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The total and differential cross sections of elastic proton-proton and proton-antiproton scattering are
studied in a holographic QCD model, considering the Pomeron and Reggeon exchanges in the Regge
regime. In our model setup, the Pomeron and Reggeon exchanges are described by the Reggeized spin-2
glueball and vector meson propagators, respectively. How those contributions change with the energy is
explicitly shown, focusing on the contribution ratios. The adjustable parameters included in the model are
determined with the experimental data, and it is presented that the resulting total and differential cross
sections are consistent with the data in a wide kinematic region.
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I. INTRODUCTION

Quantum chromodynamics (QCD), being a remarkably
successful theory of the strong interaction, meets some
practical difficulties in the soft kinematic region. One of
those difficulties is related to the hadron-hadron forward
scattering processes [1,2], with high center-of-mass energy
s and small momentum transfer t. Decades ago, the scaling
laws for the hadron-hadron cross sections at s → ∞ and
fixed t=s were investigated [3–5], but the story is totally
different for the forward scattering due to the nonpertur-
bative nature of the involved partonic dynamics. The
forward scattering is associated with the hadron diffraction,
in which the initial and final states in the scattering process
have the same quantum numbers. The diffractive processes
are generally classified as double diffraction dissociation,
single diffraction dissociation and elastic scattering. The
simplest process is elastic hadron-hadron scattering, in
which the imaginary part of the scattering amplitude is
related to the total cross section. Thus, the investigation of
total cross section is embedded into the elastic scattering
amplitude. The total cross sections of various hadronic
processes have been measured experimentally [6] and

analyzed phenomenologically [7–10]. These measurements
provide crucial information for the soft kinematic region of
QCD, in which quarks and gluons are strongly interacting
and the perturbative method is basically not applicable.
Historically the Regge theory provided a useful frame-

work to analyze the total cross sections. Even today, the
Regge theory, with combined Reggeon and Pomeron
contributions, unrelated to the underlying partonic dynam-
ics, still provides successful descriptions of total cross
sections of hadronic scattering. The Regge theory is based
on the analysis with the complex angular momentum,
which is extensively illustrated in the literature [11,12].
The total cross sections of proton-proton (pp) and proton-
antiproton (pp̄) scattering have been fitted by the
exchanges of the Reggeon trajectories and the soft
Pomeron [13–16], with their respective slope and intercept
parameters. The nature of the soft Pomeron is highly
nonperturbative, and practically it is almost impossible
to be derived from QCD. Its properties can be inferred from
experimental data accumulated over several decades. The
2þþ glueball is considered to be the lightest state on the
leading Pomeron trajectory, which has an intercept of 1.08.
The increasing behavior of the total cross sections with
respect to the center-of-mass energy

ffiffiffi
s

p
is associated with

the Pomeron exchange. On the other hand, the exchange
of the Reggeon trajectories accounts for the decreasing
behavior.
Holographic QCD, a nonperturbative approach to QCD,

has been developed based on the anti–de Sitter/conformal
field theory (AdS=CFT) correspondence [17–19], which,
also called gauge-string duality, relates a strongly coupled
gauge theory to aweakly coupled string theory in the curved
spacetime.Most works in holographic QCD assume that the
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curved space string theory reduces to the supergravity theory
invanishing string length. This approach has been employed
to analyze the spectrum and structure of hadrons with
successful results [20–32]. Holographic QCD has also been
used to study high energy scattering processes [33–46]. In
particular, hadronic scattering in the Regge regime, which is
characterized by the condition, s ≫ t, is interesting.
Historically string theory originated in the phenomenologi-
cal description of hadronic scattering in theRegge regime, in
which the scattering amplitude is accounted by the exchange
of the Regge trajectories of mesons.
Studies of high energy scattering in the Regge regime

have gathered interests in the high energy physics commu-
nity so far, since this regime is essential to better under-
standing and testing the gauge-string duality. The strict
treatment of the string dual requires complicated string
calculations in the curved space. Approximations are
certainly needed to make practical progress in this field.
A string theory inspired holographic QCD model for
hadronic scattering [47–49], which aims to describe the
experimental data of scattering cross sections, has been
developed. In this model the string scattering amplitude in
the weakly curved background approximately takes the
same structure as the flat space amplitude, with the Regge
parameters (Regge slopes and intercepts) which differ from
those in the flat space. The amplitude in the Regge regime
is dictated by the amplitude of exchange of lightest states
on the Regge trajectories of mesons and glueballs, which
are determined by low energy effective couplings in the
top-down holographic approach [49–51]. The top-down
construction contains relatively fewer parameters and unam-
biguously gives the hadron couplings via the supergravity
action. The couplings involving the proton, mesons and
glueballs have been derived explicitly in the literature
[49,50,52–54]. Based on these couplings, hadronic scatter-
ing amplitudes in the Regge regime can be obtained for
exchanges of the lightest mesons or glueballs. Then the
single particle propagators are replaced with the Reggeized
ones which are obtained by comparing with the string
scattering amplitudes [47,49].
This model has been applied to the proton-proton

scattering via the Pomeron exchange [47,48], and to the
central production of η with the double Pomeron and
double Reggeon exchange [49]. The propagator for pro-
ton-proton scattering via the Pomeron exchange is based on
a comparison of the Virasoro-Shapiro amplitude with the
classical flat space bosonic closed string amplitude. The
mesonic Regge trajectories have also been incorporated
into this model, whose propagators are constructed by
using the bosonic open string amplitude in flat space. The
parameters of these amplitudes are modified to account for
the physical meson and glueball trajectories.
In this work we study the elastic pp and pp̄ scattering in

the Regge regime, taking into account both the Pomeron
and Reggeon exchanges. This work is an extension of the

preceding study [43], in which only the Pomeron exchange
was considered. Since the Pomeron exchange gives the
dominant contribution to cross sections in the high energy
region with

ffiffiffi
s

p ≳ 100 GeV, successful results were
obtained in the previous work. However, the Reggeon
exchange contribution needs to also be considered to
describe the data in the lower energy region. In our model
the Pomeron and Reggeon exchanges are described by the
Reggeized spin-2 glueball and vector meson propagators,
respectively. The scattering amplitudes are obtained by
combining the proton-vector meson and proton-glueball
couplings with those propagators.
The model includes several parameters, but the ones

related to the Pomeron exchange have already been deter-
mined in the previous work. Hence, in this study we use the
parameter values obtained in Ref. [43] for the Pomeron, and
determine the adjustable parameters associated with the
Reggeon exchange by numerical fits with experimental data
of the total cross sections for the pp and pp̄ scattering.
Utilizing the linear relation for the Reggeon trajectory, only
three parameters in total need to be determined in this study.
With the obtained parameter values, we explicitly show how
the both contributions change with the energy, focusing on
the contribution ratios. It is presented that the resulting total
cross sections are in agreement with the data in a wide
kinematic region. Then, we show that our predictions for the
differential cross section are also consistent with the data for
both the pp and pp̄ scattering in the kinematic range of
jtj < 0.45 GeV2 and 10 GeV <

ffiffiffi
s

p
≤ 13 TeV.Overall, the

results presented in this paper show that the present model
works well and the future experimental data could better
constrain the model parameters.
This paper is organized as follows. In Sec. II we

introduce the holographic description of the elastic pp
and pp̄ scattering in the Regge regime, taking into account
the Pomeron and Reggeon exchanges. We briefly review
the formalism developed in the preceding studies, and
present the expressions for the total and differential cross
sections. The energy dependence of the both contributions
is shown in detail, focusing on the contribution ratios. With
the obtained expressions, numerical fits are performed, and
the results are displayed in Sec. III. Our conclusion with the
implications of this work is given in Sec. IV.

II. MODEL SETUP

A. Holographic description of the
pp and pp̄ scattering

In this work we investigate the elastic pp and pp̄
scattering in the Regge regime, considering contributions
of the Pomeron and Reggeon exchanges which are
described by the Reggeized spin-2 glueball and vector
meson. The Feynman diagrams, which describe those
contributions, are shown in Fig. 1. The scattering ampli-
tudes are written as
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App;pp̄
tot ¼ App;pp̄

g þApp;pp̄
v : ð1Þ

Following the preceding study [55], the matrix element of
the energy momentum tensor Tμν between the initial and
final proton states is expressed as

hp0; s0jTμνjp; si ¼ ūðp0; s0Þ
�
AðtÞ γμPν þ γνPμ

2

þ BðtÞ iðPμσνρ þ PνσμρÞkρ
4mp

þ CðtÞ kμkν − ημνk2

mp

�
uðp; sÞ; ð2Þ

where P ¼ ðp1 þ p3Þ=2, k ¼ p3 − p1, t ¼ −k2 and mp is
the proton mass. AðtÞ, BðtÞ, and CðtÞ are the proton form
factors. The contributions of BðtÞ and CðtÞ are negligible in
the Regge limit, and in this work, similar to our previous
work [43], we use the gravitational form factor of the
proton for AðtÞ, which was derived by the authors of
Ref. [26] with the bottom-up AdS/QCD model. We utilize
the result obtained with the soft-wall model, in which the
AdS geometry is smoothly cut off at the infrared boundary.
The resulting expression of the gravitational form factor
includes some parameters, but those can be determined by
the basic hadron properties, such as the proton mass. Hence
the form factor we adopt in this work does not bring any
adjustable parameters.
The vertex of glueball-proton-proton in the Regge limit

is given by

Γμν
g ¼ λgAðtÞ

2
ðγμPν þ γνPμÞ; ð3Þ

where λg is the coupling constant. The massive spin-2
glueball propagator is written as [56]

Dg
αβγδðkÞ ¼

−idαβγδ
k2 þm2

g
; ð4Þ

wheremg is the glueball mass, and α, β and γ, δ are Lorentz
indices for the initial and final states. dαβγδ is explicitly
expressed as

dαβγδ ¼
1

2
ðηαγηβδ þ ηαδηβγÞ−

1

2m2
g
ðkαkδηβγ þ kαkγηβδ

þ kβkδηαγ þ kβkγηαδÞ

þ 1

24

��
k2

m2
g

�
2

− 3

�
k2

m2
g

�
− 6

�
ηαβηγδ

−
k2 − 3m2

g

6m4
g

ðkαkβηγδ þ kγkδηαβÞ þ
2kαkβkγkδ

3m4
g

: ð5Þ

With the exception of the first term, contributions of the
others are negligible in the Regge limit. Combining Eqs. (3)
and (4), the glueball exchange amplitude in the ppðpp̄Þ
scattering is obtained as

Appðpp̄Þ
g ¼ ðū1Γαβ

g u3ÞDg
αβγδðkÞðū2Γγδ

g u4Þ

¼ iλ2g
8ðk2 þm2

gÞ
½2sA2ðtÞðū1γαu3Þðū2γαu4Þ

þ 4A2ðtÞpα
2p

β
1ðū1γαu3Þðū2γβu4Þ�: ð6Þ

The vector meson propagator can be written as [49]

Dv
μνðkÞ ¼

i
k2 þmv

ημν; ð7Þ

where mv is the vector meson mass. The vector-proton-
proton vertex is written as

Γμ
v ¼ −iλvγμ; ð8Þ

where λv is the coupling constant. These lead to the
amplitude for the vector meson exchange in the ppðpp̄Þ
scattering

Appðpp̄Þ
v ¼ ðū1Γμ

vu3ÞDv
μνðkÞðū2Γν

vu4Þ

¼ −
iλ2v

k2 þm2
v
ημνðū1γμu3Þðū2γνu4Þ: ð9Þ

According to Eq. (1), the total amplitude is obtained as

Appðpp̄Þ
tot ¼ −iλ2g

8ðt −m2
gÞ
½2sA2ðtÞðū1γαu3Þðū2γαu4Þ

þ 4A2ðtÞpα
2p

β
1ðū1γαu3Þðū2γβu4Þ�

þ iλ2v
t −m2

v
ημνðū1γμu3Þðū2γνu4Þ: ð10Þ

Taking into account the conditions, s ≫ jtj, u1 ≈ u3, and
u2 ≈ u4, the differential cross section can be obtained as

FIG. 1. The left and right Feynman diagrams represent the pp
(pp̄) scattering with the Pomeron and Reggeon exchanges in the
t-channel, respectively. p1, p2 and p3, p4 are four-momenta of
the initial and final states, respectively, and k is the momentum
transfer.
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dσ
dt

¼ 1

16πs2
jAtotj2

¼ λ4gs2A2ðtÞ
16πjt −m2

gj2
þ λ2gλ

2
vA2ðtÞs
8π

�
1

ðt −m2
gÞ�

×
1

t −m2
v

þ 1

ðt −m2
vÞ�

×
1

t −m2
g

�
þ λ4v
4πjt −m2

vj2
; ð11Þ

where the asterisk indicates complex conjugation. The first,
second, and third terms of the right-hand side represent
contributions of the glueball exchange, the cross term for
both the glueball and vector meson exchanges, and the
vector meson exchange, respectively. Since in this equation
only the lightest states are considered, the propagators need
to be Reggeized to include the higher spin states on the
Regge trajectories, which correspond to the excitation of
strings in the curved spacetime.
We briefly review the Reggeization procedure, which

was presented in detail in Ref. [49]. The bosonic open
string four-tachyon amplitude can be expressed as

A4
oðs; t; uÞ ¼ Ãoðs; tÞ þ Ãoðu; tÞ þ Ãoðs; uÞ; ð12Þ

where

Ãoðx; yÞ ¼ iC
Γ½−aoðxÞ�Γ½−aoðyÞ�
Γ½−aoðxÞ − aoðyÞ�

: ð13Þ

Here aoðxÞ ¼ 1þ α0ox, in which α0o is the slope. Since
sþ tþ u ¼ 4m2

p and αvðxÞ ¼ αvð0Þ þ α0vx,

αvðsÞ þ αvðtÞ þ αvðuÞ ¼ 3þ α0vð4m2
p − 3m2

vÞ≡ χv: ð14Þ

Particles on the vector meson Regge trajectory have odd
spins, and we need to replace the propagator of the vector
meson with the exchange of odd spin string states. The
t-channel is the dominant channel in the Regge limit, so we
can ignore the contribution of Ãoðs; uÞ, since it has no pole
in the t-channel. Then we replace aoðxÞ with αvðxÞ, and u
with a function of s and t. Combining Eqs. (13) and (14),

Ãoðu; tÞ ¼ iC
Γ½αvðsÞ þ αvðtÞ − χv�Γ½−αvðtÞ�

Γ½αvðsÞ − χv�
; ð15Þ

Ãoðs; tÞ ¼ iC
Γ½−αvðsÞ�Γ½−αvðtÞ�
Γ½−αvðsÞ − αvðtÞ�

: ð16Þ

In order to obtain the odd spin states, we need to take the
difference between Ãoðu; tÞ and Ãoðs; tÞ. Therefore the
amplitude of the Reggeon exchange can be rewritten as

A4
R ¼ iC

Γ½αvðsÞ þ αvðtÞ − χv�
Γ½αvðsÞ − χv�

− iC
Γ½−αvðsÞ�Γ½−αvðtÞ�
Γ½−αvðsÞ − αvðtÞ�

:

ð17Þ

It is found that the amplitude is asymmetric under
exchanges of s, t, and u, and the pp and pp̄ scattering
processes have different behavior in the Reggeon exchange.
This behavior is consistent with the experimental data, and
λv values of vector-proton-proton and vector-antiproton-
antiproton cases are different from each other. A4

R can be
expanded around the αvðtÞ ¼ 1 pole in the Regge limit as

A4
R ≈ iCð1 − e−iπαvðtÞÞðα0vsÞαvðtÞΓ½−αvðtÞ�: ð18Þ

Comparing this equation to Eq. (9) and the third term of the
right-hand side of Eq. (11), it is found that the propagator of
the vector meson needs to be replaced with

1

t −m2
v
→ α0ve−

iπαvðtÞ
2 sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1Γ½−αvðtÞ�: ð19Þ

The bosonic closed string four-tachyon amplitude is
given by

A4
cðs; t; uÞ

¼ 2πC
Γ½− acðtÞ

2
�Γ½− acðsÞ

2
�Γ½− acðuÞ

2
�

Γ½− acðsÞ
2

− acðtÞ
2
�Γ½− acðsÞ

2
− acðuÞ

2
�Γ½− acðtÞ

2
− acðuÞ

2
�
;

ð20Þ

where acðxÞ ¼ 2þ a0cx=2. Repeating the operation for
Eq. (15), one can obtain

A4
cðs;tÞ¼2πC

Γ½−acðtÞ
2
�Γ½−acðsÞ

2
�Γ½1þacðsÞ

2
þacðtÞ

2
�

Γ½−acðsÞ
2

−acðtÞ
2
�Γ½−acðsÞ

2
−acðuÞ

2
�Γ½−acðtÞ

2
−acðuÞ

2
�
:

ð21Þ

The bosonic closed string states only include even spin
particles, and we need to replace acðtÞ þ 2 with αgðtÞ, due
to the fact that the first pole corresponds to the spin-2
glueball. Then the amplitude of the Pomeron exchange can
be expressed as

A4
Pðs; tÞ

¼ 2πC
Γ½1− αgðtÞ

2
�Γ½1− αgðsÞ

2
�Γ½1− χg

2
þ αgðsÞ

2
þ αgðtÞ

2
�

Γ½2− αgðtÞ
2

− αgðsÞ
2
�Γ½2− χg

2
þ αgðsÞ

2
�Γ½2− χg

2
þ αgðtÞ

2
�
;

ð22Þ

where χg ≡ αgðsÞ þ αgðuÞ þ αgðtÞ, in which αgðxÞ ¼
αgð0Þ þ α0gx. Expanding the above equation around the
αgðtÞ ¼ 2 pole in the Regge limit, one obtains

A4
P ≈ 2πCe−

iπαgðtÞ
2

�
α0gs
2

�
αgðtÞ−2 Γ½1 − αgðtÞ

2
�

Γ½2 − χg
2
þ αgðtÞ

2
�
: ð23Þ
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Comparing this equation to Eq. (6) and the first term of the
right-hand side of Eq. (11), it is found that the propagator of
massive spin-2 glueball needs to be replaced with

1

t−m2
g
→

α0g
2
e−

iπαgðtÞ
2

�
α0gs
2

�
αgðtÞ−2Γ½3− χg

2
�Γ½1− αgðtÞ

2
�

Γ½2− χg
2
þ αgðtÞ

2
�

: ð24Þ

With the Reggeized propagators introduced above, the
differential cross section can be obtained as

dσ
dt

¼ λ4gs2A4ðtÞ
16π

�
α0g
2

Γ½3− χg
2
�Γ½1− αgðtÞ

2
�

Γ½2− χg
2
þ αgðtÞ

2
�

�
α0gs
2

�
αgðtÞ−2�2

þ λ2gλ
2
vsA2ðtÞ
4π

�
α0g
2

Γ½3− χg
2
�Γ½1− αgðtÞ

2
�

Γ½2− χg
2
þ αgðtÞ

2
�

�
α0gs
2

�
αgðtÞ−2�

×

�
α0v sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1Γ½−αvðtÞ�

�

× cos

�
π

2
ðαgðtÞ− αvðtÞÞ

�

þ λ4v
4π

�
α0v sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1Γ½−αvðtÞ�

�
2

; ð25Þ

which leads to the invariant amplitude for the Pomeron and
Reggeon exchanges:

Aðs;tÞ¼−sλ2gA2ðtÞe−iπαgðtÞ
2

Γ½3− χg
2
�Γ½1−αgðtÞ

2
�

Γ½2− χg
2
þαgðtÞ

2
�

�
α0gs
2

�
αgðtÞ−1

þ2sλ2vα0ve−
iπαvðtÞ

2 sin

�
παvðtÞ

2

�
ðα0vsÞαvðtÞ−1Γ½−αvðtÞ�:

ð26Þ

The first and second terms of the right-hand side represent
contributions of the Pomeron and Reggeon exchanges,

respectively. Applying the optical theorem, the total cross
section is obtained as

σtot ¼
1

s
ImAðs; t ¼ 0Þ

¼ λ2g sin

�
παgð0Þ

2

�
Γ½3 − χg

2
�Γ½1 − αgðtÞ

2
�

Γ½2 − χg
2
þ αgðtÞ

2
�

�
α0gs
2

�
αgð0Þ−1

− 2λ2vα
0
vsin2

�
παvð0Þ

2

�
ðα0vsÞαvð0Þ−1Γ½−αvð0Þ�: ð27Þ

B. Contribution ratios of the Pomeron
and Reggeon exchanges

Here we present the energy dependence of contributions
of the Pomeron and Reggeon exchanges in the present
model. The parameters we used for this analysis are the
best fit values which will be explained in detail in the
next section. We numerically evaluate the Pomeron and
Reggeon exchange contributions to the total cross sections
and divide by the overall magnitude separately. We define
these as the contribution ratios, Rpp

tot and Rpp̄
tot , for the pp

and pp̄ total cross sections, respectively. Focusing on the
kinematic range of 5 <

ffiffiffi
s

p
< 1000 GeV, we display the

energy dependence of the ratios in Fig. 2. It can be seen
from the left panel, which shows the pp case, that the
Pomeron contribution increases with the energy, and it is
opposite for the Reggeon contribution. At

ffiffiffi
s

p ≳ 100 GeV,
the Reggeon contribution almost vanishes and the Pomeron
contribution becomes dominant. The results for the pp̄
case, which are shown in the right panel, are similar, but the
Reggeon contribution is somewhat larger compared to the
pp case in all the considered kinematic region. From these
results, we find that it is important to take into account the
contribution of the Reggeon exchange, unless the energy is
high enough.

FIG. 2. The contribution ratios for the total cross section as a function of
ffiffiffi
s

p
. The left and right panels are for the pp and pp̄ scattering,

respectively. The solid and dashed curves represent the results for the Pomeron and Reggeon exchanges, respectively.
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Then we present results of the similar evaluations for the
differential cross section, defining the contribution ratios,
Rpp
diff and Rpp̄

diff , for the pp and pp̄ scattering, respectively.
The results obtained at jtj ¼ 0.1 GeV2 are shown in Fig. 3.
Differently from the total cross section case, the resulting
ratios for the cross term, which corresponds to the second
term of the right-hand side of Eq. (25), are also displayed.
The overall behavior of the ratios for the Pomeron and
Reggeon exchanges is similar to the total cross section case.
The cross term contributions for both the pp and pp̄ cases
decrease with the energy. Due to the presence of the cross
term, we find that it is more important to consider the
Reggeon exchange contribution when we investigate the
differential cross section, compared to the total cross
section case.

III. NUMERICAL RESULTS

A. Fitting procedure

The expressions for the cross sections presented in the
previous section include seven adjustable parameters in
total. Three of them are associated with the Pomeron
exchange, i.e., the intercept, slope and proton-glueball
coupling constant. Since for the Reggeon exchange the
coupling constant (λv) depends on the scattering process, we
need two (λvpp and λvp̄ p̄) for the pp and pp̄ cases, which is
the reason why there are four parameters for the Reggeon
exchange. As to the former three parameters, we use the
values obtained in the previous work [43], in which only the
Pomeron exchange was considered to study the cross
sections at

ffiffiffi
s

p
≥ 546 GeV. Since the Reggeon exchange

contribution almost completely vanishes in such a high
energy region, which can be seen from Figs. 2 and 3, this is
justified. The values, αgð0Þ¼1.084, α0g¼0.368GeV−2 and
λg ¼ 9.59 GeV−1, are used in the present analysis. There are
four parameters yet to be determined, but we can reduce to

three by utilizing the linear relation for the Reggeon
trajectory, J ¼ αvð0Þ þm2

vα
0
v, regarding the ρ meson as

the exchanged Reggeon with its physical mass. Hence we
find that it is enough to determine only the three parameters,
αvð0Þ, λvpp and λvp̄ p̄, with the experimental data.
In this work we determine those three parameters, using

the analytical result, Eq. (27), and the experimental data of
the total cross section. All the currently available data,
which are summarized by the Particle Data Group (PDG) in
2020 [6], in the range of 5 ≤

ffiffiffi
s

p
≤ 1000 GeV are taken

into account. For the numerical fitting we utilize the MINUIT

package [57]. Once all the three parameters are determined,
we can predict the differential cross section for both the pp
and pp̄ scattering without any additional parameters.

FIG. 3. The contribution ratios for the differential cross section at jtj ¼ 0.1 GeV2 as a function of
ffiffiffi
s

p
. The left and right panels are for

the pp and pp̄ scattering, respectively. The solid, dashed and dotted curves represent results for the Pomeron exchange, the Reggeon
exchange and the cross term, respectively.

FIG. 4. The total cross section of the pp and pp̄ scattering as a
function of

ffiffiffi
s

p
. Our calculations are compared with the results

obtained by the COMPETE Collaboration [9]. The experimental
data are taken from Ref. [6].
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B. Fitting results

The resulting best fit values of the three parameters are
found to be: αvð0Þ ¼ 0.444� 0.008, λvpp ¼ 7.742�
0.205 and λvp̄ p̄ ¼ 16.127� 0.295. Combining both the

Pomeron and Reggeon exchange contributions, we display
our calculations of the total cross section for the pp and pp̄
scattering in Fig. 4, in which the results obtained by the
COMPETE Collaboration [9] are also shown for

FIG. 5. The differential cross section of the pp scattering as a function of jtj for 10 <
ffiffiffi
s

p
< 30 GeV. The dashed curves represent our

calculations, and the experimental data are depicted by stars with error bars.
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comparison. It is found that our results are in agreement
with the data in all the considered kinematic region for both
the pp and pp̄ scattering. Ours are also consistent with the
results obtained by the COMPETE Collaboration.
Then we present our predictions for the differential cross

section, focusing on the Regge regime. Since we cannot
neglect the Coulomb interaction in the very small jtj region
[58] and also we need to exclude the diffractive minimum,
the kinematic range of 0.01 < jtj < 0.45 GeV2 and
10 GeV <

ffiffiffi
s

p
≤ 13 TeV is considered. The experimental

data, to which we compare our calculations, are taken from
Refs. [59–73] and Refs. [60,74–79] for the pp and pp̄

scattering, respectively. For display purpose we split the
results for the pp scattering into two figures. The pp
results for the kinematic range of 10 <

ffiffiffi
s

p
< 30 GeV are

shown in Fig. 5. Except for the result at
ffiffiffi
s

p ¼ 15.1 GeV,
it can be seen that overall our calculations are consistent
with the data. The results for 30 GeV <

ffiffiffi
s

p
≤ 13 TeV are

displayed in Fig. 6. A quite wide
ffiffiffi
s

p
range is covered in

this figure, but it is found that our model well describes
the data. Even so, some deviations at jtj ∼ 0.4 GeV2 can be
seen especially for the results in the TeV scale, which may
imply the applicable limit of the present model. The results
for the pp̄ scattering are presented in Fig. 7. Similar to the

FIG. 6. The differential cross section of the pp scattering as a function of jtj for 30 GeV <
ffiffiffi
s

p
≤ 13 TeV. The dashed curves represent

our calculations, and the experimental data are depicted by stars with error bars.
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FIG. 7. The differential cross section of the pp̄ scattering as a function of jtj for ffiffiffi
s

p
> 30 GeV. The dashed curves represent our

calculations, and the experimental data are depicted by stars with error bars.

FIG. 8. The differential cross section of the pp (left) and pp̄ (right) scattering as a function of jtj for various ffiffiffi
s

p
. The dashed and dotted

curves represent our calculations and the results obtained by Donnachie and Landshoff [80], respectively.
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pp case, it is found that overall our calculations are
consistent with the data in the wide

ffiffiffi
s

p
range. Some

deviations at jtj ∼ 0.4 GeV2 can be seen for the result atffiffiffi
s

p ¼ 546 GeV, but the higher
ffiffiffi
s

p
results seem better.

Finally, for several values of
ffiffiffi
s

p
we present in Fig. 8

comparisons for the pp and pp̄ differential cross sections
between our predictions and the results obtained by
Donnachie and Landshoff [80], in which both the
Pomeron and Reggeon contributions are taken into
account. It can be seen that our results are consistent with
theirs in the considered kinematic region. As to the
Reggeon trajectory, the resulting intercept and slope of
this work are quite close to those in their work. However,
our slope of the Pomeron trajectory is somewhat different
from theirs, which is reflected in the slightly different t
dependence between our calculations and their results.

IV. CONCLUSION

We have investigated the elastic pp and pp̄ scattering in
a holographic QCD model, taking into account both the
Pomeron and Reggeon exchanges in the Regge regime. In
our model setup, the Pomeron and Reggeon exchanges are
described by the Reggeized spin-2 glueball and vector
meson propagators, respectively. Combining the proton-
vector meson and proton-glueball couplings with those
propagators, the scattering amplitudes are obtained. We
have explicitly presented the energy dependence of the
Pomeron and Reggeon exchange contributions, focusing on
the contribution ratios, from which we have found that it is
important to consider the Reggeon exchange contribution,
unless the energy is high enough.
There are several parameters in the model, but the ones

associated with the Pomeron exchange have already been
determined in the previous work [43]. Hence we have
performed the numerical evaluations with only three
adjustable parameters, which are determined with the
experimental data of the total cross section for the pp

and pp̄ scattering. We have shown that the resulting total
cross sections are in agreement with the data in a wide
kinematic region. Then it has been presented that our
predictions for the differential cross sections are also
consistent with the data in the forward region for a wideffiffiffi
s

p
range.

Through this study, we have found that we can well
describe the forward pp and pp̄ scattering in the much
wider kinematic region, compared to the previous work.
Since the results presented in this paper imply that the
present model may have the strong predictive power for the
various hadron-hadron forward scattering processes, fur-
ther studies are certainly needed. Also, future directions
include applications to other high energy scattering proc-
esses, such as deep inelastic scattering or photoproduction
of vector mesons. To realize these, it is obvious that the
conventional soft Pomeron with the constant intercept is
not enough. However, recently the authors of Ref. [81] have
shown that the soft to hard Pomeron transition can be
described with a scale-dependent Pomeron obtained in
holographic light-front QCD. It is important to describe the
energy scale dependence of the Pomeron intercept within
the present model, which will make further applications
possible. Finally, more experimental data are necessary to
better constrain the model. It is expected that future
experiments of high energy hadron scattering will help
to deepen our understandings of the nonperturbative nature
of the strong interaction.
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