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Recalling the expectation of an extremely strong primordial magnetic field H, we recheck transitions
among the phases of chiral symmetry restoration (χSR), chiral symmetry breaking (χSB), and pion
superfluidity (πSF) in the QCD epoch of the early universe. For homogeneous phases in a finite H, a
sensible scheme is adopted to determine the phase boundaries of πSF, which is also the superconductivity
phase itself. In the first part, the QCD phase diagrams are studied in detail within the chiral effective
Polyakov-Nambu–Jona-Lasinio model, and the transitions involving πSF are found to be of first order at
relatively small H. As expected from the Meissner effect, the regime of πSF shrinks with increasing H and
completely vanishes beyond a threshold value. In the second part, the bubble dynamics is illuminated for
the stronger first-order transition, χSR → πSF, in the more convenient Polyakov-quark-meson model. The
coupled equations of motion of pion condensate and magnetic field are solved consistently to give the
bubble structure. Then, based on bubble collisions, we explore gravitational wave (GW) emission by
developing a simple toy model in advance; and the characteristic frequency of the relic GW is estimated to
be of the order 0.1–1 K or 109–1010 Hz in our galaxy.
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I. INTRODUCTION

The exploration of possible phases in quantum chromo-
dynamics (QCD) systems is a renewing topic in both low
and high energy nuclear physics. In low energy nuclear
physics, quarks are confined and the color singlet hadrons,
mainly nucleons and pions, are expected to be effective
degrees of freedom in nuclear matter. Because of strong
attractive interactions, a dilute nucleonic system was found
to prefer self-clustering to the saturation density with
almost constant energy per nucleon [1,2]. Such a property
implies a first-order gas-liquid transition for isospin sym-
metric nuclear matter at low temperature [3]. Moreover,
celestial neutron stars were expected to be realistic corre-
spondences of isospin asymmetric nuclear matter [4], and
physicists had proposed many relevant phases for neutron
stars, such as the one with the presence of Cooper pairing of
neutrons [5], pasta structure [6,7], hyperon degrees of
freedom [8], pion condensation [9], or Kaon condensation
[10]; see also the review [11].
The high energy nuclear physics is characterized by

considering quark degrees of freedom in the many-body
QCD system [12]. Relativistic heavy ion collisions [13]
were proposed to look for quark-gluon plasma, the phase
where quarks and gluons are released from the interiors of
nucleons. Such a phase was justified, and its properties
were also well studied in heavy ion colliders (HICs) [14]. In
the early stage, HICs usually explored a high temperature
and low chemical potential region where no sign of ordered
phase transition was ever found [15–18]. Recently, several

experiments focus on the low temperature and high
chemical potential region in order to look for the critical
end point (CEP) of chiral transition [19]. Similarly,
deconfined quarks were also proposed to exist in celestial
bodies, mainly the inner cores of neutron stars [20] and
quark stars [21], with color superconductors of several
kinds [22] and quarkyonic matter [23–26] possible phases.
Actually, the early universe is full of phase transitions

[27] with electroweak (EW) and QCD transitions among
the earliest ones. The EW transition was sometimes taken
to account for baryogenesis [28] and a strong primordial
magnetic field was also assumed to be seeded there
[29–31]. Though nonvanishing, the baryon density is very
small in the early universe [32], so the QCD chiral
transition was expected to be a trivial crossover, the same
as that in HICs. However, the QCD epoch became more
and more interesting when charged pion superfluidity was
found to be favored for relatively large light lepton densities
[33–35]. The work is an extension of our previous work
[35] by taking the primordial magnetic field into account.
Two changes are expected: the second-order phase boun-
dary of pion superfluidity might become of first order due
to the Meissner effect induced by the magnetic field [36],
and consequently the first-order transition would induce a
generation of gravitational wave [21,37] even without the
inflation effect. Though gravitational wave (GW) emission
has been widely studied in the first-order EW transition
[38–41], this might be the first time that a reliable first-
order transition is applied to generate GW directly in the
QCD epoch.
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It is subtle to explore the possibility of a superconductor
phase when an external magnetic field is present. For a
type-II superconductor, vortical structure can be obtained
by consistently solving the coupled equations of motion
(EoMs) of the charged condensate and magnetic field,
and the finite magnetic field could penetrate through the
vortices [42]. However, for a type-I superconductor,
the magnetic field can only be present at the surface of
the superconductor, known as the Meissner effect [43].
Then, how could we consistently explore the transition
between phases with and without a magnetic field in the
bulk for a type-I superconductor? The problem had been
well addressed in the textbook Ref. [36]: the external
magnetic field (H), rather than the total magnetic field (B),
is the same for both phases and thus serves the correct
variable of free energy for the study of superconductivity.
That means we have to transform the Helmholtz free energy
with B the variable to Gibbs free energy with H the
variable, and the Gibbs free energy of the superconductor
can be shown to be the same as that with H ¼ 0.
The paper is mainly composed of two parts. In the first

part, Sec. II, we explore the QCD phase diagrams of the
early universe by accounting for a primordial magnetic
field within the Polyakov-Nambu–Jona-Lasinio (PNJL)
model. Formalisms are developed for chiral phases and
pion superfluidity in Secs. II A and II B, separately, where
we derive free energy, gap equations, and relevant thermo-
dynamic quantities. The most important sectors of a strong
interaction are studied in detail in Secs. II A 1 and II B 1,
and the sectors of electroweak interaction are briefly
summarized in Secs. II A 2 and II B 2. The numerical
results of this part are shown in Sec. II C together with
relevant discussions. In the second part, Sec. III, we first
study bubble dynamics during the first-order QCD tran-
sition of the early universe by adopting the two-flavor
Polyakov-quark-meson (PQM) model in Sec. III A. And
then in Sec. III B, the results are applied to briefly explore
the features of the gravitational wave generated by bubble
collisions within a toy model. Finally, an overall summary
is given in Sec. IV.

II. PART I: PHASE DIAGRAMS WITH THE
THREE-FLAVOR PNJL MODEL

In this section, we adopt the three-flavor PNJL model
[44–46] for the QCD sector and explore in detail the phase
diagrams with the presences of lepton flavor asymmetries
and a primordial magnetic field.

A. Chiral phases in the magnetic field

Usually, chiral symmetry restoration and breaking are
related to the expectation value of one order parameter, i.e.,
the scalar field condensate. In the following, we specifically
refer to the phases with only scalar field condensation as
chiral phases to distinguish from the superconducting pion

superfluidity phase where chiral symmetry is actually also
broken. Because of the Meissner effect, the chiral phases
and pion superfluidity should be treated separately in a
background magnetic field.

1. The strong interaction sector

In a primordial magnetic field, the Lagrangian of the
PNJL model can be modified from the previous one [35] by
adopting the covariant derivative Dμ ¼ ∂μ þ iQqeAμ to

LPNJL ¼ −
B2

2
þ ψ̄

�
i=D− iγ4

�
igA4 þQqμQ þ μB

3

�
−m0

�
ψ

þG
X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� þLtH −VðLÞ:

ð1Þ

Here, the field variables are defined as the following:
B is the magnetic field, Aμ is the corresponding vector
potential, ψ ¼ ðu; d; sÞT is the three-flavor quark field,

and the Polyakov loop is L ¼ 1
Nc
tr eig

R
dx4A4

with A4 ¼
A4cTc=2 the non-Abelian gauge field. For the quarks, the
current mass and electric charge number matrices are,
respectively,

m0 ≡ diagðm0u; m0d; m0sÞ;

Qq ≡ diagðqu; qd; qsÞ ¼
1

3
diagð2;−1;−1Þ; ð2Þ

and the interaction index λ0 ¼ ffiffiffiffiffiffiffiffi
2=3

p
13 and λiði ¼ 1;…; 8Þ

are Gell-Mann matrices in flavor space. For later use,
the ’t Hooft term, LtH ≡ −K

P
t¼�Det ψ̄Γtψ , can be

represented as

LtH ¼ −
K
2

X
t¼�

ϵijkϵimnðψ̄ iΓtψ iÞðψ̄ jΓtψmÞðψ̄kΓtψnÞ ð3Þ

with the interaction vertices Γ� ¼ 14 � γ5 for right- and
left-handed channels, respectively. Here, one should note
the Einstein summation convention for the flavor indices
i, j, k, m, n and the correspondences between 1,2,3 and
u, d, s. The pure gluon potential was usually obtained by
fitting to the lattice QCD data, and we have in saddle point
approximation

VðLÞ
T4

¼ −
1

2

�
3.51 −

2.47

T̃
þ 15.2

T̃2

�
L2 −

1.75

T̃3

× ln ½1 − 6L2 þ 8L3 − 3L4�; ð4Þ

where T̃ ≡ T=T0 is the reduced temperature with T0 ¼
0.27 GeV [44].
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Now, in the chiral phases, we consider only nonzero chiral condensations σi ≡ hψ̄ iψ ii with i flavor index, and then the
’t Hooft term L6 can be reduced to effective four fermion interaction forms in the Hartree approximation [45]:

L4
6 ¼ −

K
2

X
s¼�

ϵijkϵimnhψ̄ iΓsψ iiðψ̄ jΓsψmÞðψ̄kΓsψnÞ

¼ −
K
6

(
2
X

f¼u;d;s

σfðψ̄λ0ψÞ2 − 3σs
X3
i¼1

ðψ̄λiψÞ2 − 3σd
X5
i¼4

ðψ̄λiψÞ2 − 3σu
X7
i¼6

ðψ̄λiψÞ2 þ ðσs − 2σu − 2σdÞðψ̄λ8ψÞ2

þ
ffiffiffi
2

p
ð2σs − σu − σdÞðψ̄λ0ψÞðψ̄λ8ψÞ −

ffiffiffi
6

p
ðσu − σdÞðψ̄λ3ψÞðψ̄λ0ψ −

ffiffiffi
2

p
ψ̄λ8ψÞ

)
− ðλa → iλaγ5Þ ð5Þ

with ϵijk the Levi-Civita symbol. So the reduced three-flavor Lagrangian density with only four fermion effective
interactions is

L4
PNJL ¼ −

B2

2
− VðLÞ þ ψ̄

�
i=D − iγ4

�
igA4 þQqμQ þ μB

3

�
−m0

�
ψ

þ
X8
a;b¼0

½G−
abðψ̄λaψÞðψ̄λbψÞ þ Gþ

abðψ̄ iγ5λaψÞðψ̄iγ5λbψÞ�; ð6Þ

where the nonvanishing elements of the symmetric coupling matrices G� are given by [45]

G∓
00 ¼ G ∓ K

3

X
f¼u;d;s

σf ; G∓
11 ¼ G∓

22 ¼ G∓
33 ¼ G� K

2
σs; G∓

44 ¼ G∓
55 ¼ G� K

2
σd; G∓

66 ¼ G∓
77 ¼ G� K

2
σu;

G∓
88 ¼ G ∓ K

6
ðσs − 2σu − 2σdÞ; G∓

08 ¼ ∓
ffiffiffi
2

p
K

12
ð2σs − σu − σdÞ; G∓

38 ¼ −
ffiffiffi
2

p
G∓

03 ¼ ∓
ffiffiffi
3

p
K

6
ðσu − σdÞ: ð7Þ

By contracting a pair of field and conjugate field operators further in L4
6 in Hartree approximation, we find

L2
6 ¼ −

Xið≠j≠kÞ
s¼�

Khψ̄ jΓsψ jihψ̄kΓsψki½ψ̄ iΓsψ i� ¼ −2Kσjσkψ̄
iψ i ði ≠ j ≠ k; j < kÞ; ð8Þ

which then, together with the contributions from the initial four-quark interactions, gives the effective quark masses as

mi ¼ m0i − 4Gσi þ 2Kσjσk: ð9Þ

To evaluate quark masses numerically, we should be equipped with the gap equations directly following the definitions of
chiral condensations:

σi ≡ hψ̄ iψ ii ¼ −
i
V4

Tr Si; ð10Þ

where the effective quark propagators in a constant magnetic field are given by [47]

ŜiðkÞ ¼ i
Z

ds exp

�
−iðm2

i þ k24 þ k23Þs − i
tanðqieBsÞ

qieB
ðk21 þ k22Þ

�
½mi − γ4k4 − γ3k3 − γ2ðk2 þ tanðqieBsÞk1Þ

−γ1ðk1 − tanðqieBsÞk2Þ�½1þ γ1γ2 tanðqieBsÞ�: ð11Þ
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Then, by adopting vacuum regularization, the gap equations are [47]

−σf ¼ Nc
m3

f

2π2

�
Λ̃fð1þ Λ̃2

f Þ12 − ln

�
Λ̃f þ ð1þ Λ̃2

f Þ12
��

þ Nc
mf

4π2

Z
∞

0

ds
s2

e−m
2
f s

�
qfeBs

tanhðqfeBsÞ
− 1

�

− 6
X
u¼�

jqfeBj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

mf

En
f
Fu
f ðEn

f ; L; T; μQ; μBÞ; ð12Þ

where the reduced cutoff Λ̃f ¼ Λ=mf , the Landau level factor αn ¼ 1 − δn0=2, the particle energy En
f ðk3; mfÞ ¼

ð2njqfeBj þ k23 þm2
f Þ1=2, and the fermion distribution function

Fu
f ðEn

f ; L; T; μQ; μBÞ≡ Le−
1
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ 2Le−

2
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ e−

3
TðEn

f−uðqfμQþ
μB
3
ÞÞ

1þ 3Le−
1
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ 3Le−

2
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ e−

3
TðEn

f−uðqfμQþ
μB
3
ÞÞ :

In advance, the quark part of the thermodynamic potential can be obtained consistently by combining the definitions of
effective masses in Eq. (9) and the integrations over mf of Eq. (12) as [48]

ΩqðBÞ ¼ 2G
X

f¼u;d;s

σ2f − 4K
Y

f¼u;d;s

σf − Nc

X
f¼u;d;s

�
m4

f

8π2

�
Λ̃fð1þ 2Λ̃2

f Þð1þ Λ̃2
f Þ12 − ln

�
Λ̃f þ ð1þ Λ̃2

f Þ12
��

−
1

8π2

Z
∞

0

ds
s3

ðe−m2
f s − e−m

v
f
2sÞ

�
qfeBs

tanhðqfeBsÞ
− 1

�
−

1

8π2

Z
∞

0

ds
s3

e−m
v
f
2s

�
qfeBs

tanhðqfeBsÞ
− 1 −

1

3
ðqfeBsÞ2

�

þ2T
X
u¼�

jqfeBj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

Ku
f ðEn

f ; L; T; μQ; μBÞ
�
; ð13Þ

with

Ku
f ðEn

f ; L; T; μQ; μBÞ ¼
1

Nc
ln
h
1þ 3Le−

1
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ 3Le−

2
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ e−

3
TðEn

f−uðqfμQþ
μB
3
ÞÞ
i
:

Here, one notes that the terms depending on the quark vacuum mass mv
f are introduced for the correct renormalizations of

electric charges and magnetic field in the vacuum.
Hence, the Helmholtz free energy for the PNJL model is ΩM

H ¼ B2

2
þ VðLÞ þ ΩqðBÞ and the external magnetic field can

be obtained throughH ¼ ∂ΩM
H

∂B . In classical words, the magnetic intensityH equals the magnetic induction intensity Bminus

magnetization intensity M ¼ − ∂Ωq

∂B . Usually, we control the external magnetic field H for the exploration of phase
transitions [36]; that is, H must be a variable of the free energy. So, the right state function is the Gibbs free energy that can
be obtained by taking the Legendre transformation of ΩM

H as [36]

ΩM
χ ¼ ΩM

H − BH ¼ −
H2

2
þM2

2
þ VðLÞ þΩqðH þMÞ: ð14Þ

As the magnetizations from quarks and leptons are relatively small for the considered magnetic field in the chiral phases, we
could simply take the Gibbs free energy to be ΩM

χ ¼ − H2

2
þ VðLÞ þΩqðHÞ to the order oðM2Þ. The general formula

Eq. (14) even consistently applies to the superconducting pion superfluidity, where B ¼ H þM ¼ 0 in the bulk due to the
Meissner effect; and we find ΩM

πSF ¼ VðLÞ þ Ωqð0Þ, just the same as the case without an external magnetic field [36].
Then, the gap equation for L can be given through ∂LΩM

χ ¼ 0 as

T3

�
−
�
3.51 −

2.47

T̃
þ 15.2

T̃2

�
Lþ 1.75

T̃3

12Lð1 − LÞ2
1 − 6L2 þ 8L3 − 3L4

�

¼ 6
X

f¼u;d;s

X
u¼�

jqfeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

e−
1
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ e−

2
TðEn

f−uðqfμQþ
μB
3
ÞÞ

1þ 3Le−
1
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ 3Le−

2
TðEn

f−uðqfμQþ
μB
3
ÞÞ þ e−

3
TðEn

f−uðqfμQþ
μB
3
ÞÞ : ð15Þ
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And the entropy, electric charge number and baryon number densities follow the thermodynamic relations as

sMχ ¼ 2Nc

X
f¼u;d;s

X
u¼�

jqfeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

�
Ku

f ðEn
f ; L; T; μQ; μBÞ þ

1

T

�
En
f − u

�
qfμQ þ μB

3

��
Fu
f ðEn

f ; L; T; μQ; μBÞ
�

þ T3

�
1

2

�
4 × 3.51 − 3 ×

2.47

T̃
þ 2 ×

15.2

T̃2

�
L2 þ 1.75

T̃3
ln ½1 − 6L2 þ 8L3 − 3L4�

�
; ð16Þ

nq;MQ ¼ 2Nc

X
f¼u;d;s

X
u¼�

jqfeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

uqfFu
f ðEn

f ; L; T; μQ; μBÞ; ð17Þ

nMB ¼ 2
X

f¼u;d;s

X
u¼�

jqfeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

uFu
f ðEn

f ; L; T; μQ; μBÞ: ð18Þ

2. The electroweak interaction sector

In the free gas approximation, the thermodynamic potentials for the quantum electroweak dynamics (QEWD) sector can
easily be given by [49,50]

Ωγ ¼ 2T
Z

d3k
ð2πÞ3 log ð1 − e−k=TÞ; ð19Þ

ΩM
l ¼

Xi¼e;μ;τ
(
−T

X
u¼�

Z
d3k
ð2πÞ3 log ½1þ e−ðk−uμiÞ=T � þ 1

8π2

Z
∞

0

ds
s3

e−m
2
i s

�
eHs

tanhðeHsÞ − 1 −
1

3
ðeHsÞ2

�

−2T
X
u¼�

jeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

log ½1þ e−ðϵni ðk3;eHÞ−uð−μQþμiÞÞ=T �
)
; ð20Þ

where the degeneracy is one for neutrinos and antineutrinos due to their definite chiralities and ϵni ðk3; eHÞ ¼
ðk23 þ 2njeHj þm2

i Þ1=2. Note that we have approximated B by H here. Then, the corresponding entropy, electric charge
number, and lepton flavor number densities can be derived directly as

sγ ¼ 2

Z
d3k
ð2πÞ3

�
− log ð1 − e−k=TÞ þ k=T

ek=T − 1

�
; ð21Þ

sMl ¼
Xi¼e;μ;τ

u¼�

�Z
d3k
ð2πÞ3

�
log ½1þ e−ðk−uμiÞ=T � þ ðk − uμiÞ=T

1þ eðk−uμiÞ=T

�
þ 2

X
u¼�

jeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

×

�
log ½1þ e−ðϵni ðk3;eHÞ−uð−μQþμiÞÞ=T � þ ðϵni ðk3; eHÞ − uð−μQ þ μiÞÞ=T

1þ eðϵ
n
i ðk3;eHÞ−uð−μQþμiÞÞ=T

��
; ð22Þ

nl;MQ ¼ 2T
X
u¼�

jeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

−u
1þ eðϵni ðk3;eHÞ−uð−μQþμiÞÞ=T ; ð23Þ

nMi ¼ T
X
u¼�

Z
d3k
ð2πÞ3

u

1þ eðk−uμiÞ=T
þ 2T

X
u¼�

jeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

u

1þ eðϵni ðk3;eHÞ−uð−μQþμiÞÞ=T : ð24Þ
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Now, collecting contributions from both the QEWD and
the QCD sectors, the total thermodynamic potential,
entropy, electric charge number and lepton number den-
sities are, respectively,

ΩM ¼ Ωγ þΩM
l þ ΩM

χ ; sM ¼ sγ þ sMl þ sMχ ;

nMQ ¼ nl;MQ þ nq;MQ ; nMl ¼
X
i¼e;μ;τ

nMi ð25Þ

in the QCD epoch. To better catch the expansion nature of
the early universe, we define several reduced quantities:

bM ¼ nMB =sM; lM ¼ nMl =sM; lMi ¼ nMi =sM ð26Þ

by following the conventions.

B. The superconducting pion superfluidity

Since the pion superfluid is also an electric super-
conductor, the magnetic field will be screened from the
bulk due to the Meissner effect. Then, the free energy of the
bulk must be the same as the one with the same temperature
and chemical potentials but without a background magnetic
field. So the formalism is the same as the one we presented
in our previous work [35] where the magnetic effect was
not taken into account.

1. The strong interaction sector

Without a magnetic field, the Lagrangian is given by
[44–46]

LPNJL¼−VðLÞþ ψ̄

�
i=∂− iγ4

�
igA4þQqμQþ

μB
3

�
−m0

�
ψ

þG
X8
a¼0

½ðψ̄λaψÞ2þðψ̄iγ5λaψÞ2�þLtH: ð27Þ

For the pion superfluidity phase, we choose the following
scalar and charged pseudoscalar condensates to be nonzero:

σf ¼ hψ̄ fψ fi; Δπ ¼ hūiγ5di; Δ�
π ¼ hd̄iγ5ui:

For brevity, we set Δπ ¼ Δ�
π without loss of generality in

the following. To facilitate the study, we would first like to
reduce LtH to an effective form with four fermion inter-
actions at most. By applying the Hartree approximation to
contract a pair of quark and antiquark in each six fermion
interaction term [45], we immediately find

L4
tH ¼ −Kfϵijkϵimnσiðψ̄ jψmψ̄kψn − ψ̄ jiγ5ψmψ̄kiγ5ψnÞ

þ2Δπ½s̄sðūiγ5dþ d̄iγ5u − ΔπÞ þ s̄iγ5sðūdþ d̄uÞ�g;
ð28Þ

where the second term in the brace is induced by π�
condensations. Armed with the reduced Lagrangian density

LPNJL ¼ −VðL;LÞ þ ψ̄

�
i=∂ − iγ4

�
igA4 þQqμQ þ μB

3

�

−m0

�
ψ þ G

X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� þ L4
tH;

ð29Þ

the left calculations can just follow the two-flavor case in
principle.
By contracting quark and antiquark pairs once more in

the interaction terms of Eq. (29), we find the quark bilinear
form as

L2
PNJL ¼ ψ̄

�
i=∂ − iγ4

�
igA4 þQqμQ þ μB

3

�

−mi − iγ5λ1Π
�
ψ ; ð30Þ

where the scalar and pseudoscalar masses are, respectively,

mi ¼ m0i − 4Gσi þ 2Kðσjσk þ Δ2
πδi3Þ;

Π ¼ ð−4Gþ 2Kσ3ÞΔπ ð31Þ

with i ≠ j ≠ k. The G and K dependent terms in Eq. (31)
are from the UAð1Þ symmetric and anomalous interactions,
respectively. According to Eq. (30), the s quark decouples
from u, d quarks, so the gap equation for σs can be simply
given by [45]

σs ¼ hs̄si ¼ tr

�
i=∂ − iγ4

�
igA4 þQqμQ þ μB

3

�
−ms

�
−1
:

ð32Þ

However, the u and d light quarks couple with each other
through the nondiagonal pseudoscalar mass Π. Since μB is
usually small in the early universe, we can simply set

m0u ¼ m0d ≡m0l; σu ¼ σd ≡ σl

in order to further carry out analytic derivations. Then, by
following a similar procedure as the previous section, the
explicit thermodynamic potential can be worked out for the
bilinear terms as
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Ωbl ¼ −2Nc

Z
Λ d3k
ð2πÞ3

"X
t¼�

Et
lðkÞ þ ϵsðkÞ

#
− 2T

Z
d3k
ð2πÞ3

X
u¼�

"X
t¼�

Fl

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�

þ Fl

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�#n
FlðL; u; x; yÞ ¼ log½1þ 3Le−

1
Tðx−uyÞ þ 3Le−

2
Tðx−uyÞ þ e−

3
Tðx−uyÞ�

o
; ð33Þ

with the particle energy functions defined by

ϵiðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
; Et

lðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵlðkÞ þ t

μQ
2

�
2

þ Π2

s
: ð34Þ

Eventually, the coupled gap equations follow directly from the definitions of condensates:

σs ≡ hs̄si ¼ ∂Ωbl

∂ms
; 2σl ≡ hūui þ hd̄di ¼ ∂Ωbl

∂ml
; 2Δπ ≡ hūiγ5di þ hd̄iγ5ui ¼ ∂Ωbl

∂Π
; ð35Þ

and the minimal condition ∂L½VðL;LÞ þ Ωbl� ¼ 0 as [35]

σs ¼ −2Nc

Z
Λ d3k
ð2πÞ3

ms

ϵsðkÞ
þ 2Nc

Z
d3k
ð2πÞ3

ms

ϵsðkÞ
X
u¼�

dV1

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�
; ð36Þ

2σl ¼ − 2Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

ml

ϵlðkÞ
ϵlðkÞ þ t μQ

2

Et
lðkÞ

þ 2Nc

Z
d3k
ð2πÞ3

X
t;u¼�

ml

ϵlðkÞ
ϵlðkÞ þ t μQ

2

Et
lðkÞ

dV1

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�
; ð37Þ

2Δπ ¼ − 2Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

Π
Et
lðkÞ

þ 2Nc

Z
d3k
ð2πÞ3

X
t;u¼�

Π
Et
lðkÞ

dV1

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�
; ð38Þ

T4

�
−
�
3.51 −

2.47

T̃
þ 15.2

T̃2

�
Lþ 1.75

T̃3

12Lð1 − LÞ2
1 − 6L2 þ 8L3 − 3L4

�
¼ 6T

Z
d3k
ð2πÞ3

X
u¼�

"X
t¼�

dV2

�
L; u; EtðkÞ; μQ þ 2μB

6

�

þdV2

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�#
: ð39Þ

Note that Δπ ¼ 0 is a trivial solution of Eq. (38), so Δπ or Π is still a true order parameter for I3 isospin symmetry [51] in
the three-flavor case. The total self-consistent thermodynamic potential can be found to be

ΩπSF ¼ VðL;LÞ þ Ωbl þ 2Gðσ2s þ 2σ2l þ 2Δ2
πÞ − 4Kðσ2l þ Δ2

πÞσs ð40Þ

by utilizing the definitions of condensates and their relations to scalar and pseudoscalar masses [refer to Eqs. (35) and (31)].
And the entropy, electric charge number and baryon number densities can be given according to the thermodynamic
relations as [35]

sπSF ¼ 2

Z
d3k
ð2πÞ3

X
t;u¼�

�
Fl
�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�
þ 3ðEt

lðkÞ − u μQþ2μB
6

Þ
T

dV1

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

��

þ 2

Z
d3k
ð2πÞ3

X
u¼�

�
Fl

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�
þ 3ðEt

lðkÞ − u −μQþμB
3

Þ
T

dV1

�
L; u; ϵsðkÞ;

−μQ þ μB
3

��

þ T3

�
1

2

�
4 × 3.51 − 3 ×

2.47

T̃
þ 2 ×

15.2

T̃2

�
L2 þ 1.75

T̃3
ln ½1 − 6L2 þ 8L3 − 3L4�

�
; ð41Þ
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nπSFQ ¼ Nc

Z
Λ d3k
ð2πÞ3

X
t¼�

t
ϵlðkÞ þ t μQ

2

Et
lðkÞ

− 3

Z
d3k
ð2πÞ3

X
t;u¼�

t
ϵlðkÞ þ t μQ

2

Et
lðkÞ

dV1

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�

þ
Z

d3k
ð2πÞ3

X
t;u¼�

udV1

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�
− 2

Z
d3k
ð2πÞ3

X
t;u¼�

udV1

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�
; ð42Þ

nπSFB ¼ 2

Z
d3k
ð2πÞ3

X
t;u¼�

udV1

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�

þ 2

Z
d3k
ð2πÞ3

X
t;u¼�

udV1

�
L; u; ϵsðkÞ;

−μQ þ μB
3

�
:

ð43Þ
2. The electroweak interaction sector

In free gas approximation, the thermodynamic potentials
for the QEWD sector can easily be given by [49]

Ωγ ¼ 2T
Z

d3k
ð2πÞ3 log ð1 − e−k=TÞ; ð44Þ

Ωl ¼ −T
Xi¼e;μ;τ

u¼�

Z
d3k
ð2πÞ3 f2 log ½1þ e−ðϵiðkÞ−uð−μQþμiÞÞ=T �

þ log ½1þ e−ðk−uμiÞ=T �g; ð45Þ

where the degeneracy is one for neutrinos and antineutrinos
due to their definite chiralities. Then, the corresponding
entropy, electric charge number and lepton flavor number
densities can be derived directly as

sγ ¼ 2

Z
d3k
ð2πÞ3

�
− log ð1 − e−k=TÞ þ k=T

ek=T − 1

�
; ð46Þ

sl ¼
Xi¼e;μ;τ

u¼�

Z
d3k
ð2πÞ3

�
2 log ½1þ e−ðϵiðkÞ−uð−μQþμiÞÞ=T �

þ log ½1þ e−ðk−uμiÞ=T � þ 2ðϵiðkÞ − uð−μQ þ μiÞÞ=T
1þ eðϵiðkÞ−uð−μQþμiÞÞ=T

þ ðk − uμiÞ=T
1þ eðk−uμiÞ=T

�
; ð47Þ

nlQ ¼ 2T
Xi¼e;μ;τ

u¼�

Z
d3k
ð2πÞ3

−u
1þ eðϵiðkÞ−uð−μQþμiÞÞ=T ; ð48Þ

ni ¼ −
∂Ωl

∂μi
¼ T

X
u¼�

Z
d3k
ð2πÞ3

�
2u

1þ eðϵiðkÞ−uð−μQþμiÞÞ=T

þ u

1þ eðk−uμiÞ=T

�
; i ¼ e; μ; τ: ð49Þ

Now, collecting contributions from both QEWD and
QCD sectors, the total thermodynamic potential, entropy,

electric charge number and lepton number densities are,
respectively,

Ω ¼ Ωγ þ Ωl þ ΩπSF; s ¼ sγ þ sl þ sπSF;

nQ ¼ nlQ þ nπSFQ ; nl ¼
X
i¼e;μ;τ

ni ð50Þ

in the QCD epoch. To better catch the expansion nature of
the early universe, we define several reduced quantities:

b ¼ nπSFB =s; l ¼ nl=s; li ¼ ni=s ð51Þ

by following the conventions.

C. Numerical results

To carry out numerical calculations, we get the electron
and muon masses from the Particle Data Group as me ¼
0.53 MeV and mμ ¼ 113 MeV and suppress the contribu-
tion of heavy τ leptons for the electroweak interaction
sector. The model parameters are fixed for the strong
interaction sector as the following [52,53]:

m0l ¼ 5.5MeV; m0s ¼ 140.7MeV; Λ¼ 602.3MeV;

GΛ2 ¼ 1.835; KΛ5 ¼ 12.36: ð52Þ

First of all, we have to determine which phase the QCD
matter is in, the chiral phases or pion superfluidity, by
comparing ΩM

χ and ΩπSF. We choose the recent constraints
nQ ¼ 0; bM ¼ 8.6 � 10−11 [32], and lM ¼ −0.012 [54] up
to the point when the latest first-order transition took place
in the QCD epoch of the early universe. The noncon-
strained values of lMe and lMμ can be randomly fixed at that
point, but we only consider the case with lMe ¼ 0 for a given
lMe þ lMμ . Note that our previous work had showed that the
phase boundaries were not sensitive to the fraction of lMe
[35]. When first-order phase transitions are involved, the
total entropy does not change continuously at the transition
point due to the latent heat released or absorbed; thus, we
should not require bM ¼ b or lMi ¼ li; ði ¼ e; μ; τÞ in the
bulk. For pion superfluidity, the magnetic field in the bulk
is canceled out by the current produced at the surface and
the magnetic flux is only present at the surface [36]. So in
the sense of total baryon and lepton flavor number con-
servations, the deficits nMB V

M − nbV and nMi V
M − niV

should be found at the surface of the pion superfluidity.
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Nevertheless, the ratios nMi =n
M
B must be the same in the

χSR and χSB phases separated by pion superfluidity if it
exists. Following the ansatz of isentropic expansion for a
given phase, we expect nMB =s and nMi =s to be the same at
the entrance and the exit of pion superfluidity.
For the given values of nQ; bM, and lMi , the values of

chemical potentials μQ; μB, and μi can be uniquely deter-
mined in the chiral phases for a fixed temperature. And then
the transition points could be pinned down by requiring
ΩM

χ ¼ ΩπSF at the same temperature and chemical poten-
tials. Now we can obtain two different sets of b and li at the
transition points, but how should they evolve in between in
the pion superfluidity phase? ForH ¼ 0, we expected them
to be the same as the recent constraints since no extra
particles are reserved at the surface. Any reasonable
scheme must recover the results in the vanishing H limit,
and hence we simply adopt linear interpolations between
the two sets of b and li for finiteH. That means the baryons
and lepton flavors are gradually deposited into or with-
drawn from the surface with the temperature decreasing.
Next, to study the effect of the primordial magnetic field,

the order ofH should be estimated in the QCD epoch of the
early universe. In the Milky Way, the average magnitude of
the magnetic field was found to be H ¼ 10−6–10−5 Gs
according to the observations of galactic background radio
radiation and polarization of star light [55]. In natural units,
the magnitude is eH ¼ 10−26–10−25 GeV2 since eH ¼
5.9 × 10−21 GeV2 for H ¼ 1 Gs. Tracing back to the
QCD epoch, the magnetic field would be greatly enhanced
due to a very large scaling factor a ¼ 1012–1012.5 [27] and
we have eH ¼ ð10−26–10−25Þa2 ¼ 10−2 − 1ðGeV2Þ. As
we will see, the favored region of pion superfluidity would
greatly shrink with the magnetic field increasing. So to
explore nontrivial physics, we focus on the lower region
of the magnetic field domain estimated, that is, eH∼
10−2 GeV2. Note that the magnetic field is not homo-
geneous all across the Milky Way but only locally; hence
the volume where the homogeneous phase transition might
happen should not be taken to be infinite.
The phase diagrams with fixed background magnetic

fields or lepton flavor densities are illustrated together in
Fig. 1. Since the densities are not continuous across the
first-order transition point, we take the lepton flavor-
entropy ratios lMi in the chiral phases for reference.
From the upper panel, one can tell that the regime of pion
superfluidity shrinks quickly with an increasing magnetic
field but the tails are never found to end at a large jlMe þ lMμ j.
Nevertheless, when eH exceeds 0.0222 GeV2, the width of
the regime of the pion superfluidity is found to vanish and
one is left with only chiral phases. This explains our focus
on the magnitude of the magnetic field: eH ∼ 10−2 GeV2.
As shown in the lower panel, the phase boundaries become
of first order and oscillate with finite H, which is known as
the de Haas–van Alphen effect [47] when both magnetic

field and chemical potentials are present. For smallH, there
are actually very special points where the transitions remain
first order along the jlMe þ lMμ j direction but are of second
order along the T direction. These CEPs are actually where
the upper and lower boundaries meet each other and thus
with the smallest value of jlMe þ lMμ j; see the bullets in the
upper panel of Fig. 1. It is constructive to demonstrate the
evolutions of the temperature T and lepton flavor-entropy
ratio lMe þ lMμ with an increasing magnetic field eH at the
CEPs in Fig. 2. Consistent with the upper panel of Fig. 1,
TCEP decreases gradually with eH (upper panel) but
jlMe þ lMμ jCEP increases abruptly around eH ¼ 0.022 GeV2

(lower panel), which seem to be related to the transition
orders just discussed. Moreover, from the lower panel of
Fig. 2, we can easily understand the complete disfavor of
pion superfluidity for larger eH.
Finally, we take the case eH ¼ 0.01 GeV2, for example,

to show the evolution features of the order parameters—
quark massesmf , pion condensateΔπ , and Polyakov loop L

FIG. 1. Upper panel: the T − ðlMe þ lMμ Þ phase diagrams for the
magnetic fields eH ¼ 0, 0.01, 0.02, and 0.022 GeV2 (colors:
blue, red, green, and cyan) with the bullets the critical end points.
Lower panel: the T − eH phase diagram for the lepton flavor-
entropy ratio lMe þ lMμ ¼ −0.2. The shadows correspond to the
pion superfluidity phase, and the blue dashed line and other
colored lines denote second- and first-order transition boundaries,
respectively.
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in Fig. 3. Since temperature decreases with time in the early
universe, we call in the following the transition points with
larger and smaller temperatures as the first and second ones,
respectively. Then, the region between the first and second
transition points corresponds to the pion superfluidity
phase as Δπ ≠ 0. As we can see, both chiral symmetry
and I3 isospin symmetry get broken through the formation

of a large Δπ at the first transition point. Then, the I3
isospin symmetry becomes restored at the second transition
point, where mainly ml and Δπ exchange their roles, and
thus does not cause many changes to thermodynamical
quantities. Compared to that, the first transition is much
stronger since ml stays small, but there are large gaps of
Δπ; ms, and L. The corresponding cosmic trajectories of the
chemical potentials and the entropy and number densities
are demonstrated in the upper and lower panels of Fig. 4,
respectively. While the chemical potentials evolve contin-
uously across the transition points as should be, there is a
nonmonotonic feature in the spectrum of μB, stronger than
that in the vanishing H limit [35]. According to the lower
panel, q and le, which vanish in the chiral phases, are more
sensitive to the second transition point, but all the left are
more sensitive to the first one. This is another indication
that the first phase transition is stronger.

III. PART II: FIRST-ORDER PHASE TRANSITION
WITH POLYAKOV-QUARK-MESON MODEL

It is hard to study the first-order phase transition
dynamics in the framework of the PNJL model that
involves four- and six-quark interaction terms. Since it
had been shown that the NJL model could be bosonized to a

FIG. 4. Upper panel: the cosmic trajectories of the chemical
potentials of electric charge (μQ), baryon (μB), and lepton flavors
(μe; μμ, and μτ) as functions of the temperature T; lower panel: the
entropy density (s) and density-entropy ratios (q; b; le; lμ, and l)
as functions of the temperature T. The same as that in Fig. 3, we
consider the case eH ¼ 0.01 GeV2 and lMe þ lMμ ¼ −0.2.

FIG. 2. The temperature TCEP (upper panel) and lepton flavor-
entropy ratio ðlMe þ lMμ ÞCEP (lower panel) as functions of magnetic
field eH at the critical end points.

FIG. 3. The quark masses mf , pion condensate Δπ , and
Polyakov loop L as functions of the temperature T, decreasing
with the expansion of the early universe, for the case
eH ¼ 0.01 GeV2 and lMe þ lMμ ¼ −0.2. Here, mu and md are
almost the same with each other and thus can be consistently
presented as ml.

GAOQING CAO PHYS. REV. D 107, 014021 (2023)

014021-10



model with only meson degrees of freedom [45], we
alternatively adopt the simple two-flavor PQM model [56]
to demonstrate the transition process in this section. Note
that there are two reasons why we focus on the two-flavor
rather than the three-flavor PQM model: first, the effect of
strange quarks is small for the exploration of pion super-
fluidity [35]; second, we could reduce the number of coupled
equations of motions to facilitate numerical evaluations. In
the model, the quark degrees of freedom can be integrated

out to introduce the effects of the temperature, chemical
potentials, and magnetic field into the mesonic system, and
further analysis of bubble dynamics could just follow those
given in the pioneer works [57,58] for boson systems.

A. Bubble dynamics

In a background magnetic field, the Lagrangian density of
the renormalizable two-flavor PQM model [56] is given by

LPQM ¼ −
B2

2
− VðL;LÞ þ 1

2
½ð∂μσÞ2 þ ð∂μπ0Þ2� þDμ†πþDμπ

− −
λ

4
½σ2 þ ðπ0Þ2 þ 2πþπ− − υ2�2 þ cσ

þ ψ̄

�
i=D − iγ4

�
igA4 þQqμQ þ μB

3

�
− gðσ þ iγ5ðτ3π0 þ τþπþ þ τ−π

−ÞÞ
�
ψ ; ð53Þ

where ψðxÞ ¼ ðuðxÞ; dðxÞÞT denotes the two-flavor quark
field, the derivative for π− isDμ ¼ ∂μ − ieAμ þ iμQδμ0, and
τ� ¼ 1ffiffi

2
p ðτ1 � iτ2Þ. The energy terms of the background

magnetic field and Polyakov loop are the same as those in
Eq. (1). The linear term cσ violates chiral symmetry
explicitly, and we can verify that the Lagrangian has exact
U3ð1Þ chiral symmetry in the chiral limit c ¼ 0. The model
parameters of the mesonic sector λ, υ, and c are fixed by the

sigma mass mσ ¼ 660 MeV, pion mass mπ ¼ 138 MeV,
and pion decay constant fπ ¼ 93 MeV; and the quark-
meson coupling constant is determined by mv

q ≡ gfπ ¼
mσ=2 in the chiral symmetry breaking phase (for the
stability of nucleons, Ncmv

q > mN) [56].
By integrating over the quark degrees of freedom, the

Lagrangian can be bosonized as

LPQM ¼ −
B2

2
− VðL;LÞ þ 1

2
½ð∂μσÞ2 þ ð∂μπ0Þ2� þDμ†πþDμπ

− −
λ

4
½σ2 þ ðπ0Þ2 þ 2πþπ− − υ2�2 þ cσ

þ Tr ln

�
i=Dq − iγ4

�
igA4 þQqμQ þ μB

3

�
− gðσ þ iγ5ðτ3π0 þ τþπþ þ τ−π

−ÞÞ
�
: ð54Þ

In mean field approximation, the Gibbs free energy for the chiral phases and pion superfluidity can easily be evaluated as

ΩM
PQM ¼ −

H2

2
þ VðL;LÞ þ λ

4
ðσ2l − υ2Þ2 − cσl − Nc

X
f¼u;d

�
−

1

8π2

Z
∞

0

ds
s3

ðe−m2
f s − e−m

v
f
2sÞ

�
qfeHs

tanhðqfeHsÞ − 1

�

−
1

8π2

Z
∞

0

ds
s3

e−m
v
f
2s

�
qfeHs

tanhðqfeHsÞ − 1 −
1

3
ðqfeHsÞ2

�
þ 2T

X
t¼�

jqfeHj
2π

X∞
n¼0

αn

Z
∞

−∞

dk3
2π

Kt
fðEn

f ; L; T; μQ; μBÞ
�

ð55Þ
and

ΩπSF
PQM ¼ VðL;LÞ þ λ

4
½σ2l þ 2Δ2

π − υ2�2 − μ2QΔ2
π − cσ − 2Nc

Z
d3k
ð2πÞ3

X
t¼�

h			ϵlðkÞ þ t
μQ
2

			 − ϵlðkÞ
i

− 2T
Z

d3k
ð2πÞ3

X
t;u¼�

Fl

�
L; u; Et

lðkÞ;
μQ þ 2μB

6

�
ð56Þ

by following the schemes given in Secs. II A 1 and II B 1,
respectively. Note that the quark vacuum terms with cutoff
are dropped to avoid double counting and the last but one in
ΩπSF guarantees its form for Δπ ¼ 0 to be consistent with

that of ΩM
PQM in the vanishing H limit. Here, we have taken

mu ¼ md ¼ gσl as the involved magnetic field is relatively
small. As we can see, the effects of the temperature,
magnetic field, and chemical potentials can be conveniently
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introduced into the system through the quark loops at the
mean field approximation level.
The contributions of the electroweak interaction sector

are the same as those given in Secs. II A 2 and II B 2. We
compare the contributions of the strong and electroweak
interaction sectors to the free energy difference between
chiral phases and pion superfluidity in Fig. 5 with the
notations ΔΩC ≡ΩπSF

PQM − ΩM
PQM and ΔΩEW ≡Ωl −ΩM

l .
According to our evaluations, ΔΩEW are two orders sup-
pressed compared to ΔΩC. We also present the results
where the magnetic field eH is artificially set to 0 for all the
charged fermion loops: since jΔΩC−H2

2
−ΔΩCjH→0j≪H2

2
,

the magnetization from quark loops is negligible compared
to the chosen magnetic field. Therefore, to conveniently
study the first-order QCD phase transition, we can simply
focus on the strong interaction sector and set H ¼ 0 in
the quark loops for the chosen magnetic field. Actually,
the latter approximation is consistent with that done in
Eq. (48.18) for the study of the superconductor in Ref. [36]
and helps to explore bubble dynamics of the first phase
transition. The bosonized Lagrangian density is now
reduced to

LPQM ¼ −
H2

2
þ 1

2
ð∂μσÞ2 þDμ†πþDμπ

− − UðL; σ; π�Þ;

where the total potential is given by

UðL; σ; π�Þ≡ VðL;LÞ þ λ

4
½σ2 þ 2πþπ− − υ2�2 − cσ − 2Nc

Z
d3k
ð2πÞ3

X
t¼�

�
jϵðkÞ þ t

μQ
2
j − ϵðkÞ

�

− 2T
Z

d3k
ð2πÞ3

X
t;u¼�

Fl

�
L; u; EtðkÞ; μQ þ 2μB

6

�

with the energy functions ϵðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ g2σ2

p
and E�ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵðkÞ � μQ

2
Þ2 þ 2g2πþπ−

q
. Note that we have neglected the

irrelevant π0 degree of freedom and assumed local approximation [59] to reserve the spacetime dependence of the fields
σ; π�, and L in UðL; σ; π�Þ.
By following the same scheme as in Sec. II C, the first phase transition point is found to be located at

μQ ¼ −0.704 GeV; μB ¼ 0.352 GeV; μe ¼ −0.437 GeV;

μμ ¼ −1.372 GeV; μτ ¼ 1.510 GeV; T ¼ 0.217 GeV ð57Þ

with the homogeneous order parameters

σl ¼ 0.0026 GeV; L ¼ 0.509; Δπ ¼ 0 GeV;

σl ¼ 0.0018 GeV; L ¼ 0.154; Δπ ¼ �0.116 GeV ð58Þ

for the χSR and pion superfluidity phases, respectively. Compared to the changing ratios of Δπ and L, that of σl is small
across the transition point; so we can safely drop σ degrees of freedom, as was done to π0, for the bubble dynamics.
Eventually, the Lagrangian density is further reduced to

FIG. 5. The free energy differences of strong interaction sector
ΔΩC (dotted line) and electroweak interaction sector ΔΩEW

(dashed line) as functions of temperature T at eH ¼ 0.01GeV2.
After taking the constraints nQ¼0;bM¼8.6�10−11;lM¼−0.012;
lMe ¼0, and lMμ ¼ −0.2 to fix the chemical potentials, we compare
the cases with H-dependent (blue line) and H ¼ 0 (red line)
fermion loops. At the low temperature T ¼ 0.05 GeV, the value
ΔΩC ¼ 5.45 × 10−4GeV4 actually equals the energy density of
the background magnetic field H2=2.
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LPQM ¼ −
FμνFμν

4
þ ∂

μπ̃∂μπ̃ þ ðμ2Q − e2A2Þπ̃2 −UðL; π̃Þ;
ð59Þ

where we have set π− ¼ πþ ≡ π̃ without loss of generality
and UðL; π̃Þ≡UðL; 0; π̃Þ should be understood. Note that
a spacetime dependent phase of π�, that is, π� ≡ e�iαðxÞπ̃,
can be absorbed by redefinition of the vector potential
eAμ → eAμ þ ∂μαðxÞ. And since A could be time depen-
dent in the bubble dynamics, we resort to a more general
expression of the background EM field term by adopting
Fμν. According to the opposite signs of μ2Q and e2A2 in the
quadratic term of π̃, the effects of μQ and H could be
intuitively expected to be opposite for the pion super-
fluidity—they actually correspond to Bose-Einstein con-
densation and Meissner effects, respectively.
In the mean field approximation with Δπ ≡ hπ̃i and L

constants, the pure QCD part of the free energy,
ΩQCD ¼ −μ2QΔ2

π þUðL;ΔπÞ, is depicted as a function of
Δπ and L in Fig. 6 for T ¼ 0.2 GeV. Note that the
temperature is a bit smaller than the first transition point
Tc ¼ 0.217 GeV and then the bubble dynamics can be well
explored in the transition from χSR to pion superfluidity.
Here, two kinds of minimal points can be identified, ðΔπ ¼
0; L ∼ 0.4Þ and ðjΔπj ∼ 0.1 GeV; L ∼ 0.1Þ, which corre-
spond to the χSR and pion superfluidity phases, respec-
tively. The sign ofΔπ is irrelevant; hence we take Δπ ≥ 0 in
the following. By taking the magnetic part, −H2=2 ¼
−5.45 × 10−4GeV4, into account in the χSR phase, the
gap between the free energies of these phases would reduce
to εv ¼ jΔΩj ¼ 7.28 × 10−4GeV4.
During the first-order phase transition, bubbles of true

vacuum will be formed and then expand against the false
vacuum [57]. In such a case, the expectation values of
the order parameters (L and π̃) and vector potential A
must be inhomogeneous across the spacetime. By follow-
ing the Euler-Lagrangian equation ∂

μ ∂L
∂ð∂μφÞ −

∂L
∂φ ¼ 0, the

corresponding EoMs can be derived as

∂LUðL; π̃Þ ¼ 0; ð60Þ

2∂μ∂μπ̃ þ 2ðe2A2 − μ2QÞπ̃ þ ∂π̃UðL; π̃Þ ¼ 0; ð61Þ

∂
2
0Aþ∇ ×Bþ 2e2π̃2A ¼ 0 ð62Þ

with B≡∇ ×A. Note that we work in Coulomb gauge
with A0 ¼ 0. As we can see, the effective pion field π̃ is the
key to couple all the equations. Equation (60) is actually an
algebra equation of L and π̃ and can be solved numerically
to obtain L as a function of π̃, i.e., Lðπ̃Þ; see the numerical
results in Fig. 7. Substituting Lðπ̃Þ into Eq. (61), we are
then left with two coupled differential EoMs for π̃ and A.
For homogeneous pion superfluidity with π̃ a nonzero
constant, the static EoM ofB can be obtained by taking curl
of Eq. (62) as

∇2B − 2e2π̃2B ¼ 0: ð63Þ

The equation is similar to Eq. (49.11) in Ref. [36], so the
Meissner effect resumes for π̃ ≠ 0 in the relativistic case.
Generally, the gauge coupling term e2A2π̃2 in Eq. (59)
favors π̃B ¼ 0 in the bulk for a homogeneous phase, so one
can check that the solutions in Eq. (58) automatically apply
to Eqs. (60)–(62) as should be. Actually, with the temper-
ature decreasing in the QCD epoch, the two solutions
mainly correspond to the boundaries and centers of the
bubbles in the first-order transition process.
Now, the tough mission left is to work out the bubble

structure from the coupled differential equations of motion
Eqs. (61) and (62), that is, the forms of π̃ðt; rÞ and Aðt; rÞ,
and thus Lðt; rÞ≡ Lðπ̃ðt; rÞÞ. To uniquely fix the bubble
structure, we simply require the bubbles to smoothly
approach the χSR phase at the boundary r → ∞. First,
as the background magnetic field is homogeneous and
along z direction, we assume the B vortices as well as the π̃
bubbles to be cylindrical with their symmetry axes along

FIG. 6. For homogeneous phases, the pure QCD part of the free
energy ΩQCD is depicted as a function of the order parameters Δπ

and L at temperature T ¼ 0.2 GeV.
FIG. 7. The solution L as a function of π̃ from Eq. (60) within
the range where the homogeneous solutions Eq. (58) (red bullets)
are covered.
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the z direction. Hence, the bubbles are expected to be z
independent. Second, rotational symmetry would require
π̃ðrÞ ¼ π̃ðrÞ and BzðrÞ ¼ BzðrÞ, where r is the radius in the
x − y plane and the center is chosen to be at x ¼ y ¼ 0. To
ensure explicit rotational symmetry of Eq. (61), we choose
the symmetric gauge for the vector potential; that is,
Aðt; rÞ ¼ −Aðt; rÞyiþ Aðt; rÞxj and the corresponding

magnetic field is Bzðt; rÞ ¼ ∂r2Aðt;rÞ
r∂r . Within such a scheme,

we are glad that the equations of motion of the Ax and Ay

components reduce to the same one, and we have

2

�
∂
2
t − ∂

2
r −

1

r
∂r þ e2A2ðrÞr2 − μ2Q

�
π̃þ ∂π̃Uðπ̃Þ ¼ 0; ð64Þ

�
∂
2
t − ∂

2
r −

3

r
∂r þ 2e2π̃2

�
AðrÞ ¼ 0 ð65Þ

instead of Eqs. (61) and (62). Note that we have used
Uðπ̃Þ≡UðLðπ̃Þ; π̃Þ for brevity here.
To solve the coupled differential equations (64) and (65),

boundary conditions are needed. Conventionally, to avoid
singularities at the origins of space and time, we require the
first-order derivatives to be vanishing [57], that is,

∂π̃

∂t

				
t¼0

¼ ∂π̃

∂r

				
r¼0

¼ ∂AðrÞ
∂t

				
t¼0

¼ ∂AðrÞ
∂r

				
r¼0

¼ 0: ð66Þ

As we can see, the magnetic effect is of order oðr2Þ around
r ∼ 0 in Eq. (64), so we could neglect such a term and solve
the Oð3Þ symmetric equation of motion

2

�
∂
2
ρ þ

2

ρ
∂ρ þ μ2Q

�
π̃ − ∂π̃Uðπ̃Þ ¼ 0 ð67Þ

to get the imaginary time τ ¼ it dependence of π̃ at the
origin r ¼ 0. Note that the Lorentz invariant solution was
found to be with the lowest energy for a Lorentz invariant
equation of motion. Then, it is natural to give the differ-
ential equation of motion for π̃ at the initial time t ¼ 0 as

2

�
∂
2
r þ

2

r
∂r − e2A2ðrÞr2 þ μ2Q

�
π̃ − ∂π̃Uðπ̃Þ ¼ 0; ð68Þ

which reduces to Eq. (67) around r ∼ 0. Equation (68) is
more useful than Eq. (67) as the solution interpolates
between the true and false vacua and could be directly taken
as the boundary condition for Eq. (64).
Next, by taking curl of Eq. (62), we have

∂
2
0B −∇2Bþ 2e2π̃2Bþ 4e2π̃∇π̃ ×A

¼ ½∂20B −∇2Bþ 2e2π̃2Bþ 4e2π̃∂rπ̃AðrÞr�ẑ ¼ 0: ð69Þ

Because of the boundary conditions in Eq. (66), the last
term on the left-hand side of Eq. (69) is of order oðr2Þ and

can be safely dropped around r ∼ 0. Then, we get an Oð3Þ
symmetric equation of motion for the magnetic field B,
that is,

∂
2
ρBþ 2

ρ
∂ρB − 2e2π̃2B ¼ 0: ð70Þ

Recalling the relation Bðt; rÞ ¼ ∂r2Aðt;rÞ
r∂r , Eq. (66) implies

similar boundary conditions for B:

∂Bðt; rÞ
∂t

				
t¼0

¼ ∂Bðt; rÞ
∂r

				
r¼0

¼ 0:

So by substituting the solution π̃ðρÞ from Eq. (67) into
Eq. (70), the form of BðρÞ could be worked out and Aðτ; rÞ
follows as

Aðτ; rÞ ¼ 1

r2

Z
r

0

Bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ s2

p
Þsds

≈
1

2

�
BðτÞ þ 1

2

B0ðτÞ
τ

r2
�

ð71Þ

to order oðr2Þ. One can substitute Aðτ; rÞ into Eq. (62) to
find it the same as Eq. (70) at r ¼ 0, so Aðτ; 0Þ ¼ 1

2
BðτÞ at

the spatial origin r ¼ 0. As mentioned, the form of Bð0; rÞ
is more important. Following the previous discussions, it is
natural to give the differential equation of motion for B at
the initial time from Eq. (69) as

∂
2
rBz þ

2

r
∂rBz − 2e2π̃2B − 4e2π̃∂rπ̃AðrÞr ¼ 0: ð72Þ

So by solving the differential equations BðrÞ ¼ ∂r2AðrÞ
r∂r ,

Eqs. (68) and (72) together, we could obtain the spatial
structures of the fields π̃; B, and A at the initial time t ¼ 0.
The normalized results are presented in Fig. 8. First of all,
the bubble structures of π̃ and L are almost the same as
the case B ¼ 0 with the radius Rb ≈ 9.60 GeV−1, so it is a
good approximation to treat the bubble formation with the
Lorentz invariant assumption. Second, the characteristic
length (ξ≲ 6 GeV−1) of the pion condensate π̃ is consistent
with that of the Polyakov loop L. Third, the magnetic field
does not change much in the whole bubble range, which
means that the penetration depth is much larger than ξ,
so the bubbles are quite like the vortices in the Type-II
superconductor [36]. Fourth, a bump is found in the
magnetic field around the bubble wall, which is more
obvious when the temperature is closer to the transition
point. Such a feature is a consequence of the latent heat
released from the phase transition and the coupling between
π̃ and A. The underlying physics is consistent with the
logic of how first-order phase transition could induce an
extremely large primordial magnetic field in the early
universe [29].
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Now, we are ready to solve the full differential
equations (61) and (62) by adopting the initial conditions
presented in Fig. 8. The spacetime evolution of the
reduced fields π̃r and Br are illustrated in Fig. 9. The

bubble wall of π̃r expands ∼16 GeV−1 within the time
interval ∼30 GeV−1, so the speed is smaller than the
velocity of light as should be. Furthermore, with the
development of the superconductor phase, the magnetic
field decreases further deep inside the superconductor and
would approach zero for a longer time. Meanwhile, the
bump structure of the magnetic field becomes more and
more sharp with time going, since more and more latent
heat is released to the wall as the bubble expand. In this
sense, the thin wall approximation could be adopted to
calculate the nonvanishing quartic moment caused by
bubble collisions, which is closely connected with the
radiation of the gravitational wave [60].

B. Gravitational wave within a toy system

To explore bubble collisions, the tunneling probability
density Γ has to be estimated. Since our study has shown
that the bubble formation is not far from the three-
dimensional Lorentz invariant, Γ could be evaluated in
the Oð3Þ symmetric Euclidean space as Γ ¼ AðB

2πÞ3=2e−B
[58]. In thin wall approximation, the involved coefficients
are, respectively,

A ¼ ðμRbÞ7=3
R3
b

;

B ¼ ð2RbÞ4π
Z

∞

0

ρ2dρ

��
dπ̃
dρ

�
2

þ ðe2A2ðρÞρ2 − μ2QÞπ̃2

þUðπ̃Þ −Uð0Þ − B2ðρÞ −H2

2

�
; ð73Þ

where μ is the renormalization scale for the 2þ 1 dimen-
sion [61] and could be set to μ ¼ 1 GeV for QCD. Even
though we have assumed the bubble dynamics to be z
independent to simplify the interplay between B and π̃, the
bubble must be bounded in the z direction in order to be
consistent with the case B is irrelevant. For the small
bubbles, we set the size to be the same as that in the x and y
directions for simple estimation since Lorentz invariance is
not violated in the t − z space. So the generated bubbles are
roughly cylinders with the same height and diameter—that
is why 2Rb shows up in the expression of B.
Then, after inserting the solutions of Eqs. (60), (68), and

(72), we find

A ¼ 0.221 GeV−3; B ¼ 14.2; ð74Þ

and thus Γ ¼ 5.29 × 10−7 GeV−3. Then, considering a toy
cylindrical system with height h and diameter d of the same
size, that is, h ¼ d ¼ 200 GeV−1, we expect around two
bubbles to be generated within the timescale t ∼ d=2. In the
following, we assume two bubbles to be generated simul-
taneously at x ¼ �d=4; y ¼ z ¼ 0 in such a system and
study the features of the gravitational wave observed at the

FIG. 9. The spacetime evolution of the reduced fields π̃r (upper
panel) and Br (lower panel).

FIG. 8. The solutions π̃ðrÞ (yellow solid line), LðrÞ (green
dotted line), and BðrÞ (black dashed line) as functions of the
radius r from Eqs. (60), (68), and (72). The Polyakov loop and
pion condensate are normalized by their maximal values to Lr and
Δr

π , and the magnetic field B by its background value H to Br,
respectively. The red baseline is fðrÞ ¼ 1.

FIRST-ORDER QCD TRANSITION IN A PRIMORDIAL … PHYS. REV. D 107, 014021 (2023)

014021-15



origin (see Fig. 10). Compared to the common cases where
the GW sources are far away from us [60], we are assumed
to be inside the source here as we are studying the magnetic
effect in our own galaxy. Inspired by the fact that
the characteristic frequency of GW does not depend on
the bubble number in the early universe [38], we expect the
characteristic frequency to be determined by the energy scale
at the QCD epoch and not sensitive to the details of bubble
dynamics. In principle, the magnitude of the GW depends on
the system size as the GWoriginated from different locations
would overlap with each other. For a larger system, we could
divide it to several numbers of the toy system and the
boundary of the toy system roughly corresponds to the
overlapping region with the bubbles actually outside.
As the two bubbles expand and collide with each other,

the variation of stress tensor would induce GW radiation,
that is,

Tijðx; tÞ ¼ ∂iπ̃∂jπ̃ −
FiνFjν

2
: ð75Þ

The resultant GW strains are then given by [60]

hþðtÞ ¼ 2Gℜ
Z

dω
Z

dzd2r
R

e−iωðt−RÞ½Txx − Tyy�ðz; r;ωÞ;

h×ðtÞ ¼ 4Gℜ
Z

dω
Z

dzd2r
R

e−iωðt−RÞTxyðz; r;ωÞ;

where ℜ means the real part and R is the distance of the
GW source from the observer at the origin. For rough

estimation, the strain will be evaluated by adopting the
envelope approximation, which was shown to be in good
agreement with the exact numerical evaluation [62]. The
initial approximation is based on two simplifications: (i) the
bubbles expand spherically with speed of light and do not
interfere with each other; (ii) only the bubble walls that do
not overlap with others and are inside the system are taken
into account in the integration. Here, we modify (i) by
requiring the bubbles to expand with half speed of light in
the x − y plane according to the numerical results in Fig. 9.
Hence, the GW strains become

hþðtÞ ¼ Gℜ
Z

dω e−iωtHþðωÞ; ð76Þ

h×ðtÞ ¼ Gℜ
Z

dω e−iωtH×ðωÞ; ð77Þ

where HþðωÞ and H×ðωÞ depend on the stress tensors and
are given in frequency space as

HþðωÞ¼
εv
2π

Z
∞

0

dt
Z

lzðtÞ

−lzðtÞ
dzr2ðtÞ

Z
S
dθ

eiω½tþRðz;t;θÞ�

Rðz;t;θÞ cosð2θÞ;

ð78Þ

H×ðωÞ¼
εv
2π

Z
∞

0

dt
Z

lzðtÞ

−lzðtÞ
dzr2ðtÞ

Z
S
dθ

eiω½tþRðz;t;θÞ�

Rðz;t;θÞ sinð2θÞ:

ð79Þ

Here, we define lzðtÞ ¼ Rb þ t, rðtÞ ≈ Rb þ 0.5t, and

Rðz; t; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2ðtÞ þ ðd

4
Þ2 − cos θrðtÞ d

2

q
, and S means

the surface of the nonoverlapping bubble walls.
Since the configuration of bubbles is symmetric under the

transformation θ → −θ at any time, we expect H×ðωÞ ¼ 0.
For rðtÞ > d

2
, the integration region of θ would start to be

eaten by the overlapping with both the other bubble and the
system boundary. Then, by taking into account the fact that
the bubble configuration is reflectional symmetric with
respect to all the axial planes, the explicit form of HþðωÞ is

HþðωÞ

¼ 2εv
π

Z
dtr2ðtÞϑ

�
rðtÞ − d

4

�
ϑ

�
d
2
− lzðtÞ

�

×
Z

lzðtÞ

−lzðtÞ
dz

Z
θ2

θ1

dθ
eiω½tþRðz;t;θÞ�

Rðz; t; θÞ cosð2θÞϑðθ2 − θ1Þ

¼ 2εv
π

Z
dtr2ðtÞBoole

�
d
4
< rðtÞ <

ffiffiffi
5

p d
4

�

× ϑ

�
d
2
− lzðtÞ

�Z
lzðtÞ

−lzðtÞ
dz

Z
θ2

θ1

dθ
eiω½tþRðz;t;θÞ�

Rðz; t; θÞ cosð2θÞ:

ð80Þ

FIG. 10. A toy model for bubble collision: the system and
nucleated bubbles are all chosen to be cylinders with the height
equal to the diameter and their axes along the direction of the
background magnetic field, and the two bubbles are assumed to be
generated simultaneously at the locations x¼�d=4;y¼ z¼0. The
system size is d ¼ 200 GeV−1 and the bubble radius was found to
be Rb ¼ 9.60 GeV−1 according to the calculation in Sec. III A.
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Here, the integral limits of θ are defined as cos θ1 ¼ d
4rðtÞ and

cos θ2 ¼ − 3ðd=4Þ2−r2ðtÞ
rðtÞd=2 according to the collisions with the

other bubble and system boundary, respectively. Note that
Boole (conditions) is the Boole function which is 1 if the
conditions are all true and 0 otherwise.
Of course, after we obtained the explicit form of HþðωÞ

by numerical calculations, hþ can be evaluated according
to the inverse Fourier transformation as shown in Eq. (76).
On the other hand, we could also work out an integral form
for hþ by inserting Eq. (80) into Eq. (76) and then carry
out numerical calculations directly. Actually, the integral
over the frequency ω gives rise to a delta function
δðt − t0 − Rðz; t0; θÞÞ, which can be rewritten as
Rðz;t0;θÞ
rðtÞd=4 δðθ − θ3Þϑðt − t0Þ with cosθ3¼ z2þr2ðt0Þþðd=4Þ2−ðt−t0Þ2

rðt0Þd=2 .

Then, by completing the integration over θ, we have

hþðtÞ ¼ 4Gεv

Z
dt0

rðt0Þ
d=4

Boole

�
d
4
< rðt0Þ <

ffiffiffi
5

p d
4

�

× ϑ

�
d
2
− lzðt0Þ

�
ϑðt − t0Þ

Z
lzðt0Þ

−lzðt0Þ
dz cosð2θ3Þ

× Booleðθ1 < θ3 < θ2Þ; ð81Þ

where one should keep in mind that θ3 depends on t, t0,
and z.
The numerical results for the GW strain are illustrated in

Fig. 11. From the upper panel, we can identify that the real
and imaginary parts ofHþ are even and odd functions of ω,
respectively, and the characteristic frequency is of order
0.1 GeV. So the characteristic frequency is consistent with
the energy scale of QCD, ΛQCD ¼ 0.2–0.3 GeV, and then
that of the relic GW is of order 10−4–10−5 eV in our recent
galaxy after being scaled by the factor a ¼ 1012–1012.5

[27]. In other more familiar units, the relic frequency is of
order 0.1–1 K or 109–1010 Hz, comparable to that of the
cosmic microwave background. From the lower panel, we
find the magnitude of the GW strain to be of order 10−38.
Our system size is 5 � 10−13 fm which corresponds to
0.5–5 m in the recent universe. If the overlapping region of
the GW is as large as 5 km, the magnitude can be estimated
to be of order ½ð103Þ3–ð104Þ3� � 10−38 ¼ 10−29–10−26,
quite within the capability of the next generation GW
detectors [63]. If the bubble distribution is random, it is
reasonable to assume that the characteristic frequency of
H× and magnitude of h× should be of the same order as
those of Hþ and hþ [59].

IV. SUMMARY

In the first part, we have extended our study of the QCD
phase diagram of the early universe [35] by taking into
account the primordial magnetic field within the PNJL
model. By referring to Gibbs free energy, we were able to
demonstrate the Meissner effect at mean field level; that is,
the finite external magnetic field H tends to reduce the free
energy of chiral phases rather than that of superconducting
pion superfluidity. Now, the transitions between chiral
phases and pion superfluidity were well explored and were
found to be of first order at relatively small H, compared to
that of second order for vanishing H. With H increasing,
the regime of πSF shrinks quickly and vanishes at the
threshold value eH ¼ 0.0222 GeV2, so first-order transi-
tion to πSF is possible only when the primordial magnetic
field is around the lower limit of the estimated magnitude
10−2–1 GeV2. Then, taking the case with eH ¼ 0.01 GeV2

and lMe þ lMμ ¼ −0.2, for example, we showed the evolu-
tions of order parameters, entropy, densities, and the
cosmic trajectories of the chemical potentials with temper-
ature, which decreases with time in the early universe.
There, two first-order transitions were explicitly demon-
strated according to the noncontinuity of the order param-
eters, entropy, and densities; and the first transition was
found to be stronger than the second one.
In the second part, we have adopted instead the two-

flavor PQM model to study bubble dynamics during the
first-order QCD transition. The equations of motion of
mesons could easily be obtained in the PQM model, and
then we could conveniently apply the formalism of bubble

FIG. 11. The spectra of the GW strain: the real (red solid line)
and imaginary (blue dashed line) parts ofHþ with frequency ω in
the upper panel and hþ with time t in the lower panel.
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dynamics [57,58] well developed before to the QCD
system. At the first transition point, we reduced the set
of EoMs by suppressing π0 and σ degrees of freedom, since
the expectation value of π0 is zero and that of σ remains
small across the point at mean field approximation. After
working out the dependence of the Polyakov loop on the
charged pion condensate, we could eventually reduce the
number of coupled EoMs to two, one for the charged pion
and the other for the magnetic field. From that, we could
directly reproduce the Meissner effect for the relativistic
system, and the expanding features of bubbles were well
demonstrated. Then, the generating probability density was
estimated for bubbles in the PQM model, and we intro-
duced a toy model by considering a cylindrical system
where two bubbles could form. The two bubbles would
expand and collide with each other to produce a gravita-
tional wave. By adopting the envelope approximation, the
spectra of GW strain were briefly studied with respect to
the variations of both frequency and time, and the char-
acteristic frequency of the relic GW was estimated to be of
the order 0.1–1 K or 109–1010 Hz in our galaxy. For
comparison, the characteristic frequency of the relic GW
produced due to inflation [64] is of order 10−10–10−8 Hz
when the early universe passed through the pion super-
fluidity phase with second-order transitions [33].

We have to admit that the recent study of a gravitational
wave generated from first-order QCD transition is quite
preliminary; more realistic calculations should be carried
out in the future. The dynamics with more bubbles would
be considered for a much larger volume, and then the
characteristic frequency and magnitude of GW strain can
be further constrained. The contribution of domain walls to
GW is also an interesting topic to explore just after the first-
order QCD transition [39,41]. On the other hand, the
bubble structure shown in Fig. 8 seems to indicate that
the Type-II superconducting pion superfluidity is more
favored in an external magnetic field. It happens that the
study of phonon modes favors such a possibility [65], so we
will check that by considering a magnetic vortical structure
in the future. Though the transitions involving the Type-II
superconductor are usually of second order, direct GW
emission is still supposed to be generated from the
collisions among vortices presented there.

ACKNOWLEDGMENTS

G. C. thanks Xian Gao for his help to give a reference
for the scaling factor. G. C. is supported by the National
Natural Science Foundation of China with Grant
No. 11805290.

[1] C. F. V. Weizsacker, Zur theorie der kernmassen, Z. Phys.
96, 431 (1935).

[2] R. Hofstadter, Electron scattering and nuclear structure,
Rev. Mod. Phys. 28, 214 (1956).

[3] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill Book Company, New York,
1971), Chap. 11.

[4] B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and
new challenges in isospin physics with heavy-ion reactions,
Phys. Rep. 464, 113 (2008).

[5] O. Elgaroy, L. Engvik, M. Hjorth-Jensen, and E. Osnes,
Superfluidity in Beta Stable Neutron Star Matter, Phys. Rev.
Lett. 77, 1428 (1996).

[6] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of
Matter Below Nuclear Saturation Density, Phys. Rev. Lett.
50, 2066 (1983).

[7] M. a. Hashimoto,H. Seki, andM.Yamada, Shape of nuclei in
the crust of neutron star, Prog. Theor. Phys. 71, 320 (1984).

[8] N. K. Glendenning, First order phase transitions with more
than one conserved charge: Consequences for neutron stars,
Phys. Rev. D 46, 1274 (1992).

[9] A. Akmal and V. R. Pandharipande, Spin—isospin structure
and pion condensation in nucleon matter, Phys. Rev. C 56,
2261 (1997).

[10] C. H. Lee, Kaon condensation in dense stellar matter, Phys.
Rep. 275, 255 (1996).

[11] H. Heiselberg and M. Hjorth-Jensen, Phases of dense matter
in neutron stars, Phys. Rep. 328, 237 (2000).

[12] T. D. Lee and G. C. Wick, Vacuum stability and vacuum
excitation in a spin 0 field theory, Phys.Rev.D 9, 2291 (1974).

[13] T. D. Lee, Abnormal nuclear states and vacuum excitations,
Rev. Mod. Phys. 47, 267 (1975).

[14] K. Yagi, T. Hatsuda, and Y. Miake, Quark-Gluon Plasma:
From Big Bang to Little Bang (Cambridge University Press,
Cambridge, England, 2005).

[15] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo,
The order of the quantum chromodynamics transition
predicted by the standard model of particle physics, Nature
(London) 443, 675 (2006).

[16] T. Bhattacharya, M. I. Buchoff, N. H. Christ, H. T. Ding, R.
Gupta, C. Jung, F. Karsch, Z. Lin, R. D. Mawhinney, G.
McGlynn et al., QCD Phase Transition with Chiral Quarks
and Physical Quark Masses, Phys. Rev. Lett. 113, 082001
(2014).

[17] M. Floris, Hadron yields and the phase diagram of strongly
interacting matter, Nucl. Phys. A931, 103 (2014).

[18] L. Adamczyk et al. (STAR Collaboration), Bulk properties
of the medium produced in relativistic heavy-ion collisions
from the beam energy scan program, Phys. Rev. C 96,
044904 (2017).

[19] X. Luo and N. Xu, Search for the QCD critical point with
fluctuations of conserved quantities in relativistic heavy-ion

GAOQING CAO PHYS. REV. D 107, 014021 (2023)

014021-18

https://doi.org/10.1007/BF01337700
https://doi.org/10.1007/BF01337700
https://doi.org/10.1103/RevModPhys.28.214
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1103/PhysRevLett.77.1428
https://doi.org/10.1103/PhysRevLett.77.1428
https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1143/PTP.71.320
https://doi.org/10.1103/PhysRevD.46.1274
https://doi.org/10.1103/PhysRevC.56.2261
https://doi.org/10.1103/PhysRevC.56.2261
https://doi.org/10.1016/0370-1573(96)00005-1
https://doi.org/10.1016/0370-1573(96)00005-1
https://doi.org/10.1016/S0370-1573(99)00110-6
https://doi.org/10.1103/PhysRevD.9.2291
https://doi.org/10.1103/RevModPhys.47.267
https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
https://doi.org/10.1103/PhysRevLett.113.082001
https://doi.org/10.1103/PhysRevLett.113.082001
https://doi.org/10.1016/j.nuclphysa.2014.09.002
https://doi.org/10.1103/PhysRevC.96.044904
https://doi.org/10.1103/PhysRevC.96.044904


collisions at RHIC: An overview, Nucl. Sci. Tech. 28, 112
(2017).

[20] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T.
Takatsuka, From hadrons to quarks in neutron stars: A
review, Rep. Prog. Phys. 81, 056902 (2018).

[21] E. Witten, Cosmic separation of phases, Phys. Rev. D 30,
272 (1984).

[22] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
Color superconductivity in dense quark matter, Rev. Mod.
Phys. 80, 1455 (2008).

[23] K. Fukushima and T. Kojo, The quarkyonic star, Astrophys.
J. 817, 180 (2016).

[24] L. McLerran and S. Reddy, Quarkyonic Matter and Neutron
Stars, Phys. Rev. Lett. 122, 122701 (2019).

[25] G. Cao and J. Liao, A field theoretical model for quarkyonic
matter, J. High Energy Phys. 10 (2020) 168.

[26] G. Cao, Quarkyonic matter state of neutron stars, Phys.
Rev. D 105, 114020 (2022).

[27] D. Baumann, Cosmology (Cambridge University Press,
Cambridge, England, 2022), Chap. 3.

[28] M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys.
71, 1463 (1999).

[29] T. Vachaspati, Magnetic fields from cosmological phase
transitions, Phys. Lett. B 265, 258 (1991).

[30] D. T. Son, Magnetohydrodynamics of the early universe and
the evolution of primordial magnetic fields, Phys. Rev. D
59, 063008 (1999).

[31] D. Grasso and H. R. Rubinstein, Magnetic fields in the early
universe, Phys. Rep. 348, 163 (2001).

[32] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[33] V. Vovchenko, B. B. Brandt, F. Cuteri, G. Endrődi, F.
Hajkarim, and J. Schaffner-Bielich, Pion Condensation in
the Early Universe at Nonvanishing Lepton Flavor Asym-
metry and Its Gravitational Wave Signatures, Phys. Rev.
Lett. 126, 012701 (2021).

[34] M.M. Middeldorf-Wygas, I. M. Oldengott, D. Bödeker, and
D. J. Schwarz, Cosmic QCD transition for large lepton
flavor asymmetries, Phys. Rev. D 105, 123533 (2022).

[35] G. Cao, L. He, and P. Zhang, Reentrant pion superfluidity
and cosmic trajectories within a PNJL model, Phys. Rev. D
104, 054007 (2021).

[36] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill Book Company, New York,
1971), Chap. 13.

[37] C. J. Hogan, Gravitational radiation from cosmological
phase transitions, Mon. Not. R. Astron. Soc. 218, 629
(1986).

[38] A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational
Waves from First Order Cosmological Phase Transitions,
Phys. Rev. Lett. 69, 2026 (1992).

[39] H. L. Child and J. T. Giblin, Jr., Gravitational radiation from
first-order phase transitions, J. Cosmol. Astropart. Phys. 10
(2012) 001.

[40] M. Lewicki and V. Vaskonen, Gravitational waves from
colliding vacuum bubbles in gauge theories, Eur. Phys. J. C
81, 437 (2021); Erratum, Eur. Phys. J. C 81, 1077 (2021).

[41] D. Wei and Y. Jiang, Domain wall networks from first-order
phase transitions and gravitational waves, arXiv:2208.07186.

[42] A. B. Pippard, An experimental and theoretical study of the
relation between magnetic field and current in a super-
conductor, Proc. R. Soc. A 216, 547 (1953).

[43] F. London and H. London, The electromagnetic equations of
the supraconductor, Proc. R. Soc. A 149, 71 (1935).

[44] K. Fukushima and V. Skokov, Polyakov loop modeling for
hot QCD, Prog. Part. Nucl. Phys. 96, 154 (2017).

[45] S. P. Klevansky, The Nambu-Jona-Lasinio model of quan-
tum chromodynamics, Rev. Mod. Phys. 64, 649 (1992).

[46] T. Hatsuda and T. Kunihiro, QCD phenomenology based on
a chiral effective Lagrangian, Phys. Rep. 247, 221 (1994).

[47] G. Cao, Recent progresses on QCD phases in a strong
magnetic field: views from Nambu–Jona-Lasinio model,
Eur. Phys. J. A 57, 264 (2021).

[48] G. Cao and J. Li, A self-consistent thermodynamic potential
for a magnetized QCD matter, arXiv:2301.04308.

[49] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory:
Principles and Applications (Cambridge University Press,
Cambridge, England, 2006).

[50] J. S. Schwinger, On gauge invariance and vacuum polari-
zation, Phys. Rev. 82, 664 (1951).

[51] D. T. Son and M. A. Stephanov, QCD at Finite Isospin
Density, Phys. Rev. Lett. 86, 592 (2001).

[52] P. Zhuang, J. Hufner, and S. P. Klevansky, Thermodynamics
of a quark—meson plasma in the Nambu-Jona-Lasinio
model, Nucl. Phys. A576, 525 (1994).

[53] P. Rehberg, S. P. Klevansky, and J. Hufner, Hadronization in
the SU(3) Nambu-Jona-Lasinio model, Phys. Rev. C 53, 410
(1996).

[54] I. M. Oldengott and D. J. Schwarz, Improved constraints on
lepton asymmetry from the cosmic microwave background,
Europhys. Lett. 119, 29001 (2017).

[55] G. L. Verschuur and K. I. Kellermann, Galactic and Extra-
galactic Radio Astronomy (Springer-Verlag, Berlin, 1974).

[56] B. J. Schaefer and J. Wambach, Susceptibilities near the
QCD (tri)critical point, Phys. Rev. D 75, 085015 (2007).

[57] S. R. Coleman, The fate of the false vacuum. 1. Semi-
classical theory, Phys. Rev. D 15, 2929 (1977); Erratum,
Phys. Rev. D 16, 1248 (1977).

[58] C. G. Callan, Jr. and S. R. Coleman, The fate of the false
vacuum. 2. First quantum corrections, Phys. Rev. D 16,
1762 (1977).

[59] G. Cao and S. Lin, Gravitational wave from phase transition
inside neutron stars, arXiv:1810.00528.

[60] S.Weinberg,Gravitation and Cosmology (Wiley, NewYork,
1972).

[61] J. Garriga, Nucleation rates in flat and curved space, Phys.
Rev. D 49, 6327 (1994).

[62] A. Kosowsky and M. S. Turner, Gravitational radiation from
colliding vacuum bubbles: Envelope approximation to many
bubble collisions, Phys. Rev. D 47, 4372 (1993).

[63] B. P. Abbott et al. (LIGO Scientific Collaboration), Explor-
ing the sensitivity of next generation gravitational wave
detectors, Classical Quantum Gravity 34, 044001 (2017).

[64] A. A. Starobinsky, Spectrum of relict gravitational radiation
and the early state of the universe, JETP Lett. 30, 682
(1979).

[65] P. Adhikari, E. Leeser, and J. Markowski, Phonon modes of
magnetic vortex lattices in finite isospin QCD, arXiv:
2205.13369.

FIRST-ORDER QCD TRANSITION IN A PRIMORDIAL … PHYS. REV. D 107, 014021 (2023)

014021-19

https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1007/s41365-017-0257-0
https://doi.org/10.1088/1361-6633/aaae14
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.3847/0004-637X/817/2/180
https://doi.org/10.3847/0004-637X/817/2/180
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1007/JHEP10(2020)168
https://doi.org/10.1103/PhysRevD.105.114020
https://doi.org/10.1103/PhysRevD.105.114020
https://doi.org/10.1103/RevModPhys.71.1463
https://doi.org/10.1103/RevModPhys.71.1463
https://doi.org/10.1016/0370-2693(91)90051-Q
https://doi.org/10.1103/PhysRevD.59.063008
https://doi.org/10.1103/PhysRevD.59.063008
https://doi.org/10.1016/S0370-1573(00)00110-1
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1103/PhysRevLett.126.012701
https://doi.org/10.1103/PhysRevLett.126.012701
https://doi.org/10.1103/PhysRevD.105.123533
https://doi.org/10.1103/PhysRevD.104.054007
https://doi.org/10.1103/PhysRevD.104.054007
https://doi.org/10.1093/mnras/218.4.629
https://doi.org/10.1093/mnras/218.4.629
https://doi.org/10.1103/PhysRevLett.69.2026
https://doi.org/10.1088/1475-7516/2012/10/001
https://doi.org/10.1088/1475-7516/2012/10/001
https://doi.org/10.1140/epjc/s10052-021-09232-3
https://doi.org/10.1140/epjc/s10052-021-09232-3
https://doi.org/10.1140/epjc/s10052-021-09892-1
https://arXiv.org/abs/2208.07186
https://doi.org/10.1098/rspa.1953.0040
https://doi.org/10.1098/rspa.1935.0048
https://doi.org/10.1016/j.ppnp.2017.05.002
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1140/epja/s10050-021-00570-0
https://arXiv.org/abs/2301.04308
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1016/0375-9474(94)90743-9
https://doi.org/10.1103/PhysRevC.53.410
https://doi.org/10.1103/PhysRevC.53.410
https://doi.org/10.1209/0295-5075/119/29001
https://doi.org/10.1103/PhysRevD.75.085015
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.16.1248
https://doi.org/10.1103/PhysRevD.16.1762
https://doi.org/10.1103/PhysRevD.16.1762
https://arXiv.org/abs/1810.00528
https://doi.org/10.1103/PhysRevD.49.6327
https://doi.org/10.1103/PhysRevD.49.6327
https://doi.org/10.1103/PhysRevD.47.4372
https://doi.org/10.1088/1361-6382/aa51f4
https://arXiv.org/abs/2205.13369
https://arXiv.org/abs/2205.13369

