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Information on the phase structure of strongly interacting matter at high baryon densities can be gained
from observations of neutron stars and their detailed analysis. In the present work Bayesian inference
methods are used to set constraints on the speed of sound in the interior of neutron stars, based on recent
multimessenger data in combination with limiting conditions from nuclear physics at low densities. Two
general parametric representations are introduced for the sound speed cs in order to examine the
independence with respect to choices for the parametrization of priors. Credible regions for neutron star
properties are analyzed, in particular with reference to the quest for possible phase transitions in cold dense
matter. The evaluation of Bayes factors implies extreme evidence for a violation of the conformal bound,
c2s ≤ 1=3, inside neutron stars. Given the presently existing data base, it can be concluded that the
occurrence of a first-order phase transition in the core of even a two-solar-mass neutron star is unlikely,
while a continuous crossover cannot be ruled out. At the same time it is pointed out that the discovery of a
superheavy neutron star with a massM ∼ 2.3–2.4 M⊙ would strengthen evidence for a phase change in the
deep interior of the star.

DOI: 10.1103/PhysRevD.107.014011

I. INTRODUCTION

Neutron stars are among the most extreme objects in the
universe. The densities inside their cores far exceed those
reachable in terrestrial experiments, so that they provide a
unique window into the physics of strongly interacting
matter under extreme conditions [1,2].
For a long time the composition of neutron star interiors

has been subject to speculation. The situation changed
drastically when, via pulsar timing of (general relativistic)
Shapiro delays, several heavy neutron stars with masses
M ∼ 2M⊙ were discovered [3–8]. These observations set
severe constraints on the equation of state (EOS) in the
neutron star interior, since the pressure inside must be
sufficiently high to stabilize such heavy objects against
gravitational collapse. Further important information
came from the gravitational wave signals of binary
neutron star mergers observed by the LIGO and Virgo
Collaborations [9,10], with resulting constraints on their
tidal deformabilities. Moreover, the NICER telescope on
board the International Space Station measured the first
pulse profiles of hot spots on the surfaces of rapidly
rotating pulsars. From these, the combined mass and
radius of the corresponding two neutron stars could be
inferred [11–14]. Many more multimessenger data sam-
ples are expected to become available in the future.

In principle the physics of dense matter in the core of
neutron stars is governed by quantum chromodynamics
(QCD). At asymptotically high baryon densities far beyond
those encountered in neutron stars, with Fermi momenta in
the multi GeV range, weakly interacting quarks and gluons
are the relevant active degrees of freedom, and perturbative
QCD computations become feasible [15–17]. The opposite,
low-density limit is accessible by chiral effective field
theory (ChEFT) as the low-energy realization of QCD.
ChEFT provides a systematic framework with controllable
uncertainties for dealing with nuclear many-body systems
[18,19]. This approach gives satisfactory descriptions of
nuclear and neutron matter [20] in a range of validity up to
densities n≲ 2n0, with n0 ≃ 0.16 fm−3 the equilibrium
density of nuclear matter.
Between these extremes, the nature and location of the

transition from cold dense nuclear or neutron matter to
quark and gluon degrees of freedom is still largely
unknown. The ab-initio method of numerically solving
QCD on a lattice has been successful in analyzing the phase
structure at high temperatures and vanishing baryon chemi-
cal potential [21,22]. But at nonzero baryon densities this
approach is severely hindered by the sign problem of the
fermionic determinant [23]. Consequently, calculations
extending from n ∼ 2n0 to high densities are mostly based
on models. Various hypotheses have been discussed in the
literature, ranging from a first-order (chiral) phase transition
to a continuous hadron-quark crossover [15,18,24–28].
Examples are Nambu–Jona-Lasinio type models which,
when treated in mean-field approximation, commonly

*len.brandes@tum.de
†weise@tum.de
‡nkaiser@tum.de

PHYSICAL REVIEW D 107, 014011 (2023)

2470-0010=2023=107(1)=014011(25) 014011-1 © 2023 American Physical Society

https://orcid.org/0000-0002-2058-968X
https://orcid.org/0000-0001-9684-722X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.014011&domain=pdf&date_stamp=2023-01-10
https://doi.org/10.1103/PhysRevD.107.014011
https://doi.org/10.1103/PhysRevD.107.014011
https://doi.org/10.1103/PhysRevD.107.014011
https://doi.org/10.1103/PhysRevD.107.014011


suggest the existence of a first-order chiral phase transition
well within the range of densities encountered in neutron
stars. Fluctuations beyond mean-field, on the other hand,
tend to convert such a transition into a crossover shifted to
much higher baryon densities [29]. The idea of a smooth
hadron-quark crossover at high density and zero temper-
ature has indeed gained much significance in recent years
[2,30–33].
All possible scenarios for phase transitions or crossovers

in dense matter would leave their characteristic signatures
in the speed of sound, csðnÞ, as a function of baryon
density n. For example, a first-order phase transition would
indicate itself by cs rapidly dropping to zero. A crossover
would show up less dramatically, but still visibly in terms
of a more or less pronounced change of slope in csðnÞ.
These are the distinctive features that motivate our inves-
tigation of constraints on the behavior of the sound speed
in neutrons stars, based on the presently available obser-
vational data.
In this work we translate the recently collected exterior

neutron star observables, together with state-of-the-art
ChEFT results [34,35], into restrictions for interior neutron
star properties using Bayesian inference, an approach which
has been used extensively in the literature [36–54]. There
are notable differences between these analyses. Here, we
largely follow the procedure outlined in Refs. [55,56].
Alternative approaches use neural networks for the infer-
ence procedure [57–63] or remove equations-of-state that
do not reproduce neutron star properties within the credible
intervals of the astrophysical observables [64–68].
In our analysis we pay particular attention to the speed of

sound inside neutron stars. It is modeled using two general
representations that were introduced in previous studies,
namely a Gaussian parametrization [36,69] and a para-
metrization based on segment-wise linear interpolations
[64,65]. A comparison of inference results with these two
forms as input gives an impression of the model depend-
ence caused by possible biases in the choices of para-
metrizations. In contrast to previous works we suggest a
new implementation of the ChEFT constraint as a like-
lihood instead of employing it a priori. This has the
advantage of dealing with the low-density constraint in a
way consistent with the treatment of the astrophysical data.
From the inferred behavior of the sound speed and a

detailed assessment in terms of Bayes factors we deduce
implications regarding the likelihood of phase transitions
inside neutron stars. Such an extensive investigation of
Bayes factors has not been performed in previous work.
Part of this discussion also concerns the possible range of
validity for a description of neutron star matter in terms of
conventional baryonic degrees of freedom. Recent studies
have examined the potential impact of asymptotic pQCD
on neutron star properties [53,68,70]. In this context we
investigate the role of different asymptotic behaviors,
particularly with regard to phase transitions.

This paper is organized as follows: In Sec. II, following a
quick introduction of the TOV equations, the EOS and the
speed of sound, we give a brief survey of possible phases at
high densities and introduce the two parametrizations to
model the speed of sound inside neutron stars. In Sec. III
the statistical procedure is explained, which we use to infer
constraints for neutron star properties based on current
empirical data and theoretical low-density conditions. The
results for the sound speed and related properties are
presented and discussed in Sec. IV. Based on these
findings, implications for the phase structure inside neutron
stars are examined. A summary and conclusions follow
in Sec. V.

II. SPEED OF SOUND IN NEUTRON STARS

A. TOV equations and EOS

A description of neutron star matter as a general
relativistic ideal fluid with spherical symmetry leads to a
coupled system of differential equations, the Tolman-
Oppenheimer-Volkoff (TOV) equations:

∂PðrÞ
∂r

¼ −
GN

r2
½εðrÞ þ PðrÞ�½mðrÞ þ 4πr3PðrÞ�

×

�
1 −

2GNmðrÞ
r

�
−1
; ð1Þ

∂mðrÞ
∂r

¼ 4πr2εðrÞ; ð2Þ

where GN is the gravitational constant. Given an equation
of state (EOS) PðεÞ, i.e., pressure as a function of
energy density ε, this system can be solved with the
boundary condition mðr ¼ 0Þ ¼ 0 and a central pressure
Pðr ¼ 0Þ ¼ Pc. The mass of the star is given as
M ¼ mðRÞ ¼ 4π

R
R
0 dr r2εðrÞ, while the star radius R is

determined as the point at which the pressure vanishes,
PðRÞ ¼ 0. The TOV equations describe nonrotating neu-
tron stars. The effect of the rotation on R is expected to
become only relevant for very high pulsar spin frequen-
cies [71,72].
Matter in the interior of a neutron star can be described in

terms of the squared speed of sound,

c2sðεÞ ¼
∂PðεÞ
∂ε

≥ 0; ð3Þ

from which the EOS is determined as

PðεÞ ¼
Z

ε

0

dε0 c2sðε0Þ: ð4Þ

Causality demands that the speed of sound must always
remain smaller than or equal to the speed of light (c ¼ 1 in
our units), i.e., cs ≤ 1. In addition, thermodynamic stability
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of the star dictates that the derivative ∂P=∂ε is non-
negative. At extremely high densities perturbative QCD
calculations become feasible in terms of quark and gluon
degrees of freedom. They suggest that at densities n ∼ 50n0
the squared speed of sound approaches the conformal
bound,

c2s → 1=3; ð5Þ

from below [73]. This limit can be derived from naive
dimensional analysis and asymptotic freedom [74]. In fact
it is expected that this bound holds in all conformal
theories, i.e., field theories in which the trace of the
energy-momentum tensor vanishes [69,75]. However,
recent analyses based on astrophysical observables suggest
that this conformal bound can be violated inside neutron
stars [40,41,53,66,76,77]. Squared sound velocities with
c2s > 1=3 were also found in recent Nc ¼ 2 lattice QCD
computations [78]. A possible mechanism for the violation
of this bound, based on the trace anomaly in strongly
coupled matter, is discussed in Ref. [79]. In this context it is
interesting that hard dense loop resummation methods
(going beyond basic perturbative QCD) indicate that the
conformal limit may be approached asymptotically from
above, with c2s > 1=3 [80]. In a later section we shall
examine whether this changed asymptotic behavior has an
impact on the sound speed at neutron star core densities.
For neutron stars in binary systems the gravitational field

of the companion induces a quadrupole moment in the star,
which can be modeled by a linearized metric perturbation
[81,82]. The resulting two coupled differential equations are
solved simultaneously with the TOV equations [83]. From
the numerical solution the dimensionless tidal deformability
Λ can be inferred. When the TOV equations and the
equations for the tidal deformability are solved together
for a variety of central pressures, Pc, the mass-radius relation
and the tidal deformabilities ðMi; Ri;ΛiÞ are obtained for
each given EOS, or equivalently, for given c2sðεÞ.

B. Phases of strongly interacting matter

At high temperatures and small baryon chemical poten-
tials the phase structure of the strong interaction is well
understood from lattice QCD [21,22] and from high-energy
heavy ion collisions [85,86]. At vanishing baryon chemical
potential a continuous crossover proceeds from the had-
ronic to the quark-gluon phase around a pseudocritical
temperature of about 155 MeV. This behavior is reflected in
the speed of sound which grows rapidly with increasing
temperature in the hadronic phase and then decreases along
the crossover transition. At asymptotically high temper-
atures cs increases again to reach the asymptotic value of
the conformal limit from below [87].
At low baryon densities it is quite well established that

the thermodynamics of (isospin symmetric) nuclear matter
features a first-order liquid-gas phase transition, with a

critical point located empirically [88] at a temperature
Tcrit ≃ 18 MeV and density ncrit ≃ n0=3. When viewed in a
ðT; μÞ phase diagram, the first-order liquid-gas transition
line starting at the critical point reaches the T ¼ 0 axis at a
baryon chemical potential μ ¼ mN − B ≃ 923 MeV corre-
sponding to the binding energy per particle B ≃ 16 MeV of
symmetric nuclear matter. With an empirical symmetry
energy S ≃ 32 MeV, this phase transition is absent in pure
neutron matter.
At asymptotically high densities, n ≳ 50n0, quark and

gluon degrees of freedom take over in a color super-
conducting phase [15,16,89,90]. Still unknown remains the
detailed nature and density range of the transition from
nuclear to quark matter. Many models have been designed,
with a variety of hypotheses predicting different active
degrees of freedom in this intermediate region. With their
core densities of up to n ∼ 6n0 [41] and low temperatures,
neutron stars are the objects of choice to gain information
about this speculative region of the phase diagram.
As mentioned in the introduction, studies based on

Nambu–Jona-Lasinio type models in mean-field approxi-
mation have commonly found a first-order chiral phase
transition at quite moderate baryon densities for T ¼ 0 [24].
A first-order phase transition would manifest itself in the
speed of sound rapidly decreasing to zero. It could lead to
mass-radius relations with a disconnected third-family
branch of compact stars containing exotic matter [91].
On the other hand, investigations using nonperturbative
functional renormalization group techniques [29,92,93]
found that fluctuations beyond mean-field tend to convert
the first-order chiral transition into a crossover shifted to
much higher baryon densities, even beyond those realized in
neutron star cores. In any case, to support the observed
heavy neutron stars with masses M ∼ 2M⊙, a transition to
quark matter in neutron stars at relatively low densities is
possible only if the quark EOS is extremely stiff, or
otherwise the transition has to take place at high densities
leading to small quark cores [28,94].
Models proposing a continuous crossover from hadronic

to quark matter are often referred to under the keyword
quark-hadron continuity. Such models describe the low-
density part of the EOS in agreement with ChEFT calcu-
lations but still provide the necessary stiffness to support
heavy neutron stars, usually by introducing strongly repul-
sive correlations in the quark sector [2,30–33]. A continuous
crossover may be visible as a maximum in the speed of
sound as a function of density and might be realized through
an intermediate phase of quarkyonic matter [25,26], a
combined phase of quarks and nucleons derived from large
Nc considerations [15,95].
At sufficiently high densities in neutron stars, the

formation of hyperons through weak processes may
become energetically favorable. It was frequently argued,
however, that the additional degrees of freedom introduced
via the hyperons lead to a softening of the equation of state
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such that heavy neutron stars with M ∼ 2M⊙ cannot
be supported against gravitational collapse [27,96].
Introducing repulsive hyperon-nuclear three-body forces
is a possible way to inhibit the appearance of hyperons in
neutron stars altogether [97,98]. An alternative picture [99]
couples baryons (including hyperons) to a density-
dependent nonlinear scalar field that effectively represents
repulsive many-body correlations, such that the required
stiffness of the EOS can be maintained even in the presence
of hyperons in the neutron star core. A characteristic feature
of this model is a sharply dropping speed of sound at the
onset density for the appearance of hyperons.

C. Parametrizations

A variety of parametrizations has been introduced to
represent the equation of state in neutron stars, among the
most prominent ones are piecewise polytropes [100] or
spectral representations [101]. As discussed in the previous
section, various theories predict different phase structures at
high densities including phase transitions or crossovers,
which are reflected in the behavior of the speed of sound
[67]. In the present analysis we employ two different
parametrizations for c2sðεÞ inside neutron stars: a skewed
Gaussian function and piecewise segmented linear inter-
polations. We prefer not to choose parametrizations of PðεÞ
such as piecewise polytropes. The reason is that such
representations can cause unphysical discontinuous effects
in the speed of sound. In contrast, the parametrizations
employed here are continuous in c2sðεÞ. They dependent on
sets θ of either six or eight parameters. A comparative study
using these two different forms will give an impression of
possible systematic uncertainties induced by the choice of
parametrization. At very low densities, n ≤ 0.5n0, the
speed of sound is matched to the neutron star crust modeled
by the time-honored Baym-Pethick-Sutherland (BPS) para-
metrization [102]. The effect of the neutron star crust on
observables studied in this work is expected to be small.

1. Gaussian

Based on Refs. [36,69] we represent the squared speed of
sound of neutron star matter at zero temperature as a
function of energy density by a skewed Gaussian. A
logistic function is added such that the parametrization
reaches the conformal limit c2s → 1=3 at asymptotically
high energy densities. With x ¼ ε=ðmNn0Þ wheremN is the
free nucleon mass, the squared speed of sound is written as:

c2sðx; θÞ ¼ a1 exp

�
−
1

2

ðx − a2Þ2
a23

��
1þ erf

�
a6ffiffiffi
2

p x − a2
a3

��

þ 1=3 − a7
1þ exp ½−a5ðx − a4Þ�

þ a7; ð6Þ

with erfðzÞ ¼ 2ffiffi
π

p
R
z
0 dt e−t

2

the conventional error function.

The parameter a7 is determined such that the transition to

the neutron star crust is continuous. Hence, six free
parameters θ ¼ ða1;…; a6Þ remain. When c2sðx; θÞ
becomes negative, violating thermodynamic stability of
the star, we set c2s ¼ 0. In this way the Gaussian para-
metrization can describe arbitrarily strong phase transitions.
The combination of the Gaussian and logistic function can
also account for variable crossovers. As argued in Sec. II B,
a local maximum in the speed of sound can indicate a
transition from baryonic to quark dynamics [2,32,74] or the
onset of hyperonic degrees of freedom [99].

2. Segments

The Gaussian parametrization assumes a specific func-
tional form of the sound speed inside neutron stars. At the
present stage the empirical data base is still limited, so that
inference procedures can depend sensitively on prior
choices including the functional form of the parametriza-
tion [37,44]. For an alternative test, results of broader
generality can be produced using a more universal para-
metrization of the speed of sound based on segment-wise
linear interpolations, similar to Refs. [64,65]. The param-
eters of the model are N points θ ¼ ðc2s;i; εiÞ. The squared
speed of sound c2sðε; θÞ is modeled as a linear interpolation
between these N points, i.e., for ε ∈ ½εi; εiþ1� with
i ¼ 0;…; N:

c2sðε; θÞ ¼
ðεiþ1 − εÞc2s;i þ ðε − εiÞc2s;iþ1

εiþ1 − εi
: ð7Þ

Here we choose N ¼ 5. The i ¼ 0 point is the transition
point to the neutron star crust and the last point is chosen
such that the conformal limit is reached at very high
energy densities ðc2s;5; ε5Þ ¼ ð1=3; 10 GeV fm−3Þ. We have
checked that the results do not depend on the specific
choice of ε5 as long as its value is large enough. The
asymptotic end point at ε5 ¼ 10 GeV fm−3 corresponds to
a baryon chemical potential of μ ∼ 2.4 GeV in the pQCD
results from Ref. [17]. Reference [66] uses a similar
parametrization based on piecewise segments. There it
is found that five segments are sufficient to avoid numeri-
cal artefacts, namely that for a larger number of segments
the results do not change significantly any more. An
equivalent or smaller number of segments is used to
interpolate over the full range between ChEFT and
pQCD constraints in Refs. [64,65]. The parametrization
in terms of segments can also incorporate a variety of
phase transitions or crossovers. In contrast to the Gaussian
parametrization it can also accommodate possible steep
rises as well as plateaus in the speed of sound.

III. BAYESIAN INFERENCE

A. Basics

Making use of a set of neutron star observables, we aim
now to find credible regions for the free parameters θ of the
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two parametrizations described in Sec. II C. For that purpose
we use Bayesian inference, similar to Refs. [36–54],
and follow Refs. [55,56]. For given data D and a model
M which includes all assumptions such as the choice of
parametrization, the posterior probability distribution for
the parameters θ can be computed using Bayes’ theorem:

PrðθjD;MÞ

¼
Z

dPc
PrðDjθ; Pc;MÞ PrðPcjθ;MÞ PrðθjMÞ

PrðDjMÞ ; ð8Þ

where the posterior probability distribution is marginalized
over the central pressures Pc. The probability distribution
PrðθjMÞ for the parameters given the modelM is denoted
the prior and given by the chosen parameter distributions.
The prior for the central pressures, PrðPcjθ;MÞ, depends on
θ because the maximum central pressure leading to a stable
solution is different for each set of parameters. The prob-
ability PrðDjθ; Pc;MÞ for the data D to occur, given the
parameters θ, the central pressures Pc and the modelM, is
usually referred to as the likelihood. By numerically solving
the coupled system of TOVequations and the equations for
the tidal deformability, a set of parameters θ and central
pressures Pc is deterministically linked to a mass-radius
relationM, R and tidal deformabilities Λ. Therefore we can
write

PrðDjθ; Pc;MÞ ¼ PrðDjM;R;Λ;MÞ: ð9Þ

For computational feasibility we assume that we can use the
posterior distributions from the analyses of neutron star
observables as likelihoods for external neutron star param-
eters, similar to the treatments in Refs. [36,55]:

PrðDjM;R;Λ;MÞ ∝ PrðM;R;ΛjD;MÞ: ð10Þ

This is valid if the prior of ðM;R;ΛÞ used in the analyses of
the observational data is sufficiently flat, which is the case
for the observables analyzed in this work [39]. The like-
lihood PrðM;R;ΛjD;MÞ can then be evaluated for a given
set of parameters based on the observables as explained in
Sec. III C. The probability distribution PrðDjMÞ in the
denominator of Eq. (8) is usually referred to as the evidence
ormarginal likelihood. It is determined by the normalization
of the posterior:

PrðDjMÞ

¼
Z

dθ
Z

dPc PrðDjθ; Pc;MÞ PrðPcjθ;MÞ PrðθjMÞ:

ð11Þ

Depending on the number of parameters this may be a high-
dimensional integral which can be difficult to solve numeri-
cally. In Bayesian inference, sampling algorithms such as

Markov Chain Monte Carlo or nested sampling are com-
monly used. For a sufficiently low-dimensional parameter
space, samples from the prior PrðθjMÞ weighted with the
likelihood PrðDjθ; Pc;MÞ marginalized over the central
pressures yield the posterior probability distribution up to a
multiplicative constant. In this case it needs to be checked
whether the number of samples is large enough such that
sufficient probabilitymass of the posterior has been covered.
From this posterior probability distribution credible regions
for the parameters θ can be inferred.
To transform these credible regions to the EOS space, we

follow Ref. [36] in discretizing energy densities on a grid
fεig. For each posterior sample the pressure is determined
at each discrete energy density Pðεi; θÞ, up to the maximum
central energy density εc;max, corresponding to the endpoint
Mmax of the mass-radius relation. In this way we obtain the
posterior distribution for the pressure PrðPjεi;D;MÞ at
each energy density. We can then determine the highest
density credible interval ½a; b� at the levels α ¼ 68% or
95% as

α ¼
Z

b

a
dP PrðPjεi;D;MÞ: ð12Þ

Combining the credible intervals at each εi gives a posterior
credible band for PðεÞ. Similarly we can find credible
bands for c2sðεÞ, RðMÞ, ΛðMÞ, etc. In contrast, displaying
neutron star properties such as the EOS PðεÞ via a two-
dimensional credible region depends on the chosen prior in
ε, so that different prior choices can lead to different results.
Hence in the literature, with few exceptions, the procedure
in terms of credible bands is favored [36–41,54]. Note that
each EOS is only used up to its respective endpoint, i.e., the
point at which the central energy density εc;max generates
the maximum mass Mmax of the neutron star. At higher
energy densities (or masses), the credible intervals com-
puted via Eq. (12) are determined on the basis of corre-
spondingly fewer equations of state. This loss of expressive
power at higher energy densities and masses is not reflected
in the credible bands.
For two competing hypotheses the ratio of their marginal

likelihoods is referred to as the Bayes factor. It permits a
quantification of the evidence for one hypothesis over the
other one, based on the data. More details on the evaluation
of Bayes factors as well as a commonly used classification
scheme from Refs. [103,104] can be found in Appendix A.

B. Priors

To compute the posterior probability distribution (8),
prior probability distributions for the parameters and
for the central pressures must be chosen. The central
pressures are taken from a uniform distribution Pc ∈
½1.56 MeV fm−3; Pc;maxðθÞ�, where Pc;maxðθÞ is the maxi-
mum pressure corresponding to the last stable solution
with maximum mass for each parameter set θ. As noted in
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Ref. [12], the pressure increases rapidly toward the upper
end of the mass-radius relation, so that this chosen prior
leads to a higher weighting of larger masses. In the
literature some works use instead priors that are uniform
in the individual masses. However, with increasing maxi-
mum mass, the EOS probability to support such masses
decreases. So, a stronger weighting of larger masses is
indeed advised.
In order to ensure maximum generality of the results we

choose very broad parameter ranges for both parametri-
zations, covering most of the speed-of-sound space.
However, as in Refs. [37–39], we discard parameter sets
that lead to multiple disconnected stable mass-radius
relations. EOS with multiple stable branches were found
to be disfavored by the data in previous analyses, because
their majority cannot support neutron star masses as high
as 2M⊙ [105]. The similar radii of the two pulsars
measured with NICER also render a twin-star scenario
unlikely at high densities. At the same time, ChEFT in
combination with EOS constraints from heavy-ion colli-
sions [106], as inferred in Ref. [54], rule out such a
scenario at densities n≲ 3n0.

1. Gaussian

The six free parameters of the Gaussian parametrization
(referred to in the following as version G) are sampled from
uniform intervals listed in Table I. These parameter ranges
were chosen guided by previous studies [36,69]. The
resulting functions cover the speed-of-sound space
sufficiently well. Only those combinations of parameters
are kept that lead to causal EOS, i.e., c2sðεÞ < 1 for
all energy densities. In our default version G the
asymptotic conformal limit, c2s ¼ 1=3, is approached from
below as in standard pQCD [73], implying that the
derivative of the speed of sound must be positive,
∂c2s=∂ε > 0, at very high energy densities. In practice
this onset of asymptotic behavior is imposed at three
different values, ε ¼ 4, 8 and 16 GeV fm−3. We have
checked that this specific choice does not affect the
inference results as long as these energy densities are
sufficiently large.

2. Segments

The segment-wise parametrization (referred to in the
following as version S) depends on four speeds of sound
and energy densities ðc2s;i; εiÞ. The energy densities are
sampled logarithmically from εi ∈ ½εcrust; 4 GeV fm−3�,
where εcrust refers to the endpoint of the neutron star crust.
With this sampling the large multitude of EOS’s in the prior
is represented, on average, by 3–4 segments. The speed-of-
sound values are collected from logarithmic intervals
c2s;i ∈ ½0; 1�, so they are causal by construction and at the
same time open to the possible occurrence of phase
transitions. The asymptotic conformal limit is approached
from below, which is realized by restricting the last speed-
of-sound value before the end point to c2s;4 < 1=3. With two
more parameters and a more general functional form, the
segments parametrization allows, in principle, to describe
more complex structures. As a stability test we have
checked that shifting the upper limit of the logarithmic
interval downward from its value εi;max ¼ 4 GeV=fm3

induces small changes in the prior but does not affect
the final posterior results.
The prior credible bands for both G and S parametriza-

tions are depicted in Fig. 1. The bands are very broad in
both interior and exterior parameter spaces. Because the
ChEFT constraint is employed as a likelihood and hence
not present in the priors, there is prior support for
rapidly increasing speeds of sound at low densities,
leading to large neutron star radii. Hence the prior credible
bands have strong weights both at small sound speeds and
large radii.
The parameter ranges are chosen to minimize any

possible restrictions, such that the posterior distribution
has maximum freedom to be governed by the empirical
data. The prior probability distributions of versions G and S
differ because of the different functional forms and chosen
parameter ranges. This permits an assessment of the impact
of different prior choices on the inference results. If the
results for versions G and S turn out to be very similar, we
can conclude that the inference procedure is robust against
variations in the functional form of the prior.
Both priors at the 95% level support very small speeds of

sound, c2s ≲ 0.05. In fact the 68% credible band of the G
version reaches down to c2s ¼ 0. Accordingly, every fourth
EOS in the Gaussian parametrization potentially has a first-
order phase transition in the sense that the minimum speed
of sound becomes smaller than c2s;min ≤ 0.1, whereas every
fifth EOS in the segments parametrization features such a
phase transition. In contrast, each EOS in the (later
determined) posterior credible bands is constrained by
astrophysical data and thus limited by its emerging maxi-
mum central energy density, εc;max. The mass-radius
trajectory deduced from each given EOS, with or without
a phase transition, terminates at this point. An EOS’s mass-
radius sequence normally ends after a first-order phase

TABLE I. Prior ranges for the six parameters of the Gaussian
parametrization of the speed of sound inside neutron stars given
in Eq. (6).

Parameter Range

a1 0.2–3
a2 0.5–12
a3=a2 0.05–10
a4 0.1–15
a5 0.1–5
a6 −15–15
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FIG. 1. Marginal prior probability distributions at the 95% and 68% level for the Gaussian (left) and segments parametrization (right)
of the squared speed of sound c2s and pressure P as a function of energy density ε. Also shown is the prior for the mass-radius relation and
the tidal deformability, Λ, as a function of neutron star massM in units of the solar massM⊙. At each ε orM, there exist 95% and 68%
prior credible intervals for c2sðεÞ, PðεÞ or RðMÞ, ΛðMÞ. These intervals are connected to obtain the prior credible bands. Similarly, the
medians of the prior probability distributions at each ε or M are connected (solid lines). For the speed of sound the dashed black line
indicates the value of the conformal limit.
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transition. As a consequence small sound speeds appear
with lower weight in the posteriors than in the priors.
For both parametrizations, the pressures at asymptotic

energy densities agree with the pQCD results of Ref. [17]
within the uncertainty band from a variation of the renorm-
alization scale.

3. Monotonically rising speed of sound

The previous, general choice of priors is open, in
principle, to possible phase transitions in the EOS if the
data suggest such an option. At the same time we also,
additionally, wish to investigate a more restrictive case,
namely the hypothesis that neutron star matter is composed
of conventional hadronic (nucleon and meson) degrees of
freedom, with spontaneously broken chiral symmetry
intact and no complex phase structure. A successful
historical example of this kind is the APR equation of
state [107]. Another example, already mentioned previ-
ously, is a model based on chiral nucleon-meson field
theory [92,93]. The parameters of the model are adjusted to
reproduce low-density nuclear phenomenology including
the liquid-gas phase transition. Fluctuations beyond mean-
field approximation are treated nonperturbatively using
functional renormalization group methods. The effect of
these fluctuations is to stabilize dense matter against a first-
order chiral restoration phase transition and to convert it
into a crossover at high densities [29]. In such a scenario
matter behaves as a strongly correlated, relativistic Fermi
liquid [108]. The speed of sound rises monotonically with
increasing density and exceeds the conformal boundary at
densities n ∼ 4n0.
With the aim of studying whether such a picture is

compatible with the empirical data base, the additional
prior assumption is implemented that neutron star matter
displays no phase transition or crossover up to a given
transition density ntr. This is equivalent to the speed of
sound rising monotonically up to ntr:

∂c2s
∂ε

> 0 for n < ntr: ð13Þ

For densities n > ntr, the system is allowed any freedom to
undergo transitions or changes of degrees freedom. In
practice, based on the findings in [29], we vary the
transition density in the range ntr ¼ 3–6n0.

C. Constraints from observations and theory

In this section we give a summary of the data base used
to compute the likelihoods that are needed, in turn, to
determine posterior distributions. This includes neutron star
masses, radii and tidal deformabilities, and low-density
constraints from nuclear theory.

1. Shapiro time delay

If a pulsating neutron star is in a binary system with a
white dwarf companion, the gravitational field of the
companion changes the pulsar signal frequency, an effect
referred to as the Shapiro time delay. Via a general
relativistic modeling of this delay the pulsar mass can
be extracted with high precision. The most interesting
measurements are those of the heaviest neutron stars as this
sets a lower limit on the maximum mass that the neutron
star EOS has to support. Several neutron stars with masses
as high as two times the solar mass M⊙ were measured in
this way, namely PSR J1614 − 2230 [3–5], PSR J0348þ
0432 [6], and PSR J0740þ 6620 [7,8], with masses
evaluated at the 68% level:

PSR J1614 − 2230 M ¼ 1.908� 0.016M⊙; ð14Þ

PSR J0348þ 0432 M ¼ 2.01� 0.04M⊙; ð15Þ

PSR J0740þ 6620 M ¼ 2.08� 0.07M⊙: ð16Þ

To compute the respective likelihoods we follow previous
analyses [38,39,46] and assume that the mass measurements
based on the Shapiro time delay are distributed as Gaussians,
N ðM;μ;σÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
exp½−1=2ðM − μÞ2=σ2� with mean

values μ and standard deviations σ. For a given set of
parameters θ the solution of the TOV Eqs. (1)–(2) yields the
maximum supported massMmaxðθÞ for this respective EOS.
Then the likelihood for each measurement is computed as

PrðMðθÞjDShapiro;MÞ

¼
Z

MmaxðθÞ

0

dMN ðM; μ; σÞ PrðMðθÞÞ: ð17Þ

The mass prior PrðMðθÞÞ is implicitly defined via the chosen
prior distribution of central pressures. Note that this implies a
general mass population of neutron stars, similar to the one
used in the analyses in [40,41]. Once the number of available
data increases by future measurements, the resulting pos-
terior distributions may be affected [109], such that the
neutron star population may have to be inferred together
with the posterior [110]. The total likelihood for all Shapiro
time delay measurements is given by the product of the
individual likelihoods.

2. Pulse profile modeling

The emission of soft x-rays from hot spots on the
magnetic polar caps of rapidly rotating neutron stars is
modulated by the gravitational field of the star. The pulse
amplitude and shape depend on the compactness, M=R, of
the star and on its mass M. Using a model of the hot spots
and the neutron star atmosphere, Bayesian posterior dis-
tributions for the mass and radius can be inferred from x-ray
profiles measured by the Neutron Star Interior Composition
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ExploreR (NICER). So far two neutron stars were measured
and subsequently analyzed by two independent groups.
Here we use the results of Miller et al. [11,12] for masses
and radii at the 68% level:

PSR J0030þ 0451 R ¼ 13.02þ1.24
−1.06 km;

M ¼ 1.44þ0.15
−0.14 M⊙; ð18Þ

PSR J0740þ 6620 R ¼ 13.7þ2.6
−1.5 km;

M ¼ 2.08� 0.07M⊙: ð19Þ

to be seen in comparison with an alternative analysis by
Riley et al. [13,14]:

PSR J0030þ 0451 R ¼ 12.71þ1.14
−1.19 km;

M ¼ 1.34þ0.15
−0.16 M⊙; ð20Þ

PSR J0740þ 6620 R ¼ 12.39þ1.30
−0.98 km;

M ¼ 2.072þ0.067
−0.066 M⊙: ð21Þ

The results of these analyses are publicly available as
samples from the mass-radius posterior. To approximate the
underlying probability distribution we use the kernel
density estimation (KDE) technique (for a brief introduc-
tion see Appendix B). The TOV equations are solved for a
given set of parameters θ and for N central pressures Pc,
resulting in N points of the mass-radius relation
ðMi; RiÞðθÞ. The likelihood for each measurement is given
by the KDE computed at these points:

PrððM;RÞðθÞjDNICER;MÞ ¼ 1

N

XN
i

KDEððMi; RiÞðθÞÞ:

ð22Þ

For large N this is equivalent to the line integral along the
mass-radius curve CððM;RÞðθÞÞ weighted with the mass-
radius prior PrððM;RÞðθÞÞ that is implicitly defined by the
prior distribution PrðPcjθ;MÞ of the central pressures:

lim
N→∞

PrððM;RÞðθÞjDNICER;MÞ

¼
Z
CððM;RÞðθÞÞ

dsKDEððM;RÞðθÞÞPrððM;RÞðθÞÞ: ð23Þ

Here, ds denotes the line element along the mass-radius
curve CððM;RÞðθÞÞ. Because the mass measurement in
Eq. (16) has been used in the NICER analysis of PSR
J0740þ 6620, we do not include this mass measurement in
the total likelihood to avoid double counting.

3. Neutron star mergers

The merger of two neutron stars in a binary produces
gravitational waves that are detectable in earth-based detec-
tors by the LIGO and Virgo Scientific Collaborations. A
detected merger signal can be compared to theoretical
waveform models, which depend on the mass ratio of the
two neutron stars, M2=M1, and a mass-weighted combina-
tion of their tidal deformabilities

Λ̄ ¼ 16

13

ðM1 þ 12M2ÞM4
1Λ1 þ ðM2 þ 12M1ÞM4

2Λ2

ðM1 þM2Þ5
: ð24Þ

Hence from the gravitational wave measurement a Bayesian
posterior for the masses ðM1;M2Þ and tidal deformabilities
ðΛ1;Λ2Þ can be inferred. So far, two binary neutron star
merger events, GW170817 [9] and GW190425 [10], were
detected, yielding the following constraints at the 90% level

GW170817 Λ̄ ¼ 320þ420
−230 ;

GW190425 Λ̄ ≤ 600: ð25Þ

Notice that different analyses of the gravitational wave data
produced slightly changed results [111]. The first one of
these events (GW170817) was further evaluated together
with electromagnetic signals [39,112,113]. The following
masses and tidal deformabilities of the individual neutron
stars in the binary were reported in Ref. [113]:

M1 ¼ 1.46þ0.13
−0.09 M⊙ Λ1 ¼ 255þ416

−171 ;

M2 ¼ 1.26þ0.09
−0.12 M⊙ Λ2 ¼ 661þ858

−375 : ð26Þ

Other detected events are under discussion as possibly being
neutron star-black hole mergers and so we do not include
them in the present analysis.
For a given set of parameters θ, we numerically solve the

differential equations to obtain ðΛi;MiÞ. From this we can
interpolate the function ΛðMÞ. We approximate the pos-
terior ðΛ1;Λ2Þ for each measurement using again kernel
density estimation. To compute the likelihood we insert the
N mass posterior samples ðM1j;M2jÞ into the function
ΛðMÞ which is in turn inserted into the ðΛ1;Λ2Þ KDE

PrððΛ;MÞðθÞjDGW;MÞ

¼ 1

N

XN
j

KDEðΛðM1j; θÞ;ΛðM2j; θÞÞ: ð27Þ

Using the above procedure, we do not have to assume that
the chirp mass Mchirp ¼ ðM1M2Þ3=5ðM1 þM2Þ−1=5 of the
event is fixed as was done in previous analyses [37–39,56].
Note that we again implicitly assumed the population of
neutron stars is given by our central pressure prior.
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4. Low densities: Chiral effective field theory

In addition to the measurements listed above we can use
constraints from theory to determine the neutron star EOS
at low densities. Chiral effective field theory involves a
systematic expansion of nuclear forces at low momenta
with controlled uncertainties. It can be extended to finite
densities using many-body methods and gives a good
description of nuclear phenomenology [20]. At its current
state of development ChEFT is believed to be valid up to
densities of n ∼ 1–2n0. The nuclear and neutron matter
results have been extended to neutron star matter by
including beta equilibrium conditions [114].
Previous analyses [36–39,46,47] have incorporated this

low-density constraint by only considering those EOS
which fall inside the ChEFT uncertainty band. We take a
different approach here, using a treatment similar to that of
the previously discussed observables which is considered to
be statistically more meaningful. It allows to take possible
structures within the uncertainty band into account and
gives a finite (but low) probability to EOS outside that
band. There is no obvious reason to trust the uncertainty
estimates of ChEFT calculations more than those of the
observables. A statistically well-defined treatment similar
to that of the empirical data base allows a balancing
between different constraints.
Recently a Bayesian framework was introduced to

compute the combined uncertainty resulting from many-
body approximations and convergence errors in ChEFT
[115–117]. Based on this approach, constraints for the
sound velocity in neutron star matter can be derived [34]. In
their work the authors trust the next-to-next-to-next-to-
leading-order (N3LO) results up to a density of n ¼ 2n0.
However, the differences between N2LO and N3LO results
may hint toward possible convergence issues. Therefore we
take a more conservative choice, using the uncertainty
estimate at n ¼ 1.3n0, similar to the one derived in
Ref. [118]. Also in Ref. [105], the authors find that
ChEFT results are preferred by astrophysical data up to
n ∼ 1.3n0. In addition, we set the likelihood to zero for all
EOS with speed of sound larger than the 99.7% credible
interval at n ¼ 2.0n0. This prohibits EOS which rise very
quickly beyond the ChEFT constraint at n ¼ 1.3n0.
Because the uncertainty estimate in Refs. [34,35] is based
on a Gaussian process, the likelihood for the ChEFT
constraint can be computed in terms of a Gaussian dis-
tribution. Accordingly, the upper limit of the 99.7% credible
interval can be determined as the mean value μ plus three
times the standard deviation σ. This upper limit at 2n0 is
implemented via a Heaviside step function multiplied to the
Gaussian normal distribution:

Prðc2sðn; θÞjDChEFT;MÞ
¼ N ðc2sð1.3n0; θÞ; μ1.3n0 ; σ1.3n0Þ
× θðμ2n0 þ 3σ2n0 − c2sð2.0n0; θÞÞ: ð28Þ

It turns out that a statistically well-defined incorporation of
the ChEFT constraint leads to more freedom at small and
intermediate densities compared to previous approaches. In
addition the incorporation of the ChEFT constraint into the
likelihood in contrast to using it as a prior assumption
avoids an unphysical discontinuity in the speed of sound at
low densities.
In several previous studies measurements from quiescent

low-mass x-ray binaries and thermonuclear bursters were
also used [1,42,119,120]. However, these data involve lots
of specific model features and are therefore neglected in
modern analyses. Recent measurements of the neutron skin
thickness of 208Pb suggest a stiff EOS for densities close to
the nuclear saturation density n ∼ n0 [121]. Uncertainties
are still large and there is potential tension with other
laboratory probes [122]. Therefore, we do not include this
measurement in the total likelihood. Together with the
neutron star merger event GW170817 the short gamma ray
burst GRB170817A and the kilonova AT2017gfo were
detected [123]. Some recent Bayesian analyses include
information about this kilonova [39,46,47], which however
introduces a series of model assumptions and consequently
raises the systematic uncertainties.
Summarizing the preceding sections, the full procedure

to obtain credible bands for neutron star properties consists
of the following steps: first a set of parameters θ is sampled
from the prior PrðθjMÞ. We need in total more than
300,000–600,000 samples for each parametrization in
order to generate statistically solid results that cover enough
probability mass such that they remain stable after a further
increase in the number of samples. For this sampled set of
parameters we compute the speed of sound for the
respective parametrization and then the EOS, Pðε; θÞ, using
Eq. (4). Given the equation of state we can numerically
solve the coupled system of differential equations for
ðM;R;ΛÞðθÞ. The total likelihood, already marginalized
over the central pressures Pc, can then be determined as the
product of the individual marginalized likelihoods for the
different measurements and constraints:

PrðDjθ;MÞ ∝ PrðMðθÞjDShapiro;MÞ
× PrððM;RÞðθÞjDNICER;MÞ
× PrððΛ;MÞðθÞjDGW;MÞ
× Prðc2sðn; θÞjDChEFT;MÞ: ð29Þ

The prior probability distribution weighted with the above
likelihood yields the posterior probability distribution,
PrðθjD;MÞ, for the parameters. We can then marginalize
over this posterior probability distribution to compute the
median as well as the highest density credible intervals at
the 68% and 95% level for different neutron star properties,
as well as the credible bands at different levels as explained
in Sec. III A.

BRANDES, WEISE, and KAISER PHYS. REV. D 107, 014011 (2023)

014011-10



IV. RESULTS

A. General priors

Following the procedures outlined in the preceding sec-
tions, the resulting marginal posterior credible bands for the
squared speed of sound, c2sðεÞ, and for the pressure PðεÞ are
displayed in Fig. 2 for both parametrizations. Note that the
general prior used here is free of assumptions about mono-
tonically rising sound speeds as introduced in Sec. III B 3.
Compared to the prior credible bands in Fig. 1, we can see
how the posterior bands have becomemuchnarrower because
of the constraints implied by the observational data. The
credible bands for both parametrizations agree rather well,
especially at energy densities ε≲ 700 MeV fm−3. In this
regime the squared speed of sound rises until it exceeds the
conformal limit, c2s ¼ 1=3, around ε ∼ 600 MeV fm−3 at
the 95% level. As in Refs. [36–39,53] we implemented
the transition to the neutron star crust discontinuously. This
is visible in the speed-of-sound credible bands at very low
energy densities but of no quantitative significance.
According to Fig. 2, there are only small differences at

the 68% level between the two parametrizations at low
energy densities. The 95% band of the segments para-
metrization extends to smaller sound speeds at low ε and

then rises to higher speeds of sound, as this parametrization
allows for steeper slopes. The conservative upper limit at
n ¼ 2n0 based on the ChEFT calculation in Refs. [34,35]
prohibits extremely steep rises of c2s in the low-density
region that were seen in some previous works [53,66,124].
Even though there remain uncertainties about the conver-
gence of ChEFTat higher densities, there is no indication of
a steep rise in the sound speed at small densities in different
ChEFT analyses [125–127].
In the FOPI heavy-ion experiment Au nuclei were

collided at energies from 0.4 to 1.5 GeV/A. The EOS of
symmetric nuclear matter deduced from these data [54,106]
indicates that smaller pressures are allowed for densities
n ≤ 2.1n0 as compared to recent ChEFT results [128]. This
further contests a strong increase in the speed of sound at
low densities.
Going to higher energy densities, the 68% credible band

stays above the conformal limit whereas the 95% band
allows for sound speeds below this bound from ε≳
700 MeV fm−3 onward, but with very low probability.
The 68% credible range for the S version appears to continue
increasing while it tends toward a plateau for the G version.
The region beyond ε≳ 1.2 GeV fm−3 already exceeds

the central credible densities for neutron stars with mass

FIG. 2. Marginal posterior probability distributions at the 95% and 68% level for the Gaussian (left) and segments parametrization
(right) for the squared speed of sound c2s and pressure P as a function of energy density ε. At each ε, there exist 95% and 68% posterior
credible intervals for c2sðεÞ and PðεÞ. These intervals are connected to obtain the prior credible bands. Similarly, the medians of the
marginal posterior probability distributions at each ε are connected (solid lines). Gray areas mark the 68% credible intervals of the
central energy densities of neutron stars with massesM ¼ 1.4M⊙ (left columns) and 2.1M⊙ (right columns) in each figure. The dashed
black line indicates the value of the conformal limit for the speed of sound and the APR EOS [107] for the pressure.
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M ∼ 2.1M⊙. This region is therefore much less restricted by
the observational data collected in Sec. III C. So this
extrapolated behavior is more sensitive to the prior of each
parametrization. The 95% credible bands for both para-
metrizations remain systematically larger than c2s > 0.1
up to the central energy density of a 2.1M⊙ neutron star,
εc ¼ 0.9� 0.4 GeV fm−3 [129], making a first-order phase
transition unlikely. This behavior is reflected in the credible
bands for the equation of state PðεÞ in Fig. 2.
For the 68% bands the squared sound velocity always

stays above the conformal limit from energy densities ε >
500 MeV fm−3 upward. Due to the integrated nature of the
pressure, Eq. (4), the differences between the two para-
metrizations are less prominently visible compared to
those in the speed of sound. At energy densities ε≲
800 MeV fm−3 the median of the posterior distributions
shows a close correspondence to the APR EOS [107,130],
but the inference results suggest a lower pressure at high
energy densities. It is a known feature that the APR EOS
becomes too stiff and even violates causality at the highest
energy densities. The credible bands of the pressure at an
energy density of ε ¼ 1 GeV fm−3 agree within uncertain-
ties with the softer EOS extrapolated from pQCD
in Ref. [53].
Using the method described in Appendix A, we can

compute the Bayes factor comparing the evidence for the
Gaussian and the segments parametrization, with the result:

BGaussian
Segments ¼ 1.65; ð30Þ

which indicates that neither parametrization is preferred by
the data following the classification in Table VII. The

Bayes factor Bc2s;max>1=3
c2s;max≤1=3

comparing equations of state with

maximum squared speed of sound larger than 1=3, i.e.,
violating the conformal limit, versus EOS with maximum
squared sound speed smaller than 1=3 is

Bc2s;max>1=3
c2s;max≤1=3

¼ 26.2 × 102 ð31Þ

in the segments parametrization and Bc2s;max>1=3
c2s;max≤1=3

¼ 16.2 ×

104 in the Gaussian parametrization. The segments para-
metrization can describe steeper slopes as well as plateaus,
resulting in a description more consistent with the data for
EOS with maximum sound speeds smaller than 1=3 and
consequently a smaller Bayes factor. Nevertheless, in both
parametrizations there is extreme evidence that the speed of
sound reaches values larger than c2s ¼ 1=3 inside neutron
stars, exceeding the conformal limit. This is consistent with
other recent studies [40,41,53,66,76,77].
The posterior credible bands for the mass-radius rela-

tion and for the tidal deformability ΛðMÞ are shown in
Fig. 3. We choose to limit the RðMÞ median and credible
bands by the median, the upper 68% and 95% credible

intervals of the maximum mass at each radius. As
explained in Sec. III A, we display credible bands instead
of two-dimensional credible regions, because the former
are independent of the priors for the variables ε and M.
However, in the credible bands representation there is no
natural ending criterion for the bands. Therefore the
results for the mass-radius relation are often just cut after
the upper 95% interval of the maximum possible mass for
all radii [14,41,50,51,53,54]. The results for both para-
metrizations agree well up to the observed ∼2M⊙ mass
range. The extrapolated inference to larger masses is much
less constrained by observations and the two parametri-
zations start varying, reflecting the differences in the
speed of sound in Fig. 2. The segments parametrization
leads to a maximum mass of Mmax ¼ 2.08þ0.26

−0.13M⊙ and a
maximum central density of nc;max ¼ 6.5þ1.2

−1.3n0. The mar-
ginalized posterior distributions for Mmax are compared to
the priors in Fig. 4. Both priors are almost uniform
throughout a large range of masses, and the posterior
distributions are nearly identical. In Fig. 2, there is good
agreement with the marginalized 68% error bars inferred
from the NICER measurement of PSR J0030þ 0451.
However, the error bars inferred from the NICER meas-
urement of PSR J0740þ 6620 are shifted to smaller radii
compared to the RðMÞ credible bands at M ∼ 2.08M⊙.
This is because the gravitational wave event GW170817
prefers smaller radii, as noted in Ref. [133]. Here the
balancing between different observables and theoretical
constraints becomes visible which requires a statistically
well-defined analysis in contrast to simple cuts used, e.g.,
in Refs. [64–68]. Furthermore, the error bars in Fig. 3
display only the 68% levels inferred from the NICER
measurements. The 95% levels would extend to smaller
radii. The NICER analyses chose to use central credible
intervals. If instead, as in the present work, highest
density intervals were used, these intervals would reach
to smaller radii. There is good agreement with the masses
and tidal deformabilities derived in Ref. [113] for the two
neutron stars in the merger event GW170817. Finally, if
we use the NICER data analyses by Riley et al. for the
inference procedure instead of the one by Miller et al., we
find very similar results. So we can restrict ourselves to the
latter.
Table II shows medians and credible intervals for

selected properties of neutron stars with characteristic
masses M ¼ 1.4M⊙ or 2.1M⊙, including the central
density, the energy density and pressure as well as the
radius and tidal deformability. Again these numbers dem-
onstrate agreement within uncertainties between the two
parametrizations.
At the 95% level (version S) the inferred radius of a

1.4M⊙ neutron star, R ¼ 12.7þ0.6
−0.9 km, agrees with the

values found in Ref. [39] for a piecewise polytrope para-
metrization and a speed of sound model similar to our
Gaussian parametrization, while the authors additionally
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included constraints from modeling of the kilonova
AT2017gfo. The 68% credible intervals of the radius
and tidal deformability of a 1.4M⊙ neutron star listed in
Table II agree within uncertainties with the results in
Ref. [49] which include a theory prediction and the

PREX II measurement of the 208Pb neutron skin thickness.
Our result for the 1.4M⊙ radius also agrees with the value
found in Ref. [54], where the authors additionally incorpo-
rated constraints on the EOS deduced from relativistic
heavy-ion collisions.

FIG. 3. Marginal posterior probability distributions at the 95% and 68% level for the Gaussian (left) and segments parametrization
(right) for the radius R and tidal deformability Λ as a function of mass M. At each M, there exist 95% and 68% posterior credible
intervals for RðMÞ and ΛðMÞ. These intervals are connected to obtain the posterior credible bands. Similarly, the medians of the
marginal posterior probability distributions at eachM are connected (solid lines). The RðMÞmedian and credible bands are plotted until
the median, upper 68% or 95% interval of the maximum mass at each radius. RðMÞ is compared to the marginalized intervals at the 68%
level from the analysis of the NICER measurements of PSR J0030þ 0451 and PSR J0740þ 6620 by Miller et al. (blue) [11,12] and by
Riley et al. [13,14] (black). ΛðMÞ is compared to the masses and tidal deformabilities inferred in Ref. [113] for the two neutron stars in
the merger event GW170817 at the 90% level.

FIG. 4. Marginal posterior probability distributions of the maximum mass Mmax for the Gaussian (left) and segments parametrization
(right) compared to the respective prior. The prior distributions are nearly uniform over a wide mass range, so the probability densities at
individual masses are small.
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For a 2.1M⊙ neutron star representative of the heaviest
currently observed star, the inferred radius is R ¼
11.6� 1.0 km, the tidal deformability is Λ ¼ 15þ18

−10 and
the central density is nc ¼ 4.8� 1.6n0. In the Bayesian
analysis of Ref. [12], no ChEFT constraint was included at
low densities. Their prediction for the radius of a neutron star
with mass M ¼ 1.4M⊙, based on multiple different para-
metrizations, agrees nonetheless with our result at the 68%
level. Their result for the radius of the 2.08M⊙ neutron star is
larger compared to our result for the radius of a generic
2.1M⊙ neutron star. However, within the 68% credible
intervals the two results are still consistent and the
differences can be accounted for by the ChEFT constraint.
At the current state of investigations with a limited neutron
star data base and correspondingly large uncertainties, it is
still justified to use parametric functional forms as long as
they are sufficiently general.
In Ref. [134] the authors compare different parametriza-

tions and argue that inferred neutron star results depend on
the chosen parametrization. However, in their comparison
the primary differences in the inferred equations of state
occur at small densities, mainly because of different
implementations of the neutron star crust, and in the high
density regime not constrained by data. In the intermediate
region, n ∼ 1.5–6n0, the different parametrizations agree
within their uncertainties. One exception is a Gaussian
parametrization which, unlike our G version, does not allow
skewed Gaussians and is therefore not sufficiently general to
reproduce the current astrophysical data, a feature that is
already visible from its prior. Our point regarding the
stability of inference results with respect to different para-
metrizations is further supported by the work of Ref. [54]

where very similar neutron star properties are found for two
qualitatively different parametrizations, namely a segments
parametrization similar to our S version and a piecewise
polytrope representation. In the future many more data are
expected and a nonparametric description of the EOS in
terms of a Gaussian process [40,41,76,134] or neural
network [124,135] might be preferable.
The quest for a possible phase transition or crossover

within the density range realized in the core of neutron
stars can be addressed by assuming that the squared sound
speed develops a maximum, c2s;max, at some density
nðcs;maxÞ, and then a minimum, c2s;min, at a higher density
nðcs;minÞ > nðcs;maxÞ. At even much higher (asymptotic)
densities, c2s should approach the conformal limit from
below if one follows the standard pQCD scenario.
In Table III credible intervals for c2s;max are displayed for

both S and G parametrizations in comparison. For version S
at 68% level such a (shallow) maximum is reached at
densities nðcs;maxÞ ∼ 5.3þ1.7

−1.2n0. (Notably this density range
is much higher than values of nðcs;maxÞ deduced from
analyses in which the ChEFT constraint is implemented
only at a density as low as n ¼ 1.1n0 [53,66].) A similarly
shallow minimum at higher densities follows at
nðcs;minÞ ∼ 6.7þ0.7

−0.5n0. Such a high density could possibly
be reached in a speculative super-heavy neutron star for
which the speed of sound is, however, only marginally
constrained by the existing data. For version G the resulting
densities nðcs;maxÞ and nðcs;minÞ are located at slightly
lower values, indicating the principal possibility of a phase
transition or crossover in the deep interior of a 2M⊙ neutron
star, but with low probability.
This discussion can be further quantified by considering

the Bayes factors in Table IV. Here the evidence for EOS
with c2s;min < 0.1 is compared to EOS with larger speeds of
sound. The Bayes factors are computed for different
maximum neutron star masses, i.e., analyzing the sound
speed minimum up to this mass. For neutron stars with

TABLE III. Median, 95% and 68% credible intervals for
selected neutron star properties for the Gaussian and segments
parametrizations. These are computed from the one-dimensional
posterior probability distribution marginalized over all other
parameters. Displayed are the maximum squared speed of sound,
c2s;max, together with the density nðcs;maxÞ at which this maximum
is located, and the minimum speed of sound c2s;min following the
maximum at a higher density, nðcs;minÞ > nðcs;maxÞ.

Gaussian Segments

95% 68% 95% 68%

c2s;max 0.68þ0.29
−0.24

þ0.13
−0.19 0.76þ0.24

−0.26
þ0.17
−0.15

nðcs;maxÞ=n0 4.8� 1.9 þ1.0
−1.1 5.3þ1.9

−2.8
þ1.7
−1.2

c2s;min 0.34þ0.44
−0.34

þ0.15
−0.34 0.56þ0.37

−0.50
þ0.32
−0.19

nðcs;minÞ=n0 6.3þ1.3
−2.3

þ0.8
−0.7 6.7þ1.0

−1.7
þ0.7
−0.5

TABLE II. Median, 95% and 68% credible intervals for
selected neutron star properties for the Gaussian and segments
parametrizations. These are computed from the one-dimensional
posterior probability distribution marginalized over all other
parameters. Listed are the central density, energy density,
pressure, radius, and tidal deformability of neutron stars with
masses M ¼ 1.4M⊙ and 2.1M⊙.

Gaussian Segments

95% 68% 95% 68%

nc=n0 2.8þ0.5
−0.4 �0.2 2.8þ0.5

−0.4 �0.2
εc [MeV fm−3] 451þ88

−68
þ35
−40 453þ83

−72
þ34
−37

1.4M⊙ Pc [MeV fm−3] 60þ19
−13

þ7
−8 60þ20

−13
þ6
−7

R [km] 12.6þ0.6
−0.8 �0.3 12.7þ0.6

−0.9
þ0.4
−0.3

Λ 471þ167
−168

þ88
−76 485þ157

−194
þ83
−71

nc=n0 4.9þ1.3
−1.6

þ0.9
−0.8 4.8� 1.6 þ1.1

−0.9
εc [MeV fm−3] 904þ329

−372
þ208
−187 883þ390

−371
þ183
−277

2.1M⊙ Pc [MeV fm−3] 312þ226
−169

þ69
−134 300þ257

−171
þ84
−143

R [km] 11.6� 0.9 �0.5 11.6� 1.0 �0.6
Λ 15þ16

−9
þ5
−7 15þ18

−10
þ6
−8
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masses up to M ≤ 1.9M⊙, there is extreme evidence that
the squared speed of sound inside the neutron star does not
fall below 0.1 after exceeding the conformal limit. For
heavier neutron stars smaller minimal sound speeds
become more likely, but there is still strong evidence for
the absence of a first-order phase transition inside a M ≤
2.0M⊙ star. Altogether, Tables III and IV suggest that a
first-order phase transition can only possibly take place in a
very heavy neutron star with massM > 2M⊙. In the future,
observations of such very heavy neutron stars will be of
prime interest.
In Fig. 5 posterior credible bands for the baryon density

as a function of energy density are displayed. From this
relation or its inverse, εðnÞ, all other quantities at T ¼ 0 can
be deduced via the Gibbs-Duhem relation

n
∂ε

∂n
¼ Pþ ε: ð32Þ

For practical applications the EOS PðεÞ, the baryon density,
the energy per particle E=A and the squared sound speed
are tabulated in Table VIII of Appendix C using a fit to the
median of nðεÞ in the segments parametrization. The
energy per particle can be computed as

E
A
¼ ε

n
−mN; ð33Þ

which is displayed in Fig. 6 as a function of baryon density.
Here we take mN ∼ 939.5 MeV, the neutron mass with
minor adjustment for a small proton fraction of ∼10% as in
the APR EOS.
Figure 7 shows examples of energy density and baryon

density profiles for neutron stars with masses M ¼ 1.4M⊙
and 2.0M⊙. For each parametrization the median displayed
in Fig. 2 is used as the corresponding equation of state.
There is once again good agreement between both para-
metrizations for M ¼ 1.4M⊙. Compared to the APR EOS
the resulting neutron star radii are larger by about 1.3 km.
For a 2.0M⊙ neutron star, both parametrizations lead to
similar radii but the segments parametrization prefers a
larger central energy density, εc, and central density nc.

B. Monotonically rising speed of sound

With priors prepared in broad generality and unrestricted
initialization of the speed of sound, the previous inference
results pointed out some (perhaps) unexpected properties of
a heavy (2.1M⊙) neutron star. In particular, the central
baryon density in the core of the star is not extreme: it does
not exceed nc ≃ ð5� 1Þn0 (at 68% credibility) in both
parametrizations. For an interpretation, suppose that the
neutron star centre is composed of baryons viewed as rigid
spheres with a typical “hard core” radius of R ≃ 0.5 fm.
Then the critical density even for random close packing of
such hard spheres, ncrit ≃ 0.16=R3 ∼ 8n0 (for a packing
volume fraction ϕ ≃ 0.66 [136]), is still significantly higher
than nc. In the same context, the average distance between
two baryons at density n ∼ ð5 − 6Þn0 is still around 1 fm,

TABLE IV. Bayes factors B
c2s;min>0.1

c2s;min≤0.1
comparing EOS samples

with the following competing scenarios: (a) minimum squared
speed of sound (following a maximum), with c2s;min larger than
0.1, excluding a first-order phase transition; versus (b) EOS with
c2s;min ≤ 0.1. The Bayes factors are calculated for a given
maximum neutron star mass M, i.e., the minimum speed of
sound up to the corresponding mass is used. There is extreme
evidence that the minimum squared sound speed, after exceeding
the conformal limit, does not drop to values smaller than 0.1 for
neutron stars with mass M ≤ 1.9M⊙. There is strong evidence
that c2s;min does not become smaller than 0.1 in neutron stars with
mass M ≤ 2.0M⊙.

B
c2s;min>0.1

c2s;min≤0.1

M=M⊙ Gaussian Segments

1.9 5.89 × 103 1.75 × 104

2.0 15.17 17.76
2.1 2.51 2.01
2.2 1.67 1.39

FIG. 5. Posterior 95% and 68% credible bands and medians for the Gaussian (left) and segments parametrization (right): baryon
density n, in units of the nuclear saturation density n0 ¼ 0.16 fm−3, as a function of energy density ε. For tabulated values of the median
in the segments parametrization see Table VIII.
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considerably larger than the typical hard core range. One
expects that such a scenario is characterized by a mono-
tonically increasing c2s as function of baryon density n, with
no phase transition in the neutron star core. It is then
instructive to investigate whether or not this picture is
compatible with the existing empirical data.
Following Sec. III B 3, related insights can be gained by

examining a restrictive scenario in which c2s is assumed to
increase monotonically up to a given transition density, ntr.
No phase transition or crossover occurs at baryon densities
n ≤ ntr, while freedom for phase changes or the appearance
of new degrees of freedom exists at densities n > ntr,
within the constraints provided by the empirical data. For
the preparation of a corresponding Bayes factor analysis,
introduce a generic density, n−, characterized by the slope
∂c2s=∂ε < 0 being negative at that density, i.e., the counter-
example to a continuously increasing sound velocity. (For
n− exceeding neutron star central densities, i.e., in the range
not constrained by data, we assume that the corresponding
equation-of-state P(ε) continues rising.) Consider now the
following two scenarios: hypothesis H0 corresponds to the

case n− > ntr, i.e., the sound velocity increases monoton-
ically at densities up to ntr. The sound speed may then
change its slope and decrease at some higher density, n−.
The counter hypothesis, H1, assumes that this change of
slope in c2s occurs at a lower density instead, n− ≤ ntr, in
which case ntr simply acts as a density scale for comparison
with the opposite hypothesis H0. The Bayes factors B

n−≤ntr
n−>ntr

then ask for the likelihoods of the competing hypotheses
and quantify the evidence ofH1 overH0 for given values of
ntr. In Table V these Bayes factors are listed for different
values of ntr. There is strong evidence in the Gaussian and
moderate evidence in the segments parametrization that
ntr ¼ 3n0 is preferred by the data. This means that an EOS
with monotonically rising sound speed, ∂c2s=∂ε > 0 up to
n≲ ntr ¼ 3n0, is on average more likely than an EOS that
develops a plateau or decreasing sound speed in this
regime, indicating that a crossover or phase transition
below this transition density is unlikely.
In Ref. [28] the author argues that if a nuclear description

is trusted up to ∼2n0, then a first-order phase transition is
unlikely and a quark-hadron continuity scenario may be

FIG. 7. Energy density profiles (left) and baryon density profiles (right) of neutron stars with masses ofM ¼ 1.4M⊙ (blue) and 2.0M⊙
(orange). The equations of state used correspond to the median values of the credible bands in Fig. 2 for the Gaussian parametrization
(solid) and the segments parametrization (dashed), respectively. The energy density and density profiles derived from the APR EOS are
displayed for comparison (dotted lines).

FIG. 6. Posterior 95% and 68% credible bands and medians for the Gaussian (left) and segments parametrization (right): energy per
particle E=A ¼ ε=n −mN as function of baryon density n in units of nuclear saturation density, n0 ¼ 0.16 fm−3.
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favored. Such a picture would be consistent with the results
of the present work which uses a conservative ChEFT
constraint and assumes a description in terms of nucleonic
matter to be valid up to about 2n0. The Bayes factors in
Table V actually indicate that such a description might
remain valid at least up to 3n0. There is no evidence for or
against larger transition densities, which implies that a
description of neutron stars in terms of nucleonic matter up
to n ∼ 6n0, characterized by a monotonically rising speed
of sound [108], cannot be excluded by the currently
available data.

In Fig. 8 the 68% and 95% posterior credible bands of
c2sðεÞ for ntr=n0 ¼ 4 and 6 are displayed. The credible
bands with ntr ¼ 4n0 differ very little from those with
ntr ¼ 0 shown in Fig. 2, most likely because the data
indeed prefer equations of state that rise continuously with
positive curvature at least up to 3n0, as explained in the
previous paragraph. For ntr ¼ 6n0 the differences to the
ntr ¼ 0 case are more visible. The speed of sound is now
preconditioned to increase up to high energy densities
ε ∼ 1.3 GeV fm−3. No complex phase structure appears in
neutron stars with masses M ≤ 2.1M⊙. In the segments
parametrization with its greater freedom, the 95% band is
much wider for ntr ¼ 6n0 and comparable to the ntr ¼ 4n0
case up to ε ∼ 550 MeV fm−3. This behavior of the sound
speed is also reflected in the posterior credible bands for
PðεÞ shown in Fig. 9 and in the mass-radius relation and
tidal deformability plotted in Fig. 10.
Next, we investigate the impact that the observation of a

possible supermassive neutron star would have on the
previous analysis. Assume the existence of a speculative
heavy neutron star with mass Mnew ¼ 2.2M⊙, 2.3M⊙ or
2.4M⊙. Its mass is included as an additional hypothetical
(Gaussian) measurement such that the likelihood can be
computed according to Eq. (17). We choose σMnew

¼
�0.1M⊙ assuming the uncertainty to be comparable to

TABLE V. Bayes factors Bn−≤ntr
n−>ntr comparing EOS in which the

derivative of the squared sound velocity, ∂c2s=∂ε, turns negative at
a density n− below the transition density ntr, versus EOS with
n− > ntr. There is strong evidence for the Gaussian parametriza-
tion and moderate evidence for the segments parametrization that
∂c2s=∂ε > 0 at least up to ntr ¼ 3n0.

Bn−≤ntr
n−>ntr

ntr=n0 Gaussian Segments

3 0.02 0.32
4 0.17 0.76
5 0.45 1.50
6 1.71 3.20

FIG. 8. Posterior 95% (top) and 68% (bottom) credible bands and medians of the squared speed of sound c2s as a function of energy
density ε for two different transition densities, ntr=n0 ¼ 4 and 6, up to which the speed of sound is preconditioned to rise monotonically.
In grey the 68% intervals of the central energy densities of neutron stars with massesM ¼ 1.4M⊙ and 2.1M⊙ are displayed. The dashed
black line indicates the value of the conformal limit.
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FIG. 9. Posterior 95% (top) and 68% (bottom) credible bands and medians of the pressure P as a function of energy density ε for two
different transition densities, ntr=n0 ¼ 4 and 6, up to which the squared speed of sound is preconditioned to rise monotonically. In gray
the 68% intervals of the central energy densities of neutron stars with masses M ¼ 1.4M⊙ and 2.1M⊙ are displayed.

FIG. 10. Posterior credible bands at the 95% level and medians of the radius R and the tidal deformability Λ as a function of mass M
for two different transition densities, ntr=n0 ¼ 4 and 6, up to which the speed of sound is preconditioned to rise monotonically. RðMÞ is
compared to the marginalized intervals at the 68% level from the analysis of the NICER measurements of PSR J0030þ 0451 and PSR
J0740þ 6620 by Miller et al. (blue) [11,12] and by Riley et al. [13,14] (black). ΛðMÞ is compared to the masses and tidal
deformabilities inferred in Ref. [113] for the two neutron stars in the merger event GW170817 at the 90% level.
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the measurements in Eqs. (14)–(16). We repeat the analysis
of the Bayes factors in Table V with the additional
hypothetical data in Table VI. A future measurement of
a heavy neutron star with mass M ¼ 2.2M⊙ would lead
to moderate evidence for the possibility that cs may drop
at a density n < ntr ¼ 6n0. For even higher masses,
M ¼ 2.4M⊙, this evidence becomes still more definite.
This means the speed of sound would need to drop
before this transition density, hinting toward a more
complex phase structure possibly with a transition to
different degrees of freedom. Therefore the observation
of such a very heavy neutron star would open up the
discussion of a more involved phase structure in the EOS.
In particular, in order to support such a heavy object, the
sound velocity would need to rise steeply at densities
beyond the ChEFT range. As seen in Fig. 8 such a behavior
has less support for ntr ¼ 6n0 compared to lower transition
densities.
The presently available empirical information including

up to ∼2M⊙ objects may be updated by the recent
observation of the fastest spinning and heaviest known
galactic neutron star [137]. In this context the ongoing
speculations about a very heavy neutron star based on the
recent observation of gravitational wave signals from a
black hole merger with a compact object of mass 2.6M⊙
[138] are worth mentioning. Note, however, if the binary
merger product produced in GW170817 was indeed a
hypermassive neutron star supported against gravitational
collapse by differential rotation, as suggested by the
measured electromagnetic counterparts [139–141], then a
reduced upper limit is likely for the maximum possible
mass of nonrotating neutron stars. Similarly, the condition
that the EOS needs to be causally connected to pQCD
results at very high densities makes extremely massive
neutron stars more unlikely [53].

C. Conformal limit reached from above

A recent analysis based on hard dense loop resummation
techniques found that, in contrast to standard perturbative
QCD results, the speed of sound reaches the conformal
limit from above at asymptotically high densities [80]. To
analyze the impact of this assumed alternative asymptotic
behavior, we repeat our analysis with the same steps as
before, but now modified such that the squared speed of
sound reaches the conformal limit, c2s → 1=3, from above.
We restrict ourselves to the segments parametrization. With
the changed asymptotic behavior the descriptive power of
the Gaussian parametrization is severely hindered. The
resulting posterior credible bands are displayed in Fig. 11.
Compared to the case with c2s → 1=3 reached from below in
Figs. 2 and 3, the sound velocities up to energy densities
ε≲ 650 MeV fm−3 remain unchanged, implying that both
asymptotic behaviors lead to M ¼ 1.4M⊙ neutron stars
with almost exactly the same properties as in Table II. Even
at higher energy densities the 68% credible bands look very
similar. However, when the conformal limit is reached from
above, the lower limit of the 95% credible band lies at
higher sound speeds. In contrast the standard pQCD
asymptotic constraint leads to a softening of the EOS at
high densities as was already concluded in the Bayesian
analyses of Refs. [53,68]. The similarity in the speed of
sound translates into the credible bands for PðεÞ,MðRÞ and
ΛðMÞ. Additionally, the 68% credible MðRÞ band extends
to slightly larger masses. There are also only minor changes
in εðnÞ and EðnÞ=A as displayed in Fig. 12. For a 2.1M⊙
neutron star, when the conformal limit is reached from
above, we find a radius R ¼ 11.6þ1.0

−0.9 km, the central
pressure Pc ¼ 311þ248

−189 MeV fm−3, tidal deformability
Λ ¼ 15þ17

−9 , and central density nc ¼ 4.9þ1.6
−1.7n0, again very

similar to the previous results in Table II. This means that
the description of neutron stars at all mass ranges is to large
extent independent of the high density asymptotic behavior
as long as the speed of sound is causally connected to the
conformal limit. However, with less support for small
speeds of sound, the modified asymptotic behavior makes
strong first-order phase transitions inside neutron stars even
more unlikely.

V. SUMMARY AND CONCLUSIONS

The present work has focused on several principal
questions relevant to the inference of neutron star properties
(masses, radii, tidal deformabilities) from the presently
available empirical astrophysical data and their detailed
analysis:

(a) To what extent can the inference results be consid-
ered independent of the choices of priors?

(b) Is it feasible to draw statistically significant con-
clusions about the equation of state of dense matter
concerning the possible occurrence of a phase
transition or crossover inside neutron stars?

TABLE VI. Similar to Table V, here the Bayes factors Bn−≤ntr
n−>ntr

are displayed for various transition densities ntr. The Bayes
factors are computed assuming the existence of an additional
hypothetical heavy neutron star with mass Mnew ¼ 2.2M⊙,
2.3M⊙ or 2.4M⊙ and an uncertainty σMnew

¼ �0.1M⊙. The
observation of a Mnew ¼ 2.4ð1ÞM⊙ neutron star would lead to
strong evidence that the speed of sound does not rise monoton-
ically up to a density of ntr ¼ 6n0 in the Gaussian and in the
segments parametrization.

Bn−≤ntr
n−>ntr

Gaussian Segments

Mnew ½M⊙� 2.2 2.3 2.4 2.2 2.3 2.4
ntr=n0

3 0.04 0.07 0.15 0.66 0.98 1.51
4 0.32 0.54 1.02 1.88 3.15 5.40
5 0.73 1.27 3.07 3.69 6.57 10.75
6 3.32 6.83 22.68 6.97 10.05 12.64
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A key quantity to address these issues is the speed of
sound, cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∂P=∂ε

p
, in neutron star matter. We have

modeled cs using two generic parametrizations, a skewed
Gaussian in combination with a logistic function, and a
more general form based on piecewise linear segments.
Using Bayesian inference methods, multimessenger data-
sets from Shapiro time delay observations of selected
pulsars, NICER x-ray measurements and gravitational wave
signals from binary neutron star mergers have been trans-
lated into constraints on the sound velocity inside neutron

stars. The asymptotic behavior of the squared sound speed,
reaching the conformal limit, c2s → 1=3, either from below
following perturbative QCD considerations, or from above
when applying hard dense loop (HDL) resummation tech-
niques in QCD, is implemented and discussed. At low
baryon densities n around n0 ¼ 0.16 fm−3, the equilibrium
density of normal nuclear matter, state-of-the-art chiral EFT
constraints are incorporated. But unlike several approaches
in the recent literature, these nuclear physics constraints are
implemented in terms of likelihoods similar to those for the

FIG. 12. Posterior 95% and 68% credible bands and medians for the segments parametrization with the conformal limit reached
asymptotically from above. Shown are the baryon density n as a function of energy density ε and the energy per particle E=A as a
function of density n.

FIG. 11. Posterior 95% and 68% credible bands and medians for the segments parametrization with the conformal limit reached
asymptotically from above. Shown are the squared speed of sound, c2s , and pressure P as a function of energy density ε, as well as the
mass-radius relation MðRÞ and tidal deformability Λ as a function of neutron star mass M.
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empirical data in order to warrant a statistically consistent
Bayesian framework.
The results and conclusions are summarized as follows:
(i) Good agreement is found between the output

posteriors for both parametrizations up to energy
densities ε ∼ 1.2 GeV fm−3 which cover the central
energy densities of M ∼ 2M⊙, neutron stars. For
larger energy densities differences between the para-
metrizations become more prominent because this
high-mass region is unrestricted by observational
data. Bayes factors comparing the two hypotheses
indicate that no parametrization is statistically pre-
ferred over the other. The implementation of a
conservative upper limit at n ¼ 2n0 based on ChEFT
results prohibits steeply rising sound speeds seen in
some previous analyses, highlighting the importance
of nuclear physics constraints at low and intermedi-
ate densities. The overall conclusion is that the
Bayesian inference approach generates results that
are indeed stable with respect to variations in the
functional form of the prior if the initial parametri-
zation is chosen sufficiently general.

(ii) A quantitative Bayes factor analysis gives extreme
evidence that the conformal bound c2s ≤ 1=3 is
violated inside neutron stars. If combined with
the behavior at ultrahigh densities derived from
standard perturbative QCD, with the conformal
limit reached asymptotically from below, this sug-
gests that the squared speed of sound displays a
nonmonotonic behavior including at least two ex-
trema, a maximum c2s;max followed by a minimum
c2s;min. However, this minimum would occur at very
high baryon densities, nðc2s;minÞ ¼ 6.7þ0.7

−0.5n0 (at 68%
level) and correspondingly at neutron star masses
M ≳ 2.1M⊙, i.e., at the borderline or beyond the
objects presently observed. Accordingly, there is
extreme evidence that c2s;min stays larger than 0.1 for
neutron stars with massM ≤ 1.9M⊙ and still strong
evidence for M ≤ 2.0M⊙. This indicates that a first-
order phase transition in the core of even the
heaviest observed neutron stars is unlikely, while
a continuous crossover (as realized for example in
the quark-hadron continuity picture) is not ruled
out. In our analysis, we assume that such a phase
change does not produce twin-star solutions which
are implausible given the available data.
If the asymptotic behavior of the sound velocity

is changed such that the conformal limit is reached
from above as suggested in the HDL scenario, the
gross features of the inferred speed of sound inside
neutron stars do not alter. The only difference is that
at high energy densities, the 95% level of c2s remains
at larger sound speeds, shifting possible phase
changes to even higher densities. Nevertheless,

the behavior of c2s at asymptotic densities has
relatively minor influence on the properties of
typical neutron stars with masses between M ¼
1.4M⊙ and 2.1M⊙.

(iii) The characteristic baryon densities reached in
the center of a two-solar mass neutron star,
nc ∼ ð5 − 6Þn0, are not extreme, suggesting that a
description based entirely on baryonic degrees of
freedom can still be viable. Such a picture is realized
for example in functional renormalization group
studies based on chiral baryon-meson field theory
or in a related treatment of neutron star matter as a
relativistic Fermi liquid. Its basic feature is a mono-
tonically increasing sound velocity as a function of
baryon density. We have investigated whether such
an option can be accommodated with or excluded
by the existing empirical data. With the additional
assumption that the speed of sound is preconditioned
to rise monotonically up to a certain transition density
ntr, a corresponding Bayes factor analysis points out
that there is strong evidence in the Gaussian and
moderate evidence in the segments parametrization
that ntr ≳ 3n0. Even a monotonically rising speed of
sound up to very high densities, ntr ¼ 6n0 cannot be
excluded by the current data and further supports the
moderate evidence against a phase transition at any
density in the core of neutron stars. However, an
extension of the Bayes factor evaluation including a
hypothetical object with a mass beyond 2.1M⊙
suggests that the observation of a superheavy neutron
star with mass M ∼ 2.3–2.4M⊙ would provide in-
dication for a more complex phase structure in the
deep interior of the star.

The expected expansion of the observational data base in
the future will lead to even tighter constraints on the speed
of sound in neutron stars, with a chance of further clarifying
the phase structure of QCD at high baryon densities and
low temperatures. In this context our studies point out that
the observation of a neutron star with even larger mass than
the presently heaviest existing one would be most
informative.
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APPENDIX A: BAYES FACTORS

With Bayes factors one can compare two competing
hypotheses H0 and H1 and quantify the evidence for one
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hypothesis over the other. Given a dataset D, the Bayes
factor is defined as the quotient of the marginal likelihoods:

BH1

H0
¼ PrðDjH1;MÞ

PrðDjH0;MÞ : ðA1Þ

Using Bayes’ theorem in Eq. (8), we can rewrite the
marginal likelihoods in terms of posterior and prior
probabilities

BH1

H0
¼ PrðH1jD;MÞ

PrðH1jMÞ
PrðH0jMÞ

PrðH0jD;MÞ : ðA2Þ

The probability distribution for a general hypothesis H is
given by the integral over all parameter sets that support
this hypothesis, θ ∈ ΘH:

PrðHjD;MÞ
PrðHjMÞ ¼

R
θ∈ΘH

dθ PrðθjD;MÞR
θ∈ΘH

dθ PrðθjMÞ

≈
P

θ∈ΘH
PrðθjD;MÞ
Nθ∈ΘH

; ðA3Þ

where Nθ∈ΘH
denotes the number of parameter sets that

support the hypothesis H. The last line holds only if the
number of samples is large enough to approximate the
integration over the multidimensional parameter space by a
sum. To interpret the resulting Bayes factors we use the
established evidence classification of Refs. [103,104] listed
in Table VII.

APPENDIX B: KERNEL DENSITY ESTIMATION

Kernel density estimation is a nonparametric method to
determine the probability density function of a given
dataset. Assume a set of N points, ðx1; x2;…; xNÞ, which
are independent and identically distributed according to the
unknown density function fðxÞ. The kernel density esti-
mator (KDE) of this underlying density function is

f̂hðxÞ ¼
1

Nh

XN
i¼1

K

�
x − xi
h

�
; ðB1Þ

where h is a smoothing parameter called the bandwidth and
K is a kernel function. This kernel function must integrate
to one and be symmetric and non-negative. There is a range
of possible kernel functions, e.g., uniform, linear or
exponential and here we use a normalized Gaussian kernel:

KðzÞ ¼ 1ffiffiffiffiffiffi
2π

p expð−z2=2Þ: ðB2Þ

The choice of the bandwidth h is done such that a proper
balance is achieved between maintaining important features
in the density function and smoothing over irrelevant fine
structure in the estimator. To find an appropriate value for h
we use the rule of thumb developed by Silverman [142].
The above approach can be straightforwardly generalized
to the case with data on a higher dimensional space.

APPENDIX C: EOS TABULAR

For practical purposes and applications, the median
values of the baryon density nðεÞ as a function of energy
density, as shown in Fig. 5, are listed in Table VIII. Based
on these values the energy per particle can be computed
using Eq. (33). The pressure can be computed using the
Gibbs-Duhem relation, Eq. (32), and then Eq. (3) for
squared speed of sound. The asymmetry of the posterior
distribution causes small deviations between the pressure
computed from the Gibbs-Duhem relation and the median
of the pressure in Fig. 2.

TABLE VIII. Tabulated values of the median for the density n,
in units of the nuclear saturation density n0, as a function of
energy density ε as depicted in Fig. 5. Only the values for the
segments parametrization are listed. Based on these values the
energy per particle E=A is computed as well as the pressure P and
sound speed c2s using the Gibbs-Duhem relation.

ε ½GeV fm−3� n=n0 E=A [MeV] P ½MeV fm−3� c2s

0.1 0.66 9.8 0.7 0.03
0.2 1.30 22.7 7.4 0.10
0.3 1.91 42.4 21.2 0.18
0.4 2.49 65.6 43.7 0.27
0.5 3.03 91.6 75.7 0.37
0.6 3.54 119.6 116.5 0.45
0.7 4.02 148.7 164.7 0.51
0.8 4.47 178.5 217.8 0.55
0.9 4.90 208.5 273.9 0.57
1.0 5.31 238.1 331.9 0.59
1.1 5.70 267.2 390.8 0.59
1.2 6.07 295.5 450.3 0.60
1.3 6.43 323.2 509.9 0.60

TABLE VII. Interpretation of Bayes factors for comparing the
evidence for hypotheses H0 and H1 according to the evidence
classification in Ref. [103] with the updated terminology of
Ref. [104].

BH1

H0
Interpretation

> 100 Extreme evidence for H1

30–100 Very strong evidence for H1

10–30 Strong evidence for H1

3–10 Moderate evidence for H1

1–3 Anecdotal evidence for H1

1 No evidence
1=3–1 Anecdotal evidence for H0

1=10–1=3 Moderate evidence for H0

1=30–1=10 Strong evidence for H0

1=100–1=30 Very strong evidence for H0

< 1=100 Extreme evidence for H0
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