjkT þ qT j2Þf̃udðξ2Þgqqðq2

TÞ

þ 1

3
f̃dð1 − x − ξ2ÞgqðjkT þ qT j2Þf̃uuðξ2Þgqqðq2

TÞ
�
: ð20Þ

The distributions fu; fd; fuu; fud, and gq; gqq as functions
of x and kT , respectively, are presented in Appendix A. Our
choice for the TMD parton densities involved in (16)–(20)
is particularly discussed in Sec. II. 2.
Finally, the inelastic pp cross section σin can be

calculated as the difference between the total and elastic
pp scattering cross sections: σin ¼ σtot − σel, where σtot
should satisfy the Regge asymptotic σtot ∼ ðs=s0ÞαP−1.
However, it was shown [42,43] that σtot and σel can be
parametrized in the following way:

σtot ¼ 21.7ðs=s0Þ0.0808 þ 56.08ðs=s0Þ−0.4525 mb; ð21Þ
σel ¼ 11.84 − 1.617 ln sþ 0.1359ln2s mb; ð22Þ

where s0 ¼ 1 GeV. Therefore, we will use these expres-
sions in the numerical calculations.
Using the expressions above, one can calculate the cross

sections for soft hadron production in pp collisions. Some
technical details are given in Appendix B. To perform
numerical multidimensional integration, we employ a
MonteCarlo technique implementedwith theVEGAS tool [44].

B. TMD parton distributions in a proton at low scale

Concerning the TMD gluon density fgðx;k2
TÞ, here we

will follow our previous considerations [23–26] where the
different expressions based on the GBW saturation model
were tried. In fact, it was demonstrated that the overall
description of collider data could be significantly improved
if the usual GBW gluon distribution given by (2) is

modified. In the present analysis, we update the modifi-
cation proposed earlier [23,24] and take into account a
certain quark-gluon sum rule4:

X
a

Z1

0

dx
Z

d2kTxf̃aðx;k2
TÞ ¼ 1; ð23Þ

where a ¼ u, d, uu, ud, and g.
We will consider the data on charged hadron (pion and

kaon) production at small transverse momenta pT ≤ 1 GeV
taken at different energies, namely,

ffiffiffi
s

p ¼ 0.9, 2.36, 7, and
13 TeV [45–47]. We find that in order to describe these
data, the most appropriate expression for the starting gluon
density fgðx;k2

T:μ
2
0Þ, hereafter labeled as the LLM gluon, is

the following:

fgðx;k2
TÞ¼cgð1−xÞbg

X3
n¼1

ðcnR0ðxÞjkT jÞne−R0ðxÞjkT j; ð24Þ

where R0ðxÞ is defined in (2), and we kept x0 ¼ 4.1 × 10−5

and λ ¼ 0.22. Our best fit for phenomenological parame-
ters leads to c1 ¼ 5, c2 ¼ 3, c3 ¼ 2, and Q0 ¼ 1.233 GeV.
We have specially checked that some variation in x0 and λ
does not affect the fit quality. However, the measured

4The TMD gluon density used in [25,26] has a very high k2
T

tail, that leads to sizeable value of gluon average transverse
momentum. The latter, of course, should have a significant
perturbative component unwanted for our purposes.
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hadron spectra [45–47] refer to a relatively small-x region
and appear to be mostly insensitive to the bg value, which
plays a role at essentially larger x. So, we determined the
latter from the LHC data on several hard processes, as
described in Sec. III. Following [48,49], we treat bg as a
running parameter at k2

T ≥ Q2
0:

bg ¼ bgð0Þ þ
4CA

β0
ln
αsðQ2

0Þ
αsðk2

TÞ
; ð25Þ

where bgð0Þ ¼ 5.854, CA ¼ Nc, and β0 ¼ 11 − 2=3Nf is
the first coefficient of the QCD β function. At small
k2
T < Q2

0, the fixed value bg ¼ bgð0Þ is used. A similar
approach was applied in the investigation of the European
Muon Collaboration effect from the study of shadowing at
low x to antishadowing at x ∼ 0.1–0.2 [50].
The experimental data on the charged hadron production

involved in the fit are compared with our predictions in
Fig. 1 (left panel). One can see that good agreement is
achieved in a wide range of energies.

C. Saturation dynamics

As it is assumed in [33,34], the effective dipole cross
section as a function of the distance r between q and q̄ is
saturated at large r. It is presented in the following form:

σ̂ðx; r2Þ ¼ σ0

�
1 − exp

�
−

r2

4R2
0ðxÞ

��
; ð26Þ

where R0 is determined in (2). The normalization σ0 and
the parameters λ and x0 were found from a fit of all
inclusive DIS data [33,34]. The relation of the TMD gluon
distribution to the dipole cross section σ̂ðx; r2Þ was
calculated [34] within the two-gluon exchange approxi-
mation between q; q̄ and the nucleon debris. It has the
following form:

σ̂ðx; r2Þ ¼ 4π2

3

Z
dk2t
k2t

f1 − J0ðkTrÞgαsðμ20Þfð0Þg ðx;k2
T; μ

2
0Þ;

ð27Þ

where J0ðkTrÞ is the cylindrical special function of order 0.
Comparing (26) to (27), one can immediately get the
expression (2).
Inserting our gluon distribution (LLM) at the initial μ0

presented in (24)–(27), one can get the dipole cross section
at different values of x as a function of r, which is
proportional to 2=Q0 according to [34]. In Fig. 2 (left
panel), the comparison of the GBW dipole cross section
σ̂ðx; r2Þ calculated using (2) to our calculation (24) is
presented as a function of r at different x. One can see that
the saturation of the dipole cross section at large r strongly
depends on x and on the TMD gluon density. The GBW
gluon density results in the saturation scale rs ∼ 2=R0

according to (26) [34]. According to Fig. 2, the saturation
scale corresponding to the GBW gluon density at x ¼
4.2 × 10−5 is Qs ≃ 2=rs ≃ 0.8 GeV, whereas the LLM
gluon density results in Qs ≃ 2=rs ≃ 0.4 GeV at the same
x. It means that at Q2 < Q2

s , the dipole cross section and
starting gluon density do not depend on scale Q2.
Let us note that the GBW and LLM gluon densities

vanish at kT → 0. It is due to the neglecting of the initial
gluon mass mg in the gluon propagator; see (27) and [34].
With the inclusion of the gluon mass, the TMD gluon
distributions does not vanish at zero gluon transverse

momentum. However, fð0Þg ðx;k2
T; μ

2
0Þ does not vanish at

kT ¼ 0 even at mg ¼ 100 MeV according to Fig. 2
(right panel).

D. CCFM evolution

Being sure that proposed TMD gluon density in a proton
is able to reproduce well the collider data in a soft

FIG. 1. Left panel: charged hadron spectra calculated within the modified QGSM at different energies. Experimental data are
from [45–47]. Right panel: χ2=d:o:f: dependence of our fit performed moderate- and large-x values.
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kinematical region, one can consider the expression (24) as
the starting condition for subsequent QCD evolution.
As mentioned above, we will apply the CCFM

equation [4]. It resums both large logarithms αns lnn 1=x
and αns lnn 1=ð1 − xÞ and introduces an angular ordering
condition to treat the gluon coherence effects correctly. In the
limit of asymptotic high energies (i.e., small x), it is almost
equivalent to BFKL [3], but it is also similar to the usual
DGLAP evolution [1] for large x, smoothly interpolating
between these two kinematical regimes. Therefore, it pro-
vides a suitable tool for our purposes.5

In the leading logarthmic approximation, the CCFM
equation for TMD gluon density6 fgðx;k2

T; μ
2Þ can be

written as

fgðx;k2
T; μ

2Þ ¼ fð0Þg ðx;k2
T; μ

2
0ÞΔsðμ; μ0Þ

þ
Z

dz
z

Z
dq2

q2
Θðμ − zqÞΔsðμ; zqÞ

× P̃ggðz;k2
T; q

2Þfg
�
x
z
;k02

T ; q
2

�
; ð28Þ

where k0
T ¼ qð1 − zÞ þ kT and P̃ggðz;k2

T; q
2Þ is the

CCFM splitting function:

P̃ggðz;k2
T; q

2Þ ¼ ᾱsðq2ð1− zÞ2Þ
�

1

1− z
þ zð1− zÞ

2

�

þ ᾱsðk2
TÞ
�
1

z
− 1þ zð1− zÞ

2

�
Δnsðz;k2

T; q
2Þ:

ð29Þ

The Sudakov and non-Sudakov (or Regge) form factors
read

lnΔsðμ;μ0Þ¼−
Zμ2

μ2
0

dμ02

μ02

Z1−μ0=μ0

0

dζ
ᾱsðμ02ð1−ζÞ2Þ

1−ζ
; ð30Þ

lnΔnsðz;k2
T;q

2
TÞ ¼ −ᾱsðk2

TÞ
Z1

0

dz0

z0

Z
dq2

q2

× Θðk2
T − q2ÞΘðq2 − z02q2

TÞ; ð31Þ
where ᾱs ¼ 3αs=π. The first term in (28) is the initial

TMD gluon density fð0Þg ðx;k2
T; μ

2
0Þ determined at the

scale μ20 multiplied by the Sudakov form factor describing
the contribution of nonresolvable branchings between the
starting scale μ20 and scale μ2. In our calculations, the
expression (24) will be used as the initial gluon density.
The second term represents the details of the QCD
evolution expressed by the convolution of the CCFM
gluon splitting function P̃ggðz;k2

T; q
2Þwith the TMD gluon

density and Sudakov form factor. The angular ordering
condition is introduced with the theta function, so the
evolution scale μ2 is coming from the maximum allowed
angle for any gluon emission determined by the hard
scattering subprocess μ2 ¼ ŝþQ2

T , where QT is the net
transverse momentum entering the hard subprocess with
center-of-mass energy ŝ. This choice for scale μ2 is usually
considered as a built-in property of the CCFM evolution
(see, for example, [15] and references therein).
The CCFM equation can be solved numerically using the

UPDFEVOLV routine [51], so that the TMD gluon density
can be obtained in the whole kinematical range. In this way,
the TMD gluon distribution is tabulated in a commonly
recognized format (namely, a grid of 50 × 50 × 50 bins in
x, k2

T , and μ2) which is used in the TMDLIB tool [18].

FIG. 2. Left: the dipole cross section as a function of r at different values of x. Right: the LLM and GBW gluon densities as functions
of kT at different gluon masses. The JH’2013 set 2 [15] gluon distribution is presented for comparison.

5We note that the proposed approach can be used, in principle,
with other QCD evolution scenarios employing TMD parton
dynamics in a proton, such as the PB [27] or GLR [13] framework.

6Hereafter, we denote the evolution variable as μ2. Another
notation, namely, q̄2, is also often used in the literature.
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III. FITTING THE ESSENTIAL PARAMETERS

There are phenomenological parameters in the initial
TMD gluon density (24) which are not predicted by the
theory and therefore have to be extracted from the collider
data. Our fitting strategy is based on splitting the overall
procedure into two almost independent parts, where each of
them refers to the regions of low and large x, respectively.
This is because the measured normalized hadron spectra
considered in Sec. II. 2 are almost insensitive to the overall
normalization given by cg and to the shape parameter bgð0Þ,
which plays a role mainly at moderate and large x values.
So, now we turn to this region and refine the behavior of the
proposed gluon distribution by extracting the cg and bgð0Þ
parameters from the measured cross sections of some hard
processes. We will use the CMS data on inclusive b-jet
production in pp collisions at

ffiffiffi
s

p ¼ 7 TeV [52] and recent
data on inclusive Higgs boson production in different decay
modes taken by the ATLAS [53,54] and CMS [55]
Collaborations at

ffiffiffi
s

p ¼ 13 TeV. The cross sections of
these processes are governed by gluon-gluon fusion sub-
processes and receive an essential contribution, in particu-
lar, from the appropriate x region.7 In fact, the CMS data on
b-jet production refer to the kinematical region defined by
18 < pTðbÞ < 196 GeV and rapidity jyðbÞj < 2.2 [52].
The ATLAS data on inclusive Higgs production in the
diphoton decay mode were obtained at pγ

T=m
γγ > 0.35

(0.25) for the leading (subleading) decay photon, pseudor-
apidity jηγj < 2.37 for both photons, and the invariant mass
105 < mγγ < 160 GeV [53]. The CMS data refer to a
similar kinematical region: pγ

T=m
γγ > 1=3 (1=4) for

the leading and subleading photons jηγj < 2.5 and 100 <
mγγ < 180 GeV [55]. The ATLAS measurement [54]
performed in the H → ZZ� → 4l decay mode requires
at least four leptons in the event with at least one
lepton having pT > 20 GeV, another lepton having
pT > 15 GeV, and the remaining ones having pT > 10
and 5 GeV, respectively. All leptons must have the
pseudorapidity jηðlÞj < 2.7, the leading pair invariant mass
m12 must be 50 < m12 < 106 GeV, and the subleading one
should be 12 < m34 < 115 GeV. Finally, the four-lepton
invariant mass m4l must satisfy the 105 < m4l < 160 GeV
cut. Thus, the typical x values probed in these analyses
x ∼ 2μ=

ffiffiffi
s

p
are varied from x ∼ 5 × 10−3 to x ∼ 2 × 10−2,

where the scale μ of the considered processes is deter-
mined, for example, by the transverse masses of the
produced particles. Additionally, we use the latest
HERA data on the charm and beauty contributions to
the inclusive proton structure functions Fc

2ðx;Q2Þ,
Fb
2ðx;Q2Þ [57–59], and reduced cross sections σcredðx;Q2Þ

and σbredðx;Q2Þ [60] obtained at Q2 > 2.5 GeV2 in a wide
region of x. The DIS reduced cross section of the heavy
quark Q can be presented as

σQredðx;Q2Þ ¼ FQ
2 ðx;Q2Þ − y2

1þ ð1 − yÞ2 F
Q
L ðx;Q2Þ; ð32Þ

where y ¼ Q2=ðxSÞ, and FQ
L ðx;Q2Þ is the contribution of

the heavy quark Q to the proton longitudinal structure
function FLðx;Q2Þ. All of these observables are governed
by photon-gluon fusion subprocess, and therefore, they are
also very sensitive to the gluon content of a proton. Note
that, in contrast with another study [15], we do not consider
the latest precise HERA data on the inclusive proton
structure function F2ðx;Q2Þ, since the latter could include
a sizeable quark component.
We extracted the cg and bgð0Þ values from the best

simultaneous description of several observables, in particu-
lar, the distributions on leading b-jet transverse momenta
measured at their different rapidities, Higgs boson transverse
momentum, and rapidity spectra.We also considered several
angular correlations in Higgs boson production, namely,
distributions on theHiggs decay photon helicity angle (in the
Collins-Soper frame), leading lepton pair decay angle with
respect to the beam axis (in the four-lepton rest frame), and
production angles of antileptons from the two-decay Z
bosons, where these angles are defined relative to the Z
direction. The fitting procedure is rather standard and
straightforward. Technically, applying the UPDEVOLV routine
[51], we solved numerically the CCFM equation for a (large)
number of fixed guessed bgð0Þ values in a wide (but still
reasonable) range 3 < bgð0Þ < 8. Then, using each of the
generated TMD gluon densities in the proton, we calculated
the cross sections of all considered processes according to
previous evaluations [61–63]. The best simultaneous
description of the experimental data for all observables
above is achieved at cg ¼ 0.173� 0.009 and bgð0Þ ¼
5.854þ1.920

−1.553 with χ2=d:o:f: ¼ 2.2; see Fig. 1. Note that we
took into account the contributions to the Higgs production
cross sections from weak boson fusion (WþW− → H and
ZZ → H) associatedHZ orHW� production and associated
tt̄H production. These contributions are essential at high
transverse momenta and have been calculated in the conven-
tional NLO PQCD. We took them from [53–55].
The TMD gluon densities in a proton calculated with

fitted value of bgð0Þ and cg are shown in Figs. 3 and 4 as
functions of the proton’s longitudinal momentum fraction x
and gluon transverse momentum k2

T for different values of
the hard scale μ2. The shaded bands represent the uncer-
tainties of our fitting procedure.8 As one can see, these

7Wewill not consider the ATLAS data [56] on b-jet production
since they refer to extremely large b-jet transverse momenta,
where the effects of parton showers and/or hadronization cor-
rections play an important role.

8We neglected here the uncertainties connected with the cg
value since they are small compared to the ones related to the fit
of the bgð0Þ parameter.
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uncertainties become important at x ≥ 10−1. For compari-
son, we also show the CCFM-evolved TMD gluon dis-
tributions from [15], namely, JH’2013 set 2, which is often
used in the phenomenological applications. In contrast with
our approach, the x dependence of the JH’2013 set 2 input
has a general form given by (1) with parameters derived
from the high-precision HERA data on the proton structure
functions F2ðx;Q2Þ and Fc

2ðx;Q2Þ at x < 5 × 10−3 and
Q2 > 3.5 GeV2. We find that both of these gluon densities
have a remarkably different x and k2

T behavior, especially
in the region of small k2

T ; see Fig. 4. Some phenomeno-
logical consequences of the latter we demonstrate here.
So, the experimental data involved in our fit are

compared with the obtained predictions in Figs. 5–11.
The shaded bands represent the theoretical uncertainties of
our calculations. For comparison, we also used here the
JH’2013 set 2 gluon distribution. One can see that our fit
leads to a good agreement with the experimental data
practically for all considered observables. The HERA data
on structure functions Fc

2ðx;Q2Þ, Fc
2ðx;Q2Þ and reduced

cross sections σcredðx;Q2Þ, σbredðx;Q2Þ are reasonably well
described by both considered TMD gluons within the
uncertainties. However, we find that the JH’2013 set 2
gluon density provides a bit worse description of b-jet and/
or Higgs boson production at the LHC, especially at low
transverse momenta (see Figs. 5–7). The better agreement
of these data achieved with the proposed TMD gluon
density is an immediate consequence of using the physi-
cally motivated expression (24) for input distribution. In
fact, at low transverse momenta, the relatively small gluon
k2
T are probed, where the difference between the considered

gluon distributions becomes essential, as is shown in Fig. 4.
Moreover, significant overestimation of the measured b-jet
and especially the Higgs boson pT spectra at low pT
obtained with the JH’2013 set 2 gluon leads to a notable
difference in the absolute normalization of Higgs rapidity,
decay photon scattering angle cos θ�, invariant massesm12,
m34, and other observables shown in Figs. 6 and 7. So, our
calculations clearly demonstrate that the experimental data
for the considered processes are strongly sensitive to the

FIG. 3. The TMD gluon densities in a proton fgðx;k2
T; μ

2Þ calculated as a function of the longitudinal momentum fraction x at
different values of transverse momentum k2

T and hard scale μ2. Shaded bands represent the uncertainties of the bgð0Þ fitting procedure.
The uncertainties connected with the fit of the cg parameter are small and therefore not shown here. Note that the gluon densities
calculated at μ2 ¼ 104 GeV2 are multiplied by a factor of 100.
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TMD gluon distribution in the proton and can be used to
constrain the latter. Of course, future more precise mea-
surements could be very useful and important to reduce the
uncertainties in the determination of the phenomenological
parameters from the data.
We performed here a step toward the global analysis of

collider data in the kT-factorization approach. The obtained
TMD gluon density is already available for the community.
It is implemented in the Monte Carlo event generator
PEGASUS. Moreover, it is included in TMDLIB package,
which is used by the CASCADE and KATIE Monte Carlo
generators.

IV. CONCLUSION

We have proposed a new analytical expression for
the TMD gluon density in the proton valid in a soft
kinematical region. Using the modified quark-quark gluon
string model, where the gluonic state and nonzero trans-
verse momentum of partons inside the proton are taken
into account, we have obtained some corresponding

phenomenological parameters from the best description
of LHC data on charged hadron (pion and kaon) spectra
produced in pp collisions at low transverse momenta
pT ≃ 1 GeV. We have shown that the new suggested TMD
gluon distribution incorporates saturation effects for the
dipole cross section at a scale lower than the prediction of
GBW model. Then, treating the obtained TMD gluon
distribution as the initial condition for the subsequent
noncollinear QCD evolution, we have extended it to the
whole kinematical region using the CCFM equation.
Several parameters important at moderate and large x
have been fitted from the LHC data on inclusive b-jet and
Higgs boson production as well as latest HERA data on
proton structure functions Fc

2ðx;Q2Þ and Fb
2ðx;Q2Þ and

reduced cross sections σcredðx;Q2Þ and σbredðx;Q2Þ. Our fit
leads to a simultaneous description of all these processes
with good χ2=d:o:f: ¼ 2.2. The obtained TMD gluon
distribution in a proton is available for public usage
and is implemented in the popular TMDLIB package and
Monte Carlo event generator PEGASUS.

FIG. 4. The TMD gluon densities in a proton fgðx;k2
T; μ

2Þ calculated as a function of the transverse momentum k2
T at different values

of the longitudinal momentum fraction x and hard scale μ2. Shaded bands represent the uncertainties of the bgð0Þ fitting procedure. The
uncertainties connected with the fit of the cg parameter are small and therefore not shown here. Note that the gluon densities calculated at
μ2 ¼ 104 GeV2 are multiplied by a factor of 100.
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APPENDIX A

In the conventional QGSM framework (neglecting the
transverse momentum dependence), the quark and diquark
distribution functions in a proton faðxÞ, where a ¼ u, d,
ud, or uu, were calculated [29,30]. They read

fuðxÞ ¼ Cp
ux−1=2ð1 − xÞ3=2;

fdðxÞ ¼ Cp
dx

−1=2ð1 − xÞ5=2; ðA1Þ

fudðxÞ ¼ Cp
udð1 − xÞ−1=2x3=2;

fuuðxÞ ¼ Cp
udð1 − xÞ−1=2x5=2: ðA2Þ

Here, the overall normalization factors are given by

Cp
u ¼ Cp

ud ¼
Γð2 − 1=2þ 3=2Þ

Γð1 − 1=2ÞΓð1þ 3=2Þ ¼ 1=1.1781; ðA3Þ

Cp
d ¼ Cp

uu ¼ Γð2 − 1=2þ 5=2Þ
Γð1 − 1=2ÞΓð1þ 5=2Þ ¼ 1=1.01859: ðA4Þ

In the modified QGSM, where the gluonic state in the
proton and partonic transverse momentum are taken into
account, the TMD quark and diquark densities can be
written as

faðx;k2
TÞ ¼ cafaðxÞgaðk2

TÞ; gaðk2
TÞ ¼

B2
a

2π
e−BajkT j;

ðA5Þ

FIG. 5. Transverse momentum distributions of inclusive b-jets produced in pp collisions at
ffiffiffi
s

p ¼ 7 TeV at different rapidities
calculated using the CCFM-evolved TMD gluon density (24) with fitted value bgð0Þ ¼ 5.85. Predictions obtained with the JH’2013 set
2 gluon are shown for comparison. Shaded bands represent the estimation of theoretical uncertainties of our calculations. Kinematical
cuts are described in the text. Experimental data are from CMS [52].
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where Bq ¼ Bqq ¼ 5 GeV−1. The normalization factors ca
(which are about 1=2) can be included to restore QCD
quark-gluon sum rules.
Here we list the analytical expressions for the quark,

diquark, and gluon fragmentation functions used in our
calculations. These expressions were obtained in the QGSM
at the LO [41]. So, for the gluons we have

Gg→hðz; jpT jÞ ¼ 2Gg→πðzÞIgπðjpT jÞ þ 2Gg→KðzÞIgKðjpT jÞ;
ðA6Þ

where the coefficients 2 come from the following relations:

Gg→πþðzÞ ¼ Gg→π−ðzÞ; Gg→KþðzÞ ¼ Gg→K−ðzÞ: ðA7Þ

The parametrizations of Gg→πðzÞ and Gg→KðzÞ are the
following:

Gg→πðzÞ ¼ 6.57z0.54ð1 − zÞ3.01; ðA8Þ

Gg→KðzÞ ¼ 0.37z0.79ð1 − zÞ3.07; ðA9Þ

and the functions IgπðjpT jÞ and IgKðjpT jÞ read

IgπðjpT jÞ ¼ IgKðjpT jÞ ¼ IghðjpT jÞ ¼
ðBg

fh
Þ2

2π
e−B

g
fh
jpT j; ðA10Þ

with Bg
fh

¼ Bg
fπ

¼ Bg
fK

¼ 4.5 GeV−1. For the quark frag-
mentation functions we have

Gu→πþðz; jpT jÞ ¼ ½a0ð1 − zÞ þ a0ð1 − zÞ2�IqπðjpT jÞ; ðA11Þ

Gd→πþðz; jpT jÞ ¼ ð1 − zÞGu→πþðzÞIqπðjpT jÞ; ðA12Þ

Gu→Kþðz; jpT jÞ ¼ akð1 − zÞ1=2ð1þ a1KzÞIqKðjpT jÞ; ðA13Þ

Gu→K−ðz; jpT jÞ ¼ akð1 − zÞ3=2IqKðjpT jÞ; ðA14Þ

Gd→Kþðz; jpT jÞ ¼ Gu→K−ðzÞIqKðjpT jÞ; ðA15Þ

Gd→K−ðz; jpT jÞ ¼ Gu→KþðzÞIqKðjpT jÞ: ðA16Þ

FIG. 6. Differential cross sections of inclusive Higgs boson production at
ffiffiffi
s

p ¼ 13 TeV (in the diphoton decay mode) calculated as
functions of the diphoton transverse momentum pT , rapidity y, and photon helicity angle j cos θ�j (in the Collins-Soper frame).
Notation of all histograms is the same as in Fig. 5. Kinematical cuts are described in the text. Experimental data are from ATLAS [53]
and CMS [55].
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The analytical forms for IqπðjpT jÞ and IqKðjpT jÞ are the
same as for IgπðjpT jÞ, IgKðjpT jÞ, but the slopes are Bq

fπ
¼

Bq
fK

¼ 7 GeV−1. The other parameters are a0 ¼ 0.65,
ak ¼ 0.075, and a1K ¼ 2. Finally, for the diquarks one
can write

Guu→πþðz; jpT jÞ ¼ a0ð1 − zÞ2Iqqπ ðjpT jÞ; ðA17Þ

Gud→πþðz; jpT jÞ¼a0ð1þð1−zÞ2Þð1−zÞ2Iqqπ ðjpT jÞ; ðA18Þ

Guu→Kþðz; jpT jÞ¼akð1−zÞ5=2ð1þa2KzÞIqqK ðjpT jÞ; ðA19Þ

Guu→K−ðz; jpT jÞ ¼ akð1 − zÞ7=2IqqK ðjpT jÞ; ðA20Þ

FIG. 7. Differential cross sections of inclusive Higgs boson production at
ffiffiffi
s

p ¼ 13 TeV (in the H → ZZ� → 4l decay mode)
calculated as functions of the Higgs transverse momentum pT , rapidity y, leading and subleading lepton pair invariant masses m12 and
m34, leading lepton pair scattering angle j cos θ�j (in the Collins-Soper frame), and first and second antilepton production angles cos θ1
and cos θ2. The notation of all histograms is the same as in Fig. 5. The kinematical cuts are described in the text. The experimental data
are from ATLAS [54].
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FIG. 8. Structure functions Fc
2ðx;Q2Þ measured at different scales calculated using the CCFM-evolved TMD gluon density (24) with

fitted value bgð0Þ ¼ 5.85. Predictions obtained with the JH’2013 set 2 gluon are shown for comparison. Shaded bands represent the
estimation of theoretical uncertainties of our calculations. Experimental data are from ZEUS and H1 [57–59].
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FIG. 9. Structure functions Fb
2ðx;Q2Þ measured at different scales calculated using the CCFM-evolved TMD gluon density (24) with

fitted value bgð0Þ ¼ 5.85. Predictions obtained with the JH’2013 set 2 gluon are shown for comparison. Shaded bands represent the
estimation of theoretical uncertainties of our calculations. Experimental data are from ZEUS and H1 [57,59].
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FIG. 10. Reduced cross sections σcredðx;Q2Þmeasured at different scales calculated using the CCFM-evolved TMD gluon density (24)
with fitted value bgð0Þ ¼ 5.85. Predictions obtained with the JH’2013 set 2 gluon are shown for comparison. Shaded bands represent the
estimation of theoretical uncertainties of our calculations. Experimental data are from ZEUS and H1 [60].
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FIG. 11. Structure functions σbredðx;Q2Þ measured at different scales calculated using the CCFM-evolved TMD gluon density (24)
with fitted value bgð0Þ ¼ 5.85. Predictions obtained with the JH’2013 set 2 gluon are shown for comparison. Shaded bands represent the
estimation of theoretical uncertainties of our calculations. Experimental data are from ZEUS and H1 [60].
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Gud→Kþðz; jpT jÞ ¼
ak
2
ð1 − zÞ5=2ð1þ a2Kzþ ð1 − zÞ2ÞIqqK ðjpT jÞ; ðA21Þ

Gud→K−ðz; jpT jÞ ¼
ak
2
ð1 − zÞ7=2ð1þ ð1 − zÞ2ÞIqqK ðjpT jÞ; ðA22Þ

where Iqqπ;KðjpT jÞ ¼ Iqπ;KðjpT jÞ and a2K ¼ 5.

APPENDIX B

Here we present some details of our calculation of charged hadron spectra at low pT. The functions Φa involved
in (9) and (10) can be presented in the following way:

Φaðx�; pTÞ ¼
Z1

x�

dx1

Z∞

0

dk2
1T

Z2π

0

dφ1

Z1−x1
x�

dx2

Z∞

0

dk2
2T

Z2π

0

dϕ2F̃aðx1; x2;k2
1T;k

2
2TÞGa→hðz; jpT − zk1T jÞ; ðB1Þ

where a ¼ q, qq, or g and z ¼ x�=x1. The kernels F̃aðx1; x2;k2
1T;k

2
2TÞ are

F̃g
qðx1; x2;k2

1T;k
2
2TÞ ¼ fqðx1Þgqðk2

1TÞfqqð1 − x1 − x2Þgqqðjk1T þ k2T j2Þfgðx2;k2
2TÞ; ðB2Þ

F̃g
qqðx1; x2;k2

1T;k
2
2TÞ ¼ fqqðx1Þgqqðk2

1TÞfqð1 − x1 − x2Þgqðjk1T þ k2T j2Þfgðx2;k2
2TÞ; ðB3Þ

F̃gðx1; x2;k2
1T;k

2
2TÞ ¼ fgðx1;k2

1TÞfqð1 − x1 − x2Þgqðjk1T þ k2T j2Þfqqðx2Þgqqðk2
2TÞ: ðB4Þ

To simplify the integration in (B1), we perform a change of variables:

x1 ¼ t0ð1 − x�Þ þ x�; k2
1T ¼ ð1 − t1Þ=t1; φ1 ¼ 2πt2;

x2 ¼ t3ð1 − x1Þ ¼ t3ð1 − x�Þð1 − t0Þ þ x�; k2
2T ¼ ð1 − t4Þ=t4; φ2 ¼ 2πt5: ðB5Þ

The integration on all t variables can now be performed in the range (0,1). The transition Jacobian reads

Jðx�; t0;…; t5Þ ¼
4π2ð1 − x�Þð1 − x1ðt0ÞÞ

t21t
2
4

¼ 4π2ð1 − x�Þ2ð1 − t0Þ
t21t

2
4

: ðB6Þ
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