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A symmetry preserving regularization procedure for dealing with the contact interaction model is
proposed in this work. This regularization procedure follows a series of consistency conditions that are
necessary to maintain gauge symmetry. Under this regularization, proofs for the preservation of the Ward-
Takahashi identities are given and the loop integrals in the contact interaction model are systematically
computed. As an application example, the kaon electromagnetic form factor and Kl3 transition form factor
are computed, and self-consistent results are obtained. Since the proposed regularization properly handles
the divergence, one is freed from the inconsistencies caused by the regularization and can concentrate more
on the physical discussion.
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I. INTRODUCTION

Over the years, the Dyson-Schwinger equations (DSEs)
have proved to be a powerful tool for studying the non-
perturbative nature of quantum chromodynamics (QCD) in
the continuum [1–3]. Self-consistent treatments of the
quark gap equation and bound state equations, such as
the Bethe-Salpeter equation (BSE) and the Faddeev
equation, create a bridge connecting the hadrons to the
fundamental degrees of freedom of QCD, quarks, and
gluons [4,5].
Within the framework of DSEs, a vector-vector contact

interaction approximation was proposed in Ref. [6].
Despite the simplicity of the contact interaction model in
describing the real world, it has been used to calculate a
wide range of hadron properties, including mass spectrum,
various decay processes, electromagnetic form factors,
transition form factors, and the parton distributions (see
Refs. [6–21]). However, because of the nonrenormalizable
nature of the contact interaction, the regularization scheme
becomes a crucial part in the practical calculation, and a
good regularization scheme should properly characterize
the divergence structure of the theory. It is worth noting that
symmetries, and in particular the vector and axial-vector
Ward-Takahashi identities (WTIs), which correspond to the
gauge symmetry and chiral symmetry, respectively, provide

a strong constraint that must be preserved during the
regularization process.
The regularization procedures performed in previous

studies of the contact model have been more or less
unsatisfactory. First, both the vector and axial-vector
WTIs do not naturally hold under the previous regulari-
zation procedure [6]. Moreover, there are cases where
inconsistent results occur in the calculation of the kaon
electromagnetic form factor, when the principle of charge
conservation is violated [10]. The main reason for these
problems is that previous regularization procedure fails
to properly deal with the quadratic and logarithmic
divergent integrals. Another regularization procedure
based on a subtraction method has been proposed
[15,17], wherein the divergences associated with different
tensor structures have been isolated and the WTIs are
satisfied subsequently. However, in the calculation of
form factors, the method is cumbersome and not easy
to be implemented.
Inspired by Ref. [22] we presented a new regularization

procedure in this work. This proper regularization meets
many interesting properties of the dimensional regulariza-
tion without changing the spacetime dimension. One of the
most fascinating properties is that gauge symmetries are
preserved under this regularization.
This paper is organized as follows: Section II introduces

the new symmetry preserving regularization that properly
handles the divergent integrals. Section III discusses this
new regularization in the contact interaction model,
incorporating the preserving of (axial-)vector WTIs,
and gives steps for the systematic calculations with the
contact model. Section IV provides results of the kaon
electromagnetic form factor and Kl3 form factor under
the new regularization, and the last section gives a brief
summary.
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II. SYMMETRY PRESERVING
REGULARIZATION

Before discussing the regularization procedures in detail,
it is helpful to introduce the so-called one-fold irreducible
loop integrals (ILIs) in Ref. [22]:

I−2αðM2Þ ¼
Z
q

1

ðq2 þM2Þαþ2
;

Iμν−2αðM2Þ ¼
Z
q

qμqν
ðq2 þM2Þαþ3

;

Iμνρσ−2α ðM2Þ ¼
Z
q

qμqνqρqσ
ðq2 þM2Þαþ4

ð1Þ

with
R
q ≐

R d4q
ð2πÞ4 and α ¼ −1; 0; 1;…. Here α ¼ −1 rep-

resents quadratically divergent integrals, and α ¼ 0 repre-
sents logarithmically divergent integrals. With the help of
Feynman parametrization, it is straightforward to conclude
that all one loop integrals can be expressed in terms of these
integrals, where M is a function of Feynman parameters,
external momenta, and the corresponding mass scales.
A regularization procedure can be implemented after
rearranging one loop integrals into these ILIs.
In Ref. [22], a loop regularization is proposed that

simulates in many interesting features to the momentum
cutoff, Pauli-Villars and dimensional regularization without
modifying the original Lagrangian formalism, and it is
directly performed in the spacetime dimension of the
original theory. The loop regularization is equivalent to
introducing a weight function to regularize the proper-time
variable τ integration [23], for example,

ILR−2αðM2Þ ¼ lim
N→∞

Z
q

Z
∞

0

dτWNðτ;Mc; μsÞ

×
ταþ1

Γðαþ 2Þ e
−τðq2þM2Þ; ð2Þ

where the superscript LR denotes the loop regularization
and ΓðnÞ is the gamma function. An explicit form of the
weight function is

WNðτ;Mc; μsÞ ¼ e−τμ
2
s ð1 − e−τM

2
RÞN; ð3Þ

withM2
R¼M2

chwðNÞlnN, hwðNÞ≳ 1 and hwðN → ∞Þ ¼ 1.
The two energy scales Mc and μs serve as ultraviolet (UV)
and infrared (IR) cutoff, respectively. It is worth noting that
when N → ∞ and μs ¼ 0 the weight function becomes

lim
N→∞

WNðτ;Mc; μs ¼ 0Þ ¼ θðτM2
c − 1Þ: ð4Þ

Thus theweight function regularizes the proper-time integral
just as it regularizes it with a hard UV cutoff 1=M2

c.
We introduce a regularization procedure that is based on

the Schwinger’s proper-time method. The regularization
procedure for the scalar type ILIs is

I−2αðM2Þ ¼
Z
q

1

ðq2 þM2Þαþ2

¼
Z
q

Z
∞

0

dτ
ταþ1

Γðαþ 2Þ e
−τðq2þM2Þ

¼
Z

∞

0

dτ
τα−1

Γðαþ 2Þ
e−τM

2

16π2

→ I−2αRðM2Þ ¼
Z

τ2ir

τ2uv

dτ
τα−1

Γðαþ 2Þ
e−τM

2

16π2
: ð5Þ

The label R in the subscript denotes the regularized
integrals. It is already seen that a hard UV cutoff τuv ¼
1=Mc is equivalent to the loop regularization with μs ¼ 0.
However, instead of the sliding energy scale μs in the loop
regularization, we introduce a hard IR cutoff τir to imple-
ment confinement, as proposed in Ref. [24]. This way of
dealing with the IR cutoff matches the regulators in
previous contact model studies, which, as we shall see,
can also maintain gauge symmetries if the tensor type ILIs
are properly regularized. Before proceeding, it is noted that
when integer α < −1, the loop integral vanishes under
Eq. (5), which happens to be the same property of
dimensional regularization.
Turning now to the regularization of the tensor type ILIs,

the regularization procedure is

Iμν−2αðM2Þ ¼
Z
q

qμqν
ðq2 þM2Þαþ3

¼
Z
q

Z
∞

0

dτqμqν
ταþ2

Γðαþ 3Þ e
−τðq2þM2Þ

¼
Z
q

Z
∞

0

dτδμν
q2

4

ταþ2

Γðαþ 3Þ e
−τðq2þM2Þ

¼ δμν

Z
∞

0

dτ
τα−1

Γðαþ 3Þ
e−τM

2

32π2

→ Iμν−2αRðM2Þ ¼ δμν

Z
τ2ir

τ2uv

dτ
τα−1

Γðαþ 3Þ
e−τM

2

32π2
ð6Þ

and

Iμνρσ−2α ðM2Þ ¼
Z
q

qμqνqρqσ
ðq2 þM2Þαþ4

¼
Z
q

Z
∞

0

dτqμqνqρqσ
ταþ3

Γðαþ 4Þ e
−τðq2þM2Þ

¼
Z
q

Z
∞

0

dτSμνρσ
q4

24

ταþ3

Γðαþ 4Þ e
−τðq2þM2Þ

¼ Sμνρσ

Z
∞

0

dτ
τα−1

Γðαþ 4Þ
e−τM

2

64π2

→ Iμνρσ−2αRðM2Þ ¼ Sμνρσ

Z
τ2ir

τ2uv

dτ
τα−1

Γðαþ 4Þ
e−τM

2

64π2
; ð7Þ
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where Sμνρσ ¼ δμνδρσ þ δμρδσν þ δμσδνρ is the total sym-
metric tensor. It is obvious that the regularized tensor type
ILIs and scalar type ILIs are related as follows:

Iμν−2αRðM2Þ ¼ Γðαþ 2Þ
2Γðαþ 3Þ δμνI−2αRðM

2Þ; ð8Þ

Iμνρσ−2αRðM2Þ ¼ Γðαþ 2Þ
4Γðαþ 4Þ SμνρσI−2αRðM

2Þ: ð9Þ

These relations are precisely the so-called consistency
conditions of gauge symmetry in Refs. [22,23], which are
independent of regularization and are necessary for pre-
serving the gauge invariance of theories. It is noted that ILIs
under dimensional regularization also satisfy these condi-
tions. These consistency conditions connect tensor type ILIs
and scalar type ILIs, and then any gauge invariant theories
can be properly described in terms of the regularized scalar
type ILIs. In fact, there are a series of consistency conditions
for ILIs with even more Lorentz index which are rarely
encountered and therefore are not presented here.
We now consider the regularization procedure in pre-

vious contact model studies, such as in Ref. [6]. For
example, the quadratic divergent tensor type ILI is regu-
larized as follows:

Iμν2 ðM2Þ ¼
Z
q

qμqν

ðq2 þM2Þ2

→
Z
q

δμν
4

�
1

q2 þM2
−

M2

ðq2 þM2Þ2
�

¼
Z
q

Z
∞

0

dτ
δμν
4

e−τðq2þM2Þð1 − τM2Þ

¼ δμν

Z
∞

0

dτ
e−τM

2

64π2τ2
ð1 − τM2Þ

→ Iμν
2R0 ðM2Þ ¼ δμν

Z
τ2ir

τ2uv

dτ
e−τM

2

64π2τ2
ð1 − τM2Þ; ð10Þ

where R0 denotes the regularization in previous contact
model studies. Apparently, this way of regularization does
not satisfy the consistency conditions and hence breaks the
gauge symmetries, especially the WTIs. This inappropriate
regularization of the tensor type ILIs is also responsible for
the inconsistent results that appear in the more complex
computations as the case of the triangle diagrams. The key
difference between the two regularizations R and R0 is
which step to do the symmetry analysis, i.e., the substi-
tution such as

qμqν → δμν
q2

4
: ð11Þ

In Eq. (6), one first performs the proper-time method so that
the divergent momentum integrals become well-defined,

followed by the substitution. In this way, the tensor type
integrals are properly regularized and gauge symmetry is
preserved. In contrast, in Eq. (10) the substitution is made
while the integrals are still divergent, and then the divergent
structures of theories are destroyed and lead to possible
inconsistency in further calculations. It is well known that
the substitution is valid only when the loop integral is
convergent. In principle, if we push the regulators τuv → 0
and τir → ∞, which restores the original ILIs, the two
regularizations R and R0 lead to the same results for
convergent integrals. However, we keep the two regulators
τuv and τir even when the ILIs are convergent, so that the
regularized ILIs still retain the following relation to the
original ILIs:

I−2ðαþ1ÞRðM2Þ ¼ −
1

αþ 2

d
dM2

I−2αRðM2Þ: ð12Þ

In the following sections, we will adopt the new regulari-
zation R to illustrate how these consistency conditions keep
gauge symmetries and then recalculate the kaon electro-
magnetic and transition form factors. For simplicity, the
label R is suppressed thereafter.

III. SYMMETRY PRESERVING
REGULARIZATION IN THE

CONTACT MODEL

The quark gap equation in the contact model can be
written as

S−1f ðpÞ ¼ S−1f0 ðpÞ þ
4

3m2
g

Z
q
γαSfðqÞγα; ð13Þ

where S−1f ðpÞ is the inverse of the dressed quark propagator
with flavor f and momentum p, which has the general form

S−1f ðpÞ ¼ ipþMf; ð14Þ

whereMf is independent ofmomentumdue to the features of
contact interaction. S−1f0 ¼ ipþmf is the inverse of the bare
quark propagator with mf being the current quark mass.
In terms of the ILIs, the gap equation becomes

M̂f ¼ 16Mf

3m2
g
I2ðM2

fÞ; ð15Þ

where M̂f ¼ Mf −mf.
In the contact model, the meson’s Bethe-Salpeter ampli-

tude (BSA) depends only on the meson’s total momentum
Q; thus the most general form of the pseudoscalar (PS)
meson BSA with an outgoing a quark and an incoming b
quark can be expressed as
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Γab
PSðQÞ ¼ iγ5EPSðQÞ þ γ5=Q

Mab
FPSðQÞ; ð16Þ

where we have introduced the usual reduced mass
Mab ¼ 2MaMb

MaþMb
. The BSAs satisfy the following homo-

geneous Bethe-Salpeter equation:

Γab
PSðQÞ ¼ −

4

3m2
G

Z
q
γαχ

ab
PSðq; q−Þγα; ð17Þ

where q− ¼ q −Q and χabPSðq; q−Þ ¼ SaðqÞΓab
PSðQÞSbðq−Þ

is the corresponding Bethe-Salpeter wave function.
In the following, we will show how the new regulari-

zation procedure preserves the axial-vector WTI exactly.
The axial-vector WTI states

QμΓab
5μðQÞ ¼ S−1a ðqÞiγ5 þ iγ5S−1b ðq−Þ

− iðma þmbÞΓab
5 ðQÞ: ð18Þ

The axial-vector vertex Γab
5μðQÞ satisfies an inhomogeneous

BSE,

Γab
5μðQÞ ¼ γ5γμ −

4

3m2
G

Z
q
γαχ

ab
5μðQÞγα; ð19Þ

with χab5μðQÞ ¼ SaðqÞΓab
5μðQÞSbðq−Þ. The pseudoscalar ver-

tex Γ5ðQÞ satisfies the equation in analogy with the axial-
vector vertex by replacing the inhomogeneous term γ5γμ
with γ5. The axial-vector WTI connects the vertex BSEs
and the gap equation, leading to the following two
identities:

M̂a þ M̂b ¼
4

3m2
G

Z
q

�
4Ma

q2 þM2
a
þ 4Mb

q2− þM2
b

�
;

0 ¼ 4

3m2
G

Z
q

�
2Q · q
q2 þM2

a
−

2Q · q−
q2− þM2

b

�
: ð20Þ

By analyzing the integrals with Feynman parametrization,
one can rearrange the expressions in terms of ILIs and
arrive at

M̂aþ M̂b ¼
16ðMaþMbÞ

3m2
G

Z
1

0

du

�
I2ðω2Þþ

ðuMb− ūMaÞ
MaþMb

× I0ðω2Þðð2u−1ÞQ2−M2
bþM2

aÞ
�

ð21Þ

and

0 ¼ 8

3m2
G

Z
1

0

dufQ2I2ðω2Þ − 2QμQνI
μν
2 ðω2Þg; ð22Þ

where ū ¼ 1 − u and ω2 ¼ uM2
b þ ūM2

a þ uūQ2.

Consider the following integral:

HAV ¼ 16ðMa þMbÞ
3m2

G

Z
1

0

gAVðu;Ma;Mb;Q2Þdu; ð23Þ

with

gAVðu;Ma;Mb;Q2Þ ¼ d
du

�
I2ðω2Þ

ðuMb − ūMaÞ
Ma þMb

�
: ð24Þ

On the one hand, one can evaluate this integral directly,

HAV ¼ 16ðMa þMbÞ
3m2

G
I2ðω2Þ

ðuMb − ūMaÞ
Ma þMb

����
1

0

¼ 16

3m2
G
ðMaI2ðM2

aÞ þMbI2ðM2
bÞÞ: ð25Þ

On the other hand, one can split the total derivative before
integration, and it is easy to see that [with the help of the
properties in Eq. (12)]

HAV ¼ 16ðMa þMbÞ
3m2

G

Z
1

0

du

�
I2ðω2Þ þ

ðuMb − ūMaÞ
Ma þMb

× I0ðω2Þðð2u − 1ÞQ2 −M2
b þM2

aÞ
�
; ð26Þ

which is precisely the right-hand side Eq. (21). Then
Eq. (21) is nothing but the sum of two quark gap equations.
The right-hand side of Eq. (22) is exactly zero due to the

consistent conditions contained in the new regularization R.
While in Ref. [6], the vanishing of the right-hand side of
Eq. (22) is imposed by hand. The reason is that the previous
regularization R0 fails to fulfill the consistency conditions,
and thus gauge symmetry is explicitly broken.
Let us now focus on the vector vertex which satisfies the

vector WTI,

QμiΓab
μ ðQÞ¼ S−1a ðqÞ−S−1b ðq−Þ−ðma−mbÞΓab

I ðQÞ; ð27Þ

and follows the inhomogeneous BSE,

Γab
μ ðQÞ ¼ γμ −

4

3m2
G

Z
q
γαχ

ab
μ ðQÞγα; ð28Þ

with χabμ ðQÞ ¼ SaðqÞΓab
μ ðQÞSbðq−Þ. The scalar vertex

Γab
I ðQÞ follows a similar equation with the inhomogeneous

term being the identity matrix ID. Under the contact
interaction, the general form of the vector and scalar
vertexes can be written as

Γab
μ ðQÞ ¼ γLμVab

L ðQ2Þ þ γTμVab
T ðQ2Þ þ IDð−iQμÞVab

S ðQ2Þ;
ð29Þ

Γab
I ðQÞ ¼ IDSab1 ðQ2Þ − i=Q

Mab
Sab2 ðQ2Þ; ð30Þ
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where γLμ ¼ Qμ=Q
Q2 , γTμ ¼ γμ − γLμ . In Ref. [21], an additional

interaction kernel is proposed that maintains the WTIs.
This additional kernel can automatically generate a quark
anomalous moment term σμνQν in the vector vertex, which
has a significant impact on the vector meson. However,
since the additional kernel does not influence the discus-
sion in this paper, we will not adopt it for simplicity.
The most straightforward way of solving the BSE

equations is to compute the momentum integrals in the
BSE directly. However, this method is computationally
cumbersome when evaluating the γ matrix. Thus we solve
the vector and scalar vertex BSEs by projecting the BSE
with the various projecting operators. However, it is
stressed that the Lorentz index of vector or tensor objects
is important and should be retained before regularization.
As an example, we illustrate this requirement through the
solution of the vector vertex,

Vab
T ðQ2Þ ¼ 1

1 − fabT ðQ2Þ ; ð31Þ

with

fabT ðQ2Þ ¼ −
4

3m2
G
trDδμν

Z
q
PT
ν γαSaðqÞγTμSbðq−Þγα; ð32Þ

by using the projection operator PT
ν ¼ γTν

trDðγTμ γTμ Þ. Here we

express

PT
μ ⊗ γTμ → δμνPT

ν ⊗ γTμ ; ð33Þ

which is used to retain the Lorentz index of the vector
vertex Γab

μ ðQÞ herein. Analyzing the integral with Feynman
parametrization, rearranging it into ILIs, and then regular-
izing the ILIs with δμν uncontracted yield the following
expression:

fabT ðQ2Þ ¼ 4

3m2
G
δμν

Z
1

0

du
2

3

�
QμQν

Q2
− δμν

�
I0ðω2Þ

× ðuM2
b −MbMa þ ūM2

a þ 2uūQ2Þ: ð34Þ

It can be seen that the transverse structure is exactly
maintained with the index of vector vertex uncontracted
before regularization. If the contraction is performed before
regularization, the transverse structure may be destroyed.
By solving the corresponding BSE, the rest of the

dressing functions in these two vertices are

Vab
L ðQ2Þ ¼ 1þ 4fab1 ðQ2Þ

1 − fabL ðQ2Þ ; ð35Þ

Vab
S ðQ2Þ ¼ −4fab2 ðQ2Þ

1 − fabL ðQ2Þ ; ð36Þ

Sab1 ðQ2Þ ¼ 1þ 2ðMb −MaÞfab2 ðQ2Þ
1 − fabL ðQ2Þ ; ð37Þ

Sab2 ðQ2Þ ¼ 2Mabfab2 ðQ2Þ
1 − fabL ðQ2Þ ; ð38Þ

where

fabL ðQ2Þ ¼ 8Q2ðfab2 ðQ2ÞÞ2 − 2ðMb −MaÞfab2 ðQ2Þ
− 4fab1 ðQ2Þð1þ 2ðMb −MaÞfab2 ðQ2ÞÞ; ð39Þ

fab1 ðQ2Þ ¼ 4

3m2
g

Z
1

0

½I0ðω2ÞðuM2
b þ ūM2

a

þMbMa þ 2uūQ2Þ − I2ðω2Þ�; ð40Þ

fab2 ðQ2Þ ¼ 4

3m2
g

Z
1

0

I0ðω2ÞðuMb − ūMaÞ: ð41Þ

Plugging the solved vector and scalar vertices into the
vector WTI Eq. (27), one finds the following equation:

M̂b − M̂a ¼ −4ðMb −MaÞfab1 ðQ2Þ þ 4Q2fab2 ðQ2Þ: ð42Þ

This equation can be proved in analogy with Eq. (23) by
introducing

HV ¼ 16

3m2
G

Z
1

0

gVðu;Ma;Mb;Q2Þdu; ð43Þ

where

gVðu;Ma;Mb; P2Þ ¼ d
du

½I2ðω2ÞðuMb þ ūMaÞ�: ð44Þ

One finds Eq. (42) is exactly the difference between the two
quark gap equations.
At the end of this section, we list the systematic

procedures in regularizing the one loop integrals in the
contact model.
(1) First, one uses the Feynman parametrization to

analyze the integral and then rearranges the expres-
sions in terms of the ILIs.

(2) One regularizes the ILIs through the new regulari-
zation and expresses all regularized tensor type ILIs
in terms of scalar type ones through the consistent
conditions.

(3) When evaluating formulas that contain vector or
tensor objects, their Lorentz index should be re-
tained rather than contracted before the tensor type
ILIs are regularized.

The first step is trivial, but provides a convenient way to
manage the expressions in calculation. We can then easily
implement regularization in step 2. We emphasis again a
proper regularization should let the regularized tensor
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type ILIs satisfy the consistent conditions; otherwise, gauge
symmetries will be broken. The third rule concerns vector
and tensor objects, whose Lorentz metrics are important. To
be clear, this rule charges not only for solving the BSEs but
also for any physical quantity that includes vector and
tensor objects. An easy way of implementing this rule can
be achieved by, say, Eq. (33), which will generate the
following typical integrals:

δμν

Z
q

qμqν
ðq2 þM2Þαþ2

; ð45Þ

where δμν comes from Eq. (33). It is apparent that different
orders of regularization and contraction lead to different
results; take α ¼ −1 for example,

δμν

Z
q

qμqν
ðq2 þM2Þ2 → δμνI

μν
2R ¼ 2I2R; ð46Þ

δμν

Z
q

qμqν
ðq2 þM2Þ2 ¼ I2 −M2I0 → I2R −M2I0R: ð47Þ

Here arrows represent operations of regularization and
equal signs represent operations of contraction. And we
explicitly use the label R to distinguish the regularized ILIs
from the original ones. It is observed that if one contracts
the index before regularization, the unregularized tensor
ILIs are turned into the unregularized scalar ILIs, which
incorrectly characterize the divergences of theories, and
then some fundamental properties are lost, such as the
current conservation.

IV. KAON FORM FACTORS

As the simplest bound state with strangeness, kaon has
attracted much attention since its discovery in the middle of
the last century [25] and has led to much important research
in the standard model, such as the introduction of strange-
ness [26], the violation of parity [27], quark mixing and the
CKM matrix [28,29], CP violation [30], and the Glashow-
Iliopoulos-Maiani(GIM) mechanism [31]. Recently, CERN
has approved a world-unique QCD facility where highly
intense and energetic kaon beams are used to map out the
complete spectrum of excited kaons with an unprecedented
precision [32]. This approval of CERN injects vitality
nowadays into a wide range studies on low energy kaon
phenomenology and high energy processes including kaon
excitations, and this opens a completely new horizon in
kaon physics.
The kaon electromagnetic and transition form factor

have also attracted fruitful studies [33–39]. In the previous
contact model computation of these two form factors [10],
inconsistency results occurred due to the failure of the
regularization to properly handle the divergent integrals.
To calculate the kaon electromagnetic form factor and

the Kl3 transition form factor, three elements are required.

The quark propagator and vector vertex are given in Sec. III
(in the following, Γff

μ denotes the quark-photon vertex and
Γsu
μ denotes the quark-W boson vertex). The remaining

ingredients are the pion and kaon BSAs, which are solved
from the pseudoscalar BSEs. In solving this equation, we
follow Ref. [10], the only difference being the regulariza-
tion. Even though we get the same kernel as in Ref. [10], it
is worth nothing that the following relation holds:

KFF ¼ −
ðMs þMuÞ2
2MsMu

KFE: ð48Þ

This is a natural result since the axial-vector WTI is
automatically satisfied under the new regularization.
Since the meson BSE is a homogeneous equation, nor-
malization of the BSA is needed for the computation of
physical quantities. The canonical normalization of pseu-
doscalar meson reads

2Qμ ¼ NctrD

Z
q
Γab
PSð−QÞSðqÞΓab

PSðQÞ ∂

∂Qμ
Sðq−Þ; ð49Þ

and the leptonic decay constant reads

fabPSQμ ¼
1ffiffiffi
2

p NctrD

Z
q
γ5γμχ

ab
PSðq; q−Þ: ð50Þ

The parameters are fixed to obtain the physical observables
in Table I mu ¼ 0.007 GeV, ms ¼ 0.17 GeV, mG ¼
0.132 GeV, τuv¼1=0.905GeV−1, and τir¼1=0.24GeV−1.

A. Kaon electromagnetic form factor

In the impulse approximation, the kaon electromagnetic
form factor is

Fem
KþðQ2Þ ¼ euFu

KþðQ2Þ þ esFs
KþðQ2Þ; ð51Þ

where

2PμFu
KþðQ2Þ ¼ NctrD

Z
q
SsðqÞiΓKþð−pÞSuðqþ pÞ

× iΓuu
μ ðQÞSuðqþ kÞiΓKþðkÞ; ð52Þ

2PμFs
KþðQ2Þ ¼ NctrD

Z
q
Ssðq − pÞiΓKþð−pÞSuðqÞ

× iΓKþðkÞSsðq − kÞiΓss
μ ðQÞ; ð53Þ

where p ¼ PþQ=2, k ¼ P −Q=2 with k the incoming
kaon momentum and p the out going kaon momentum. The

TABLE I. Masses and decay constants, with the units GeV.

Mu Ms mπ mK fπ fK

0.368 0.533 0.140 0.499 0.101 0.106
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on-shell condition entails P ·Q¼0 and P2 ¼ −m2
K −Q2=4.

We express the form factor formula as follows:

Fu
KþðQ2Þ ¼ ðFu

EEðQ2ÞEKþEKþ þ Fu
EFðQ2ÞEKþFKþ

þ Fu
FFðQ2ÞFKþFKþÞVuu

T ðQ2Þ; ð54Þ

where EKþ ; FKþ is kaon’s amplitude and the correspond-
ing functions can be found by the new regularization
approach as

Fu
EEðQ2Þ ¼ 2Nc

�Z
x
I0ðωK2Þ −

Z
xy
AEEI−2ðωK3Þ

�
;

Fu
EFðQ2Þ ¼ −2

Mu þMs

Mus
Fu
EEðQ2Þ þ Nc

Z
x
AEFI0ðωK2Þ;

Fu
FFðQ2Þ ¼ −

Mu þMs

2Mus
Fu
EFðQ2Þ þ Nc

Z
x
AFFI0ðωK2Þ

þ Nc

Z
x
BFFI0ðM2

u þ xð1 − xÞQ2Þ; ð55Þ

where

AEE ¼ 2ððMs −MuÞ2 −m2
KÞð1 − x − yÞ þQ2ðxþ yÞ;

AEF ¼ 4ðMsð1 − xÞ þMuxÞ
Mus

;

AFF ¼ −2ðM2
sð1 − xÞ þM2

uxþMuMsÞ
M2

us
;

BFF ¼ 4Q2xð1 − xÞ
M2

us
; ð56Þ

and
R
x ¼

R
1
0 dx,

R
xy ¼

R
1
0 dx

R
1−x
0 dy, ωK2 ¼ xM2

u þ
ð1 − xÞM2

s − xð1 − xÞM2
K, and ωK3 ¼ ðxþ yÞM2

u þ
ð1 − x − yÞM2

s −m2
Kðxþ yÞð1 − x − yÞ þQ2xy.

Consider the interchange s ↔ u and p ↔ −k in
Eq. (53), and comparing it with Eq. (52), one finds that
Fs
KþðQ2Þ is obtained from −Fu

KþðQ2Þ by the interchange of
s ↔ u. From the explicit expressions of Fu

EFðQ2Þ, and
some symmetries of the Feynman parameters, one gets the
following relation:

Fu
EFðQ2 ¼ 0Þ þ Fs

EFðQ2 ¼ 0Þ ¼ 0: ð57Þ

Once again we see that the symmetry preserving regulari-
zation procedure leads to the desired result, Eq. (57), which
should always hold, whereas in previous contact interaction
studies this relation is broken because of an improper
regularization procedure. The result for the kaon electro-
magnetic form factor is presented in Fig. 1, which, as
expected, is hard due to the nature of contact interaction.

B. Kl3 transition form factors

The impulse approximation result for the Kl3 transition
amplitude is

MKl3
μ ¼ 1ffiffiffi

2
p NctrD

Z
q
fSuðq − pÞΓπð−pÞSuðqÞ

× ΓKþðkÞSsðq − kÞiΓsu
μ ðQÞg; ð58Þ

where k is the incoming kaon momentum and p the
outgoing pion momentum. The on-shell conditions entails
P ·Q ¼ ðm2

K −m2
πÞ=2 and P2 ¼ −ðm2

K þm2
πÞ=2 −Q2=4.

The amplitude can be expressed as

MKl3
μ ¼ 1ffiffiffi

2
p ð2PμfþðQ2Þ −Qμf−ðQ2ÞÞ: ð59Þ

In addition to the primary and secondary transition form
factors fþðQ2Þ and f−ðQ2Þ, it is helpful to characterize the
transitions by the following function:

f0ðQ2Þ ¼ fþðQ2Þ −Q2f−ðQ2Þ=ðm2
K −m2

πÞ: ð60Þ

Since the expressions for fþðQ2Þ and f−ðQ2Þ are compli-
cated, we fit these two functions by interpolating in the
domain −2 < t=GeV2 < 0.5,

fþðtÞ ¼ fþð0Þ
1 − 0.7397tþ 0.1159t2

1 − 1.4312tþ 0.4574t2
;

f−ðtÞ ¼ f−ð0Þ
1 − 1.2922tþ 0.0933t2

1 − 2.0758tþ 1.0671t2
; ð61Þ

with t ¼ −Q2, and in the following we use t as a variable
of fþ;−;0. And in the physical interesting domain
m2

l < t=GeV2 < tm, where tm¼ðMK−mπÞ2∼0.13GeV2,
a linear fit is performed,

FIG. 1. The momentum dependence of kaon electromagnetic
form factors Fu=sðt ¼ −Q2Þ.
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fþðtÞ ¼ 0.9838þ 0.7751t;

−f−ðtÞ ¼ 0.1128þ 0.0992t: ð62Þ

The slopes of transition form factors are less deep than the
results reported in Ref. [36]. The results for the form factors
fþ and f− are plotted in Fig. 2.
Herewe list in Table II a range of quantities that are used to

characterize the kaon semileptonic decays. The difference
between the results of previous work [10] and the present
results comes from the regularization procedure.
Current algebra predicts [43] that

f0ðtΔ ¼ m2
K −m2

πÞ ¼ fK=fπ þ ΔCT; ð63Þ

where fπ;K is the leptonic decay constant of pion and kaon,
and the correction ΔCT is of Oðmu;mdÞ, which is usually
negligible. In our calculations, we obtain ΔCT=f0ðtΔÞ ¼
3.7 × 10−4. Actually, ΔCT ¼ 0 if one works in the chiral
limit, i.e., mu ¼ 0 ¼ mπ . It is known that the solution of
Eq. (19) has the form in the neighborhood of P2 ¼ 0 (with
a; b ¼ u),

Γuu
5μðPÞ ¼

Pμ

P2

ffiffiffi
2

p
fπΓπðPÞ þ γ5γμFRðPÞ; ð64Þ

where FR is the regular part of the vertex at P2 ¼ 0.
Plugging Eq. (64) into the axial-vector WTI Eq. (18), one
obtains the following generalized Goldberger-Treiman
relations [44]:

ffiffiffi
2

p
EπðPÞfπ ¼ 2Mu; ð65Þ

2FπðPÞ
EπðPÞ

þ FRðPÞ ¼ 1: ð66Þ

Then pion BSA can be expressed as follows:

ΓπðPÞ ¼ S−1ðqþ PÞiγ5 þ iγ5S−1ðqÞ − γ5PFRðPÞffiffiffi
2

p
fπ

: ð67Þ

Substituting Eq. (67) into the Kl3 transition amplitude
Eq. (58), one arrives at the following expressions for the
transition form factors:

fclþðtÞ ¼
fK
2fπ

−
Eπ − 2Fπ

2
ðfFEclþðtÞEK þ fFFclþðtÞFKÞ;

fcl− ðtÞ ¼
fK
2fπ

−
Eπ − 2Fπ

2
ðfFEcl−ðtÞEK þ fFFcl−ðtÞFKÞ; ð68Þ

where fFXþ=−ðtÞ with X ¼ E, F comes from the following
way of expressing the transition form factor in analogy with
Eq. (54):

fþ=−ðtÞ ¼ ðfEEþ=−ðtÞEπEK þ fEFþ=−ðtÞEπFK

þ fFEþ=−ðtÞFπEK þ fFFþ=−ðtÞFπFKÞ; ð69Þ

and fFXclþ=−ðtÞ ¼ fFXþ=−ðt; mπ ¼ 0Þ. Furthermore, one can
extract the vector vertex ingredients,

fFXþ ðtÞ ¼ fFX;Tþ ðtÞVsu
T ðtÞ; ð70Þ

fFX− ðtÞ ¼ fFX;T− ðtÞVsu
T ðtÞ þ fFX;L− ðtÞVsu

L ðtÞ
þ fFX;S− ðtÞVsu

S ðtÞ: ð71Þ

Our computation indicates the following relations in the
chiral limit:

FIG. 2. Results for fþ=−ðtÞ. In the upper panel, the filled circles
and squares are results of the calculation, and the solid and
dashed lines are linear fits in Eq. (62). In the lower panel, the solid
and dashed lines are the results of the calculation.

TABLE II. Quantities derived from the kaon transition form
factors.

fþð0Þ fþðtmÞ −f−ð0Þ −f−ðtmÞ f0ðtΔÞ
Here 0.98 1.09 0.11 0.12 1.05
Ref. [10] 0.98 1.07 0.087 0.096 1.06
Ref. [36] 0.96 1.13 0.10 0.11 1.18
Refs. [40–42] 0.96 1.16 0.12
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fFX;Tclþ ðtÞ þ t
m2

K
fFX;Tc− ðtÞ ¼ 0; ð72Þ

fFX;Lcl− ðtÞ ∼Oðt −m2
KÞ; ð73Þ

fFX;Scl− ðtÞ ∼Oðt −m2
KÞ; ð74Þ

which leads to

fcl0 ðtΔÞ ¼ fclþðtΔÞ þ fcl− ðtΔÞ ¼
fK
fπ

: ð75Þ

Hence ΔCT vanishes in the chiral limit.

V. SUMMARY

In this paper, we introduce a symmetry preserving
regularization based on Schwinger’s proper-time method.
This regularization meets many good features of dimen-
sional regularization without changing spacetime dimen-
sions. One of the most important properties is that it ensures
the regularized ILIs satisfy a series of consistency con-
ditions which are necessary for preserving gauge sym-
metries. In particular, we show that gauge symmetries are

preserved by proving that the WTIs hold exactly after the
regularization. We also show why the regularization pro-
cedure in previous studies of the contact model breaks
WTIs. Systematic steps for regularizing the contact model
are presented at the end of Sec. III.
As an application example, we recalculated kaon form

factors which exhibit inconsistency in Ref. [10] because of
the improperly regularized ILIs, whereas under the new
regularization the results are self-consistent. The present
regularization would also rescue the flaw in the calculation
of other form factors, such as heavy-light mesons semi-
leptonic transitions (see Ref. [45] for some discussion).
With this symmetry preserving regularization, the

hadron properties computed from the contact model are
valid, as potential inconsistencies from regularization are
eliminated. It is hoped that the contact model studies can
provide more inspiring results that may shed light on the
realistic DSE studies.
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