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Recently, the definitions of the Kimber-Martin-Ryskin-Watt (KMRW) unintegrated parton densities
(UPDFs) have been discussed by several groups. In the first part of this manuscript, we remind the reader
about the issues encountered with these definitions and discuss the proposed solutions. In our opinion, none
of these solutions is fully satisfactory. We observe that these issues seem to be related to the normalization
condition where the UPDFs are related to the collinear PDFs by an integration over transverse momentum
cut off by the factorization scale. Then, we build a modified version of the angular-ordering KMRW
UPDFs, obeying the normalization condition with the transverse momentum integrated up to infinity and
show that the usual issues are absent.

DOI: 10.1103/PhysRevD.107.014015

I. INTRODUCTION

Transverse-momentum-dependent parton distribution
functions (TMD PDFs) play a central role in the description
of two-scale observables and provide valuable information
on the proton internal dynamics. The TMD PFDs appear in
the TMD factorization [1–4] proven to all orders for several
processes, and in the high-energy factorization [5–9]. In the
latter, TMD PDFs are called unintegrated PDFs (UPDFs),
and the cross section is obtained by the convolution of these
functions with off-shell cross sections. For hadron-hadron
collisions, we have

dσ
dx1dx2d2pt

ðs; x1; x2; ptÞ

¼
X
a;b

Z
k2t;max

0

d2k1td2k2tFa=hðx1; k1t; μÞ

× Fb=hðx2; k2t; μÞσ̂ðx1x2s; k1t; k2t; pt; μÞ; ð1Þ

with Fa=h the UPDFs for flavor a ¼ q; q̄; g, x the fraction of
the hadron longitudinal momentum carried by the parton, kt
the initial-parton transverse momentum, and μ the factori-
zation scale. The upper limit of integration is typically given
by k2t;max ∼ s, with

ffiffiffi
s

p
the center-of-mass energy of the

collision.

A convenient and widely used set of UPDFs is obtained
with the Kimber-Martin-Ryskin-Watt (KMRW) approach
[10,11], whose starting point is the relation

f̃aðx; μÞ ¼
Z

μ2

0

Faðx; kt; μÞdk2t ; ð2Þ

with f̃aðx; μÞ ¼ xfaðx; μÞ and faðx; μÞ the collinear PDFs.
The final result of the definitions of the UPDFs is given in
[11].1 The differential form of these UPDFs reads

Faðx; kt; μÞ ¼
∂

∂k2t
½Taðkt; μÞf̃aðx; ktÞ�; kt ≥ μ0; ð3Þ

Faðx; kt; μ2Þ ¼
1

μ20
Taðμ0; μÞf̃aðx; μ0Þ; kt < μ0; ð4Þ

where μ0 ∼ 1 GeV and Ta is the Sudakov form factor

Taðkt; μÞ ¼ exp

�
−
Z

μ2

k2t

dq2

q2
αsðq2Þ
2π

×
X
b

Z
zmax
ab ðq;μÞ

zmin
ab ðq;μÞ

dz zP̂baðzÞ
�
: ð5Þ

P̂ba are the unregularized splitting functions. Some of these
functions have divergences which are regularized by the
cutoffs zmin

ab and zmax
ab , with zmin

ab either equal to 0 or 1 − zmax
ab

[11]. Note that in the above definition, the cutoffs should not
depend on kt [12,13]. In that case, using
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∂Taðkt;μÞ
∂ ln k2t

¼ αsðk2t Þ
2π

Taðkt;μÞ
X
b

Z
zmax
ab ðkt;μÞ

zmin
ab ðkt;μÞ

dzzP̂baðzÞ ð6Þ

and the cutoff-dependent Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equation

∂f̃aðx; μ; zmax
ab Þ

∂ ln μ2
¼

X
b

αsðμ2Þ
2π

�Z
zmax
ab

x
P̂abðzÞf̃b

�
x
z
; μ

�

× dz − f̃aðx; μÞ
Z

zmax
ab

zmin
ab

zP̂baðzÞdz
�
; ð7Þ

we can write Eq. (3) in its integral form

Faðx; kt; μÞ ¼
αsðk2t Þ
2π

Taðkt; μÞ
k2t

X
b

Z
zmax
ab ðkt;μÞ

x

× dz P̂abðzÞf̃a
�
x
z
; kt

�
: ð8Þ

Note that in Eq. (8), and contrary to Eq. (5), the cutoffs
depend on kt. This expression is equal to those given in [11],
albeit a more general notation for the cutoffs. With the
angular-ordering (AO) cutoffs, we have

zmax
gg ¼ zmax

qq ¼ μ

μþ kt
; zmax

gq ¼ zmax
qg ¼ 1; ð9Þ

zmin
gg ¼ 1 − zmax

gg ; zmin
qq ¼ zmin

gq ¼ zmin
qg ¼ 0: ð10Þ

In Sec. II A, we remind the reader of some issues related to
the integral definition of the KMRWUPDFs and present in
Sec. III two proposed solutions. We argue that none of
these solutions are fully satisfying. In Sec. IV, we observe

that UDPFs obeying the normalization condition Eq. (19)
instead of Eq. (2) seem free of these issues. Our main result
is given in Sec. V, where we build KMRW-like UPDFs
with normalization (19). We show that these modified
KMRW (MKMRW) UPDFs are free of any of the issues
listed Sec. II B.

II. TROUBLES WITH THE KMRW FORMALISM

A. Integral definition

A first issue with the integral definition is that the
normalization condition (2) is not always fulfilled. A
second issue is that the two definitions, Eqs. (3) and (8),
are, in general, not equivalent. These problems have
already been discussed in the literature [12–15].
The first reason explaining the nonequivalence of

Eqs. (3) and (8) is that the Sudakov factor does not fulfill
the condition on kt; see Eq. (5) and the discussion below.
Indeed, the condition Ta ¼ 1 if kt > μ is imposed to avoid
a Sadukov factor larger than 1. Then, the actual expression
for the Sudakov factor is

Taðkt; μÞ ¼ Θðμ2 − k2t Þ exp
�
−
Z

μ2

k2t

dq2

q2
αsðq2Þ
2π

×
X
b

Z
zmax
ab ðq;μÞ

zmin
ab ðq;μÞ

dz zP̂baðzÞ
�
þ Θðk2t − μ2Þ;

ð11Þ

which has an additional dependence on kt compared to
Eq. (5). Starting from the definition Eq. (3) and using the
cutoff-dependent DGLAP equation (7), we arrive at [13]

Faðx; kt; μÞ ¼
αsðk2t Þ
2πk2t

�
Taðkt; μÞ

X
b

Z
zmax
ab ðkt;μÞ

x
dzP̂abðzÞf̃a

�
x
z
; kt

�

−Θðk2t − μ2Þf̃aðx; ktÞ
X
b

Z
zmax
ab ðkt;μÞ

zmin
ab ðkt;μÞ

dz zP̂baðzÞ
�
: ð12Þ

Compared to Eq. (8), we see that the correct expression has
a new term accompanied by a step function.
The cutoff zmax

ab should be close to 1 such that
ð1 − zmax

ab Þ ∼OðΛQCD=μÞ, with μ of the order of the hard
scale. Indeed, the collinear PDFs in Eq. (3) obey the exact
DGLAP equation. However, we used the cutoff-dependent
DGLAP equation to obtain Eqs. (8) and (12). It is known
that the cutoff-dependent and exact DGLAP equation are
equal up to corrections of order Oð1 − zmax

ab Þ; see, for
instance, [16]. Consequently, a second reason for the
nonequivalence of the two definitions is the use of a cutoff
outside the region ð1 − zmax

ab Þ ∼OðΛQCD=μÞ, which is the

case for the KMRW UPDFs. This last point is directly
related to the violation of the normalization condition (2) by
the integral definition.

B. Complete list of issues

Another issue related to the normalization condition (2)
is that the tail (kt > μ) of the distribution is unconstrained
but does contribute to the cross section. It opens the
possibility for two distributions (built at the same order
and with the same scheme) obeying Eq. (2) to give a quite
different result for the cross section. For instance, the AO
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KMRW UPDFs strongly overestimates the D-meson cross
section [13,17]. To show this explicitly, we have imple-
mented the AO KMRW UPDFs following exactly
Ref. [11]. We check our implementation by plotting the
left- and right-hand sides of Eq. (2) in Fig. 1. We observe a
good agreement between the full and dashed lines at
x ¼ 10−3. However, as discussed earlier, Eq. (2) is not
always obeyed by the KMRW UPDFs, in particular, at
large x; see also Ref. [15]. In a variable-flavor-number
scheme, the two main contributions toD-meson production
are given by the gg → cc̄ and cg → cg processes. While
good results have been recently obtained with a modified
version of the strong-ordering KMRW UPDFs [18], we
demonstrate in Fig. 2 that with the AO KMRW UPDFs the
cg → cg process already overestimates the D-meson cross
section. The calculation is performed with the KATIE event

generator [19] with the same setup as Ref. [18]. We used
the Peterson fragmentation function [20] with ϵc ¼ 0.05.
To summarize, the issues of the KMRW formalism are
(1) Sudakov factor larger than 1.
(2) UPDFs unconstrained by Eq. (2) in the region

kt ∈ ½μ;∞�.
(3) Overestimation of the D- and B-meson cross section

(only for the AO cutoff).
(4) Divergences associated with the use of the light-cone

gauge. We will discuss this point in Sec. V.
(5) Step behavior at kt ¼ μ0 due to Eq. (4).
(6) Nonequivalence of the differential and integral

definitions (and its consequences; e.g., the integral
definition does not have exact normalization).

In Sec. III, we review quickly some solutions to the last
two issues listed above. In Sec. V, we argue and demon-
strate with an explicit example that a modification of the
normalization condition solves all of them.
A clue that the third point of the above list can be solved

by changing the normalization can be found in Fig. 1. Here,
the dotted lines correspond to the AO KMRW UPDFs of
Ref. [11] integrated up to infinity. The observation that they
overshoot the CTEQ14 PDFs explains the overestimation
of the D-meson cross section. Having the UPDFs inte-
grated up to infinity to agree with the collinear PDFs should
solve this issue.

III. PROPOSED SOLUTIONS TO THE
NONEQUIVALENCE OF THE DIFFERENTIAL

AND INTEGRAL DEFINITIONS

The main goal of the first paper [15] presented in this
section is to provide a solution to point 6 of the above list.
The second paper focuses on Drell-Yan data. It proposes
a modification of the KMRW formalism solving points
5 and 6.

A. Cutoff-dependent PDFs

We have seen that the differential and integral definitions
are not equivalent if zmax

ab is not sufficiently close to 1. The
authors of Ref. [12] proposed using cutoff-dependent PDFs
in Eq. (3). In that case, the use of the cutoff-dependent
DGLAP equation is justified for all zmax

ab . More recently, the
authors of Ref. [15] showed that a good numerical agree-
ment between the differential and integral definitions is
obtained if one combines the conditions of Refs. [12,13],
i.e., cutoff-dependent PDFs, and Eq. (12) instead of
Eq. (8).2 In that case, the UPDFs obey the normalization
condition

FIG. 1. Full and dashed lines correspond to the left- and right-
hand sides of Eq. (2), respectively. The dotted lines correspond to
the case where the same UPDFs are integrated up to infinity
instead of μ2.

FIG. 2. dσðcg → D0 þ XÞ=dpt compared to ALICE data [21]
at

ffiffiffi
s

p ¼ 7 TeV. The red line has been obtained with the AO
KMRW UPDFs presented in Fig. 1, the blue line with the parton-
branching UPDFs.

2While we found Ref. [15] interesting, we do not fully agree
with the claim that the only difference between the KMR [10,22]
and Watt-Martin-Ryskin (WMR) [11] approaches is the use of
the cutoffs. The differences between these two formalism are
discussed in the Appendix.
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f̃aðx; μ; zmax
ab Þ ¼

Z
μ2

0

Faðx; kt; μÞdk2t ; ð13Þ

with f̃aðx; μ; zmax
ab Þ the cutoff-dependent PDFs. Here, zmax

ab
can take any value between 0 and 1. The usefulness of these
functions is not clear, and we haveZ

1

0

dx f̃dvalðx; μ; zmax
ab Þ ≠ 1 ð14Þ

for the proton. In our opinion, the use of cutoff-dependent
PDFs is not satisfying.

B. x-dependent Sudakov factor

Nefedov and Saleev proposed a modified version of the
KMRW UPDFs. In [14], the UPDFs obey exactly Eq. (2)
but Eq. (4) for kt < μ0 is apparently not used.3 In this case,
we see from the differential definition, Eq. (3), that the
Sudakov factor should obey Taðkt ¼ μ; μ; xÞ ¼ 1 and
Taðkt ¼ 0; μ; xÞ ¼ 0. We have anticipated that Ta will
depend on the longitudinal momentum fraction x. The
method used by the authors of Ref. [14] is to fix the integral
definition

Faðx; kt; μÞ ¼
αsðk2t Þ
2π

Taðkt; μ; xÞ
k2t

X
b

Z
Δðkt;μÞ

x

× dz P̂abðz; ktÞf̃a
�
x
z
; kt

�
; ð15Þ

and ask the exact equivalence with the differential form
Eq. (3) [with Taðkt; μÞ replaced by Taðkt; μ; xÞ]. They
obtained a differential equation for the Sudakov factor with
the solution [14]

Taðkt; μ; xÞ ¼ exp

�
−
Z

μ2

k2t

dq2

q2
αsðq2Þ
2π

ðτaðq2; μ2Þ

þ Δτaðq2; μ2; xÞÞ
�
; ð16Þ

where

τaðq2; μ2Þ ¼
X
b

Z
Δðq;μÞ

0

dzzPbaðzÞ; ð17Þ

Δτaðq2; μ2; xÞ ¼
X
b

Z
1

Δðq;μÞ
dz

�
z PbaðzÞ

−
f̃aðxz ; qÞ
f̃aðx; qÞ

PabðzÞΘðz − xÞ
�
: ð18Þ

Several comments are in order. They used the exact DGLAP
equation, so their result is valid for allΔðkt; μÞ. For practical
use, an equation similar to Eq. (4) is still required. Indeed,
both Eqs. (15) and (16) depend on f̃aðx; ktÞ, unknown for
kt < μ0. Finally, nothing prevents the Sudakov factor
defined in Eq. (16) from being larger than 1 for kt > μ.
We cannot use the trick of Eq. (11) because a modification
of Eq. (16) would break the equivalence of the differential
and integral definitions. Note, however, that we could
stop interpreting the Sudakov factor Eq. (16) as a proba-
bility, and interpret it as a function with the appropriate
behavior to make the differential and integral form of the
UPDFs equivalent.

IV. INTERLUDE: THE PARTON-BRANCHING
APPROACH

It is interesting to look at the parton-branching (PB)
approach [16,23], where UPDFs obey the normalization
condition:

f̃aðx; μÞ ¼
Z

∞

0

Faðx; k; μÞ
π

d2k: ð19Þ

Integrating up to infinity solves several issues. For instance,
the normalization condition (2) does not constrain the
UPDFs in the region kt > μ [13]; see also [17,24].
However, in the calculation of the cross section, the kt
integration is done up to values much larger than μ. In other
words, the unconstrained part of the UPDFs contributes to
the cross section. Then, the overestimation of the D-meson
cross section by the AO KMRWUPDFs is not necessarily a
surprise; see Fig. 2.
In the PB approach, the cutoff-dependent DGLAP equa-

tion is given by Eq. (7), with zmin
ab ¼ 0 and zmax

ab ¼ zM.
UPDFs obeying Eq. (19) are obtained by solving an integro-
differential equation

∂Faðx; k; μ; zMÞ
∂ ln μ2

¼
X
b

αsðμ2Þ
2π

�Z
zMðμÞ

x
P̂abðzÞFb

×

�
x
z
; kþ k0ðμ; zÞ; μ; zM

�
dz

− Faðx; k; μ; zMÞ
Z

zMðμÞ

0

z P̂baðzÞdz
�
;

ð20Þ

which, once integrated over kt, gives the cutoff-dependent
DGLAP equation. The cutoff-dependent and exact
DGLAP equations are equivalent, up to correction of order
Oð1 − zMÞ [16], and one should consequently choose zM
close to 1.

3Here, we comment on Sec. III of Ref. [14]. Later, the
definition of the UPDFs is modified further, but this modification
is irrelevant to the present discussion.
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A. Comment on the zM dependence
of the parton-branching UPDFs

The authors of Ref. [16] observed that with the angular-
ordering relation

k0 ¼ ð1 − zÞμ; ð21Þ

the UPDFs are independent of zM, for zM in the region
ð1 − zMÞ ∼OðΛQCD=μÞ. It is not the case with the trans-
verse-momentum ordering

k0 ¼ μ: ð22Þ

This observation can be simply explained (here and in the
following, we take zM constant). We start by studying the

zM dependence of the collinear PDFs f̃aðx; μ; zMÞ by taking
the derivative of Eq. (7)

∂f̃aðx; μ; zMÞ
∂ ln μ2∂zM

¼
X
b

αsðμ2Þ
2π

�
P̂abðzMÞf̃b

�
x
zM

; μ

�
dz

− f̃aðx; μÞzMP̂baðzMÞdz
�
: ð23Þ

Consider the case a ¼ g. At zM ¼ 1, the two terms
involving P̂gg cancel exactly. Using the large z expansion

f̃b

�
x
z
;μ

�
¼ f̃bðx;μÞþð1− zÞ∂f̃bðx;μÞ

∂ lnx
þOð1− zÞ2; ð24Þ

we find

2π

αsðμ2Þ
∂f̃gðx; μ; zMÞ
∂ ln μ2∂zM

¼ ð1 − zMÞP̂ggðzMÞ
�
f̃gðx; μÞ þ

∂f̃gðx; μÞ
∂ ln x

�

þ
X
i¼q;q̄

P̂giðzMÞf̃i
�

x
zM

; μ

�
− zMP̂igðzMÞf̃gðx; μÞ: ð25Þ

The factor ð1 − zMÞ cancels the divergence in P̂gg. Thus, the rhs of Eq. (25) is finite. Consequently, a small variation of zM in
the region ð1 − zMÞ ∼OðΛQCD=μÞ implies a small change for f̃a. A similar conclusion is obtained for f̃q.
Following the same procedure for Eq. (20), we find

2π

αsðμ2Þ
∂Fgðx; k; μ; zMÞ

∂ ln μ2∂zM
¼ P̂ggðzMÞ

�
Fgðx; kþ k0; μ; zMÞþð1 − zMÞ

∂Fgðx; kþ k0; μ; zMÞ
∂ ln x

�
− zMP̂ggðzMÞFgðx; k; μ; zMÞ þ � � � ; ð26Þ

where the dots include the finite contributions from P̂ig and
P̂gi. We observe that, because of k0, it is not possible
anymore to factorize ð1 − zMÞ in front of Fg, and the
divergence in P̂gg is not canceled. It is the infrared
divergence discussed in [25]. While it is regularized with
a subtraction method in [25], the strategy of the PB
approach is to make a specific choice for k0. Using

k0 ¼ ð1 − zÞdA; ð27Þ

with d ≥ 1 and A a finite two-dimensional vector, and
doing an expansion of Fgðx; kþ k0; μ; zMÞ around k, we see
that the rhs of Eq. (26) is free of divergences

2π

αsðμ2Þ
∂Fgðx; k; μ; zMÞ

∂ ln μ2∂zM
¼ ð1 − zMÞP̂ggðzMÞ

�
Fgðx; k; μ; zMÞ þ ð1 − zMÞd−1A:∇kFgðx; k; μ; zMÞ

þ ∂Fgðx; kþ k0; μ; zMÞ
∂ ln x

�
þ � � � ð28Þ

While the angular-ordering condition has the appropriate
form, with d ¼ 1 and A ¼ μ, the transverse-momentum
condition does not, explaining the observed dependence of
the UPDFs with zM.

V. MODIFIED KMRW UPDFs

We gave some phenomenological arguments in favor of
the normalization condition (19), in particular, those related
to the D-meson cross section. Another clue is that the PB
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formalism does not encounter the issues listed in Sec. II B.
Finally, we remind the reader that while the PDFs UV
divergences in the integral over all kT can be managed with
a cutoff, as in Eq. (2), the preferred choice is the use of
renormalization. In that case, the integration over all kT is
kept, and the UV divergences are subtracted. The second
choice is generally preferred because the PDFs defined
with a cutoff have divergences related to the use of the
light-cone gauge; see [4,26,27] for an extended discussion.
Consequently, we build a modified version of the AO
KMRW UPDFs with normalization (19) and show that
none of the issues mentioned in Sec. II B are present. We
will refer to these distributions as MKMRW UPDFs.

A. Differential and integral definitions

We start with the differential definition

Faðx; kt; μÞ ¼
∂

∂k2t
½Taðkt; μÞf̃aðx; μÞ�; ð29Þ

where the argument of the collinear PDFs is μ rather than
kt. This is necessary to avoid the unknown and unphysical
values f̃aðx;∞Þ and f̃aðx; 0Þ. This modification is also
required by the DGLAP equation; see Sec. V B. The reason
for changing the comma to a semicolon in Taðkt; μÞ is
explained after Eq. (32). With the normalization (19), the
Sudakov factor should obey

Tað∞; μÞ − Tað0; μÞ ¼ 1: ð30Þ

The minimal modification of the Sudakov factor is

Taðkt;μÞ¼ exp

�
−
Z

∞

k2t

dq2

q2
αsðq2Þ
2π

X
b

Z
Δðq;μÞ

0

dzzP̂baðzÞ
�
;

ð31Þ

with the AO cutoff

Δðq; μÞ ¼ μ

μþ q
: ð32Þ

The main change is the replacement of μ2 by ∞ for the
upper limit of integration, similar to the change made in
the normalization condition going from Eq. (2) to Eq. (19).
A secondary but necessary change is that a cutoff is used
for all splitting functions. In principle, the cutoff could
depend on the splitting function, but for simplicity, we
always use the same expression Eq. (32). Note that
Eq. (31) solves the issue of Sudakov factors larger than
1. We change the notation in Taðkt; μÞ to clarify that the
integral runs between k2t and ∞. However, this function
still depends on μ through the AO cutoff.

The integral on z can be done analytically, leading to

Z
Δ

0

dzzP̂qq ¼ −CF

�
Δ3

3
þΔ2

2
þ 2½Δþ lnð1−ΔÞ�

�
; ð33Þ

Z
Δ

0

dz zP̂gq ¼ CF

�
2Δ − Δ2 þ Δ3

3

�
; ð34Þ

Z
Δ

0

dz zP̂qg ¼ TR

�
2Δ3

3
− Δ2 þ Δ

�
; ð35Þ

Z
Δ

0

dz zP̂gg ¼ −2CA

�
Δ2 −

Δ3

3
þ Δ4

4
þ lnð1 − ΔÞ

�
: ð36Þ

We see that the Sudakov factor has the desired property,
Eq. (30). Indeed, Tað∞; μÞ ¼ 1 and Tað0; μÞ ¼ 0.
Moreover, the Sudakov factor is larger than 0 for
0 < kt < ∞. This is true thanks to the cutoff Δ which
brings powers of ðμþ qÞ−n with n > 0. For instance, in the
limit q ≫ μ, and using the Taylor expansion of the
logarithm, Eq. (33) gives CFμ

2=ð2q2Þ. Taking the deriva-
tive in Eq. (29), we find the integral form of the MKMRW
UPDFs

Faðx; kt; μÞ ¼
αsðk2t Þ
2πk2t

Taðkt; μÞf̃aðx; μÞ

×
X
b

Z
Δðkt;μÞ

0

dz zP̂baðzÞ: ð37Þ

This equation has a simple interpretation in terms of parton
branching. We discuss this point in detail in Sec. V D and
compare with the usual KMRW formalism. To avoid the
Landau pole, we use a saturated form of the coupling
constant [28]

αsðQ2Þ ¼ min

"
12π

ð33 − 6Þ lnð Q2

λ2QCD
Þ
; 0.4

#
: ð38Þ

The result of Eq. (37) is compared to the AO KMRW and
PB UPDFs in Fig. 3. As expected, we observe that the
MKMRW result is generally below the AO KMRW line.
Before discussing Fig. 3 in more detail, we demonstrate
that the MKMRW UPDFs have the correct normalization
by plotting Eq. (19); see Fig. 4. We observe a perfect
agreement between the full and dotted lines. An unusual
(but not necessarily surprising) feature of Fig. 3 is the
maximum at k2t ∼ 1 GeV2 for μ2 ¼ 103 GeV2. Finally, we
observe that the shape of the AO KMRW and MKMRW
UPDFs is similar for k2t > μ20. Consequently, the shape is
not related to the normalization condition but to the
evolution equation.
In conclusion, the MKMRW UPDFs solve all the issues

mentioned in Sec. II B. In particular, the differential and
integral definitions are equivalent, the UPDFs have exact
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normalization, and the D-meson cross section is no more
overestimated by the cg → cg process. Indeed, in Fig. 5 we
show the result obtained including all flavor-excitation and
flavor-creation contributions to D-meson production. Note
that the slight overestimation at pt ∼ 30 can easily be
accommodated by a small increase of the fragmentation
parameter ϵc. We did not change this parameter to make the
comparison with Fig. 2 and Ref. [18] straightforward.

B. DGLAP equation

Taking the derivative of Eq. (19) with respect to μ2 and
using the differential definition Eq. (29) gives

df̃aðx; μÞ
dμ2

¼
Z

∞

0

∂

∂k2t

�
d
dμ2

Taðkt; μÞf̃aðx; μÞ

þ Taðkt; μÞ
d
dμ2

f̃aðx; μÞ
�
dk2t : ð39ÞFIG. 4. Comparison of CT14 PDFs (full lines) with integrated

MKMRW UPDFs (dashed lines) based on Eq. (19).

FIG. 3. Comparison of PB (dashed line) and AO KMRW unintegrated gluons (dotted line) with Eq. (37) (full line).
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Using Eq. (30), the second term gives the exact DGLAP
equation. It is straightforward to show that the first term
gives zero. We conclude that changing kt by μ in the
differential definition Eq. (29) is imposed by the DGLAP
equation.
Note that we can use any scale in the cutoff of the

Sudakov factor, for instance,

Faðx; kt; Q; μÞ ¼ αsðk2t Þ
2πk2t

Taðkt;QÞf̃aðx; μÞ

×
X
b

Z
Δðkt;QÞ

0

dz zP̂baðzÞ; ð40Þ

withQ the hard scale. It will not introduce a dependence on
a new scale in the collinear PDFs since

d
dQ

f̃aðx; μÞ ¼
Z

∞

0

∂

∂k2t

�
d
dQ

Taðkt;QÞf̃aðx; μÞ
�
dk2t ¼ 0:

ð41Þ

The form given in Eq. (40) is compatible with the leading-
log approximation of the TMDs, with an example given by
Eq. (13.85) of Ref. [4] for fragmentation functions. In
particular, the Sudakov factor is a function of kt and Q,
while the dependence on the factorization scale is entirely
in the collinear functions.

C. Comparison with the Collins-Soper-Sterman
formalism

In [14], the authors showed that the KMRW Sudakov
factor gives the typical (double) logarithms of the Collins-
Soper-Sterman (CSS) formalism [29] with the correct
leading-log coefficients. This conclusion is unchanged for

the modified Sudakov factor (31) since the large logarithms
rise from the lower bound of integration. We perform the
explicit calculation for the quark Sudakov factor where

X
b

Z
Δðq;μÞ

0

dz zP̂bq ¼ −CF

�
3

2
Δ2 þ 2 lnð1 − ΔÞ

�
: ð42Þ

The integral on q can be performed exactly with the term
proportional to Δ2 given by

αs
2π

3

2
CF

Z
∞

k2t

dq2

q2

�
μ

μþ q

�
2

¼ αs
π

3

2
CF½−x − lnð1 − xÞ�

μ
μþkt
0

ð43Þ

¼ 3αs
4π

CF

�
ln

�ðμþ ktÞ2
k2t

�
−

2μ

μþ kt

�
: ð44Þ

For kt ≪ μ, this contribution is dominated by lnðμ2=k2t Þ
with the coefficient found in [14]. Integrating up to μ2

instead of ∞ leads to the replacement 0 → 1=2 in Eq. (43).
We see that the exponent of the usual and modified Sudakov
factor differs only by a finite term, while the logarithmic
structure is untouched.
The integration of the term proportional to lnð1 − ΔÞ

reads

αs
π
CF

Z
∞

k2t

dq2

q2
ln

�
q

qþ μ

�

¼ 2αS
π

CF

�
Li2ð1 − xÞ þ ln2ðxÞ

2

�
1

kt
ktþμ

ð45Þ

¼ −
αs
4π

CF ln2
�ðkt þ μÞ2

k2t

�
þ finite terms: ð46Þ

The coefficients of the single- and double-logarithmic
terms coincide with those of the CSS formalism.4

D. Parton-branching interpretation

In the KMRW formalism, UPDFs are built in two steps.
The idea was to use a single-scale evolution equation and
introduce the second scale μ at the last step of evolution
through the Sudakov factor Taðkt; μÞ. The interest is a
formalism simpler than those for realistic two-scale evo-
lution. In Ref. [10], the two steps are
(1) Evolution up to scale kt. At this point, the parton

transverse momentum is also kt.
(2) No splitting between scales kt and μ implemented

with the Sudakov factor Taðkt; μÞ.

FIG. 5. D-meson production obtained with the MKMRW
UPDFs and the event generator KATIE. The calculation includes
flavor-excitation and flavor-creation contributions (gg → cc̄þ
qq̄ → cc̄þ ac → ac, with a any light parton).

4The KMR Sudakov factor has to be compared with the square
root of the CSS Sudakov factor.
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The main issue is that this reasoning assumes kt < μ.
However, kt can be infinite or at least reach large values
such as

ffiffiffi
s

p
; see Eq. (1). Then, Taðkt; μÞ does not prevent

new emissions between μ and ∞. Instead, the modified
Sudakov factor presented in Eq. (31) does. This incon-
sistency is directly related to some of the issues mentioned
in this manuscript, e.g., to the Sudakov factor larger than 1.
It can be solved by changing the usual KMRW normali-
zation condition by Eq. (19).
With the MKMRW UPDFs, steps 1 and 2 are reversed:
(1) An initial parton evolves collinearly with the

DGLAP equation up to scale μ.
(2) Then, a single splitting generates the transverse

momentum kt.
The initial-parton-number density at scale μ is given by
f̃ðx; μÞ. The probability for a splitting with transverse
momentum kt is

αs
2πk2t

R
dzPðzÞ. Finally, the condition of a

single splitting is imposed by the probability of no emission
between scales kt and ∞, i.e., by the Sudakov factor
Eq. (31). These three factors together lead to Eq. (37).5

Some additional comments on Eq. (37) are in order. In
principle, the final splitting, step 2, should change the
values of both x and μ. Note, however, that in the
perturbative region, TMD PDFs are related to collinear
PDFs by [30]

Fj=hðx;bt;ζ;μÞ ¼
X
k

Cj=kðx=z;bt;ζ;μÞ⊗ fðz;μÞdz
z
; ð47Þ

where bt is the conjugate variable of kt and ζ a scale
irrelevant to present discussion. The coefficients Cj=k are
perturbatively calculable, with the leading order propor-
tional to δjkδðx=z − 1Þ. To leading order, having x on
the rhs and lhs of Eq. (37) is then not surprising. It can be
explained by the fact that for kt < μ, the factorRΔðkt;μÞ zPðzÞdz is dominated by large z.
Something similar happens to the factorization scale. In

principle, the argument of the UPDFs should be μ2 þ δμ2,
but a bit of kinematics shows that δμ2 ≪ μ2 for kt ≪ μ2.
Equation (37) is then consistent, but accurate mainly in

the region kt < μ. The last point is also true for the usual
KMRW UPDFs. We have seen that they have been built
assuming kt < μ, and that the normalization condition (2)
does not constrain the distribution in the region kt > μ. In
other words, none of these distributions should be taken too
seriously at large kt. It is interesting to note that realistic
two-scale evolution equations, like those used by the PB
and CCFM formalisms, lead to a fast decrease of the

distribution with kt in the region kt > μ; see [31] for a
recent work with the CCFM-K formalism.
The main difference between the usual and modified

KMRW UPDFs is not the behavior in the region kt > μ
(see Fig. 3), but the fact that the latter is free of all the
issues mentioned in Sec. II B. It is directly related to the
choice of normalization condition and Sudakov factor.
The latter should prevent new emissions in the region
½kt;∞� and be smaller than 1. These conditions are fulfilled
by Eq. (31).

E. Dependence of UPDFs with kt
A comparison of Fig. 5 with the results of Ref. [18]

shows that the PB and strong-ordering KMRW UPDFs
give slightly better results forD-meson production than the
mKMRW UPDFs. It could indicate that the kt dependence
of these functions should be preferred, in agreement
with the discussion in Sec. V D. However, we should be
careful with this conclusion. Here, the main issue is the
underestimation of experimental data at small transverse
momentum. It is known from event generators that realistic
calculations should include a spacelike cascade6 which
gives a significant contribution precisely in this kinemati-
cal region. In principle, another observable giving infor-
mation on the kt shape of UPDFs is the azimuthal
correlations of QQ̄ pairs. Most studies focus on the
azimuthal correlations of the heavy-quark pairs produced
by the gluon fusion process, assuming this is the main
contribution. In fact, in a variable-flavor-number scheme,
the cg → cg process gives the main contribution at
intermediate and large pt, and a c̄ is emitted by the
spacelike cascade. Then, a realistic study of heavy-quark
azimuthal correlations requires again the use of an
event generator taking into account all flavors, even in
the perturbative evolution. Recently, the authors of
Ref. [32] showed that the azimuthal correlation between
two jets is sensitive to the kt distribution.
Concerning the MKMRW UPDFs, we can change the

shape of the distribution by playing with the definition of
the cutoff. For instance,

Δðq; μÞ ¼ μ2

μ2 þ q2
ð48Þ

leads to the faster-decreasing distribution shown in Fig. 6.
We did not explore which cutoff gives the best result for the
D-meson cross section, as it is not the main focus of the
present work.5Note, however, that we kept the factor z in

R
dz zPðzÞ

introduced in Ref. [11]. It is not necessary, but our goal was
to propose a modification as close as possible of the Watt-Martin-
Ryskin paper.

6The spacelike cascade refers to the perturbative evolution
before the partonic hard scattering.
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VI. CONCLUSION

The standard angular-ordering KMRW UPDFs present
several issues: The differential and integral definitions are
not equivalent, the normalization condition (2) is not
exactly obeyed, and heavy-flavor production is overesti-
mated. The last point has nothing to do with heavy quarks;
the same will happen for the transverse-momentum dis-
tribution of any particle at intermediate pt. The overesti-
mation is due to the fact that the AO KMRWUPDFs are too
large, because the tail of the distribution, at kt > μ, is not
constrained by Eq. (2).
In Sec. V, we presented a modified version of the AO

KMRW UPDFs obeying normalization (19). We showed
that the differential and integral definitions are exactly
equivalent, Ta ≤ 1 for all kt, and D-meson production is
not overestimated anymore. The main effect of the change
of normalization is to rescale the distribution, while the
shape is not significantly affected. The definition proposed
in Sec. VA is not unique, in particular because there is a
freedom in the choice of the cutoff.
The main goal of the present work was not to build the

best UPDFs, but to show that the normalization condition
(2), together with the kt-factorization hypothesis Eq. (1),
generates several issues. However, we showed that our

proposition has the expected QCD properties of leading
order high-energy calculations: The dependence on μ in the
differential definition is imposed by the DGLAP equation,
and the modified Sudakov factor has the same single
and double logarithms as the CSS formalism. Finally,
the x-dependence of the MKMRW and KMRW UPDFs
is identical. It can be seen from Eqs. (3) and (29), where the
x-dependence of UPDFs is simply given by collinear PDFs.
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APPENDIX: DIFFERENCES BETWEEN
THE KMR AND WMR FORMALISMS

The usual references for the KMR andWMR formalisms
are [10,11]. In [15], the authors say that the only difference
between these two formalisms is the implementation of the
cutoff. This claim is not necessarily true since in [10] the
Sudakov factor is given by

Taðkt;μÞ ¼ exp

�
−
Z

μ2

k2t

dq2

q2
αsðq2Þ
2π

X
b

Z
1−Δ

0

dz P̂baðzÞ
�
:

ð49Þ

A comparison with Eq. (5) for WMR shows that the
integrand is different due to the factor z in front of the
splitting function. We will call Eqs. (5) and (49) the initial
definitions. The final, or explicit, definitions for Tq and Tg

are given in [11], but not in [10]. However, explicit
expressions for the KMR formalism can be found in
[22]. Surprisingly, the integrands are now the same in both
formalisms. But going from Eq. (49) to final expressions in
[22], manipulations such as

P
a Paq ¼ Pqq (instead of

Pqq þ Pgq) or
P

a Pag ¼ zPgg þ nfPqg are found. Since,
in the case of KMR, the initial and final expressions are not
equivalent, saying that the integrand of the Sudakov factor
is the same in both formalisms is then a matter of choice,
depending on what we consider to be the true definitions
(initial or final).
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