
Thermodynamics and quark condensates of three-flavor QCD
at low temperature

Jens O. Andersen ,1,* Qing Yu,2,1,† and Hua Zhou2,1,‡
1Department of Physics, Faculty of Natural Sciences, NTNU, Norwegian University of Science

and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway
2Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China

(Received 18 July 2022; accepted 2 December 2022; published 6 January 2023)

We use three-flavor chiral perturbation theory (χPT) to calculate the pressure, light, and s-quark
condensates of QCD in the confined phase at finite temperature to Oðp6Þ in the low-energy expansion. We
also include electromagnetic effects to order e2, where the electromagnetic coupling e counts as order p.
Our results for the pressure and the condensates suggest that χPT converges very well for temperatures up
to approximately 150 MeV. We combine χPT and the hadron resonance gas (HRG) model by adding
heavier baryons and mesons. Our results are compared with lattice simulations and the agreement is very
good for temperatures below 170 MeV, in contrast to the results from χPT which agree with the lattice only
up to T ≈ 120 MeV. Our value for the chiral crossover temperature is 160.1 MeV, which compares
favorably to the lattice result of 157.3 MeV.
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I. INTRODUCTION

In massless QCD with three flavors, the QCD
Lagrangian has a global SUð3ÞL × SUð3ÞR ×Uð1ÞB sym-
metry in addition to a local SUðNcÞ gauge symmetry. In the
vacuum, this symmetry is broken down to SUð3ÞV ×Uð1ÞB
via the formation of a quark condensate, which gives rise to
eight massless Goldstone bosons, the charged and neutral
pions, the charged and neutral kaons, and the eta. In nature,
this symmetry is explicitly broken by finite quark masses
down to SUð2ÞV ×Uð1ÞY ×Uð1ÞB giving rise to pseudo-
Goldstone bosons whose masses are small compared to the
typical hadronic scale. The low-energy effective theory that
describes the pseudo-Goldstone bosons is chiral perturba-
tion theory (χPT), which is based only on the global
symmetries of QCD and the low-energy degrees of freedom
[1–3]. It therefore provides a model-independent frame-
work for describing the low-energy dynamics of QCD.
The original formulation of χPT was in the strong sector.

Gasser and Leytwyler developed a consistent power count-
ing scheme such that the effective Lagrangian can be written
as an infinite series of terms in a low-energy expansion. The

leading-order Lagrangian is simply the nonlinear sigma
model. The next-to-leading order Lagrangian for two flavors
was derived in Ref. [2] and for three flavors in Ref. [3]. At
next-to-next-to leading order, the effective Lagrangian was
derived in Refs. [4–6]. A review of the phenomenology of
chiral perturbation theory was given in Ref. [7].
In the strong sector, the charged and neutral pions have

the same tree-level masses. A mass difference between the
u and the d quarks, produces isospin breaking effects in
hadron masses. For pions, this effect is second order in
mu −md. For charged and neutral kaons it turns out that
their mass difference is linear in the quark mass difference
mu −md. However, there is another important source of the
mass differences between the neutral and charged mesons,
namely the effects of virtual photons. The leading electro-
magnetic effects of order e2 were first included in Ref. [8],
while the systematic inclusion of the effects of virtual
photons in χPT at next-to-leading order, i.e., Oðe2p2Þ and
Oðe4Þ was carried out in Refs. [9–12]. The power counting
rule in χPT developed in [9] is such that e counts as order p.
Given the success of chiral perturbation theory at T ¼ 0,

one may hope that it also provides a good description of
the QCD thermodynamics at low temperature. In the chiral
limit, the pions are massless and their typical momenta
are of order T. If T is sufficiently small, the low-energy
expansion ought to converge. Again, in the massless limit,
the pion decay constant f is the only scale that appears in
the leading-order Lagrangian. Up to corrections given
by the low-energy constants that appear at higher orders
in the low-energy expansion, T=f is the expansion param-
eter of χPT. In a series of papers, the low-temperature
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expansions of the pressure P and quark condensate hq̄qi in
two-flavor χPT were calculated and show the expected
form [13–15]

P ¼ π2T4
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where hq̄qi0 is condensate in the vacuum, Λp ¼ 275�
65 MeV and Λq ¼ 470� 110 MeV [15]. Λp and Λq

depend on the low-energy constants li, which up to a
factor are the running couplings lri ðΛÞ evaluated at the scale
Λ ¼ m, m being the (bare) pion mass. The expansions
show good convergence properties for temperatures up to
approximately 140 MeV [15].
However, at high enough temperature, χPT ceases to be

valid since other degrees of freedom are excited and one
must use other methods. Lattice Monte Carlo techniques is
a first-principles method that can be used to study finite-
temperature QCD: At zero (and small) baryon chemical
potential, one can carry out lattice simulations to calculate
thermodynamic quantities such as the pressure and inter-
action measure as well as the approximate order parameters
that characterize confinement and chiral symmetry break-
ing, namely the Polyakov loop and the quark condensates.
For physical quark masses and two quark flavors, the
transition is a smooth crossover at a transition temperature
of around 155 MeV [16–19].
The hadron resonance gas (HRG) model treats finite-

temperature QCD as a gas of noninteracting hadrons and
their resonances. As T gets higher, it is necessary to include
more and more particles, and typically one has included the
approximately 200 hadrons below 2.5 GeV. It can be easily
generalized to finite chemical potentials as well as be
“distorted” by using not the physical masses but masses
that take into account lattice discretization effects. It has
also been combined with results from two-flavor χPT by
adding the contributions from heavier hadrons [18].
Comparing predictions for e.g. the pressure and the quark
condensate of lattice QCD and the HRG model, one finds,
perhaps surprisingly, very good agreement given the fact
that the latter does not include interactions (unless com-
bined with e.g. χPT) [18,20–23].
Finite temperature calculations within χPT including

electromagnetic effects are scarce. In Ref. [24], the authors
calculate the quark condensates at NLO in two-flavor
and three-flavor χPT. In Ref. [25], they calculate the pole
masses and the damping rate for the charged pion in two-
flavor χPT at LO in the classes of covariant and Coulomb
gauges. While the pole mass is gauge-fixing independent in

the two classes of gauges and coincide, the damping rate
depends on the gauge. In particular, the damping rate in
covariant gauge is negative indicating an instability. This is
reminiscent of the old problem of the gauge dependence of
the gluon damping rate in hot QCD. The problem was
solved by Braaten and Pisarski who realized that a one-loop
calculation is incomplete and that one must use effective
propagators and vertices to obtain a complete leading-order
result [26,27]. This is summarized in a nonlocal effective
Lagrangian that upon expansion generates the correction
terms [28,29]. This Lagrangian has been generalized to all
temperatures and densities in Ref. [30] and can possibly be
used to resolve the gauge dependence of the damping rate
in χPT.
In the present paper, we consider three-flavor χPT

at finite temperature including electromagnetic effects to
leading order in e2. We calculate the pressure and the quark
condensates toOðp6Þ. In order to extend the validity of our
calculations to higher temperatures, we combine the results
from χPT and the hadron resonance gas model. The latter
has enjoyed considerable success in describing the thermo-
dynamics of low-temperature QCD as obtained from
the lattice. The paper is organized as follows. In Sec. II,
we briefly discuss the chiral Lagrangian. In Sec. III, we
calculate the pressure to Oðp6Þ in the low-energy expan-
sion. In Sec. IV, we discuss the extension of the chiral
Lagrangian to include the effects of electromagnetic inter-
actions. In Sec. V, the pressure is again calculated toOðp6Þ
in the low-energy expansion. In Sec. VI, we calculate the
quark condensates while in Sec. VII we briefly discuss
the hadron resonance gas model. In Sec. VIII, we present
and discuss our numerical results. We have included four
appendices providing the reader with definitions and useful
calculational details. In particular, we calculate the quark
condensate at T ¼ 0 including electromagnetic effects,
which is required in the calculation of the finite-temper-
ature dependent quark condensates.

II. CHIRAL LAGRANGIAN

In massless three-flavor QCD, the Lagrangian has a
global SUð3ÞL × SUð3ÞR symmetry in addition to the
global Uð1ÞB baryon symmetry and the local SUðNcÞ
gauge symmetry. In the vacuum, this symmetry is broken
to SUð3ÞV by the formation of a quark condensates. For
two massless and one massive quark, the symmetry is
SUð2ÞL × SUð2ÞR, which is broken to SUð2ÞV in the
vacuum. For two degenerate light quarks and one massive
quark, this symmetry is explicit broken to SUð2ÞV . If the
two quarks are nondegenerate, we have three Uð1Þ sym-
metries, one for each quark flavor.
Chiral perturbation theory is a low-energy effective

theory of QCD which is based on the global symmetries
and relevant degrees of freedom [1–3]. For three-flavor
QCD, the degrees of freedom are the eight mesons: three
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pions, four kaons, and the η. In the chiral Lagrangian each
factor of a quark mass counts two powers of momentum
and each factor of a derivative counts one power of
momentum. The leading-order Lagrangian is given by [3]

L2 ¼
1

4
f2h∂μΣ∂μΣ†i þ 1

4
f2hχ†Σþ Σ†χi; ð3Þ

where hAi denotes the trace of a matrix A in flavor space, f
is the bare pion decay constant, and χ is given in terms of
the quark mass matrix

χ ¼ 2B0diagðmu;md;msÞ: ð4Þ

Finally,

Σ ¼ exp

�
i
λaϕa

f

�
; ð5Þ

with ϕa being the meson fields parametrizing the Goldstone
manifold and where λa are the Gell-Mann matrices that
satisfy hλaλbi ¼ 2δab.
Expanding the Lagrangian L2 to second order in the

fields ϕa, we find

Lquadratic
2 ¼ ∂μπ

þ
∂
μπ− −m2
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þπ− þ 1

2
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−
1
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−m2
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∂
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K0;0K
0K̄0

þ 1

2
∂μη∂

μη −
1

2
m2

η;0η
2; ð6Þ

where the meson fields are expressed in terms of ϕa as

π� ¼ 1ffiffiffi
2

p ðϕ1 ∓ iϕ2Þ; ð7Þ

π0 ¼ ϕ3; ð8Þ

K� ¼ 1ffiffiffi
2

p ðϕ4 ∓ iϕ5Þ; ð9Þ

K0=K̄0 ¼ 1ffiffiffi
2

p ðϕ6 ∓ iϕ7Þ; ð10Þ

η ¼ ϕ8: ð11Þ

The tree-level masses are

m2
π;0 ¼ B0ðmu þmdÞ; ð12Þ

m2
K�;0 ¼ B0ðmu þmsÞ; ð13Þ

m2
K0;0 ¼ B0ðmd þmsÞ; ð14Þ

m2
η;0 ¼

B0ðmu þmd þ 4msÞ
3

: ð15Þ

Since we are working in the isospin limit, there is no mixing
between π0 and η. As long as e ¼ 0, the charged and neutral
kaons have the same bare mass which is denoted by mK;0.
The quartic terms of the Lagrangian L2 contains a large

number of terms. They can conveniently be written as

Lquartic
2 ¼ m2

π;0

24f2
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12f2
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216f2
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1

6f2
½2ðπ0Þ2∂μπþ∂μπ−þ2πþπ−∂μπ0∂μπ0

−m2
π;0π

þπ−ðπ0Þ2�− 1

6f2
πþπ−½2∂μπþ∂μπ−−m2

π;0π
þπ−�− 1

6f2
KþK−½2∂μKþ

∂
μK−−m2

K;0K
þK−�

−
1

6f2
πþπ−½∂μKþ

∂
μK−−m2

K;0K
þK−�− 1

6f2
KþK−½∂μπþ∂μπ−−m2

π;0π
þπ−�− 1

6f2
½2K0K̄0

∂μK0
∂
μK̄0−m2

K;0ðK0K̄0Þ2�

−
1

12f2
½K0K̄0∂μπ0∂

μπ0þðπ0Þ2∂μK0∂
μK̄0−ðm2

π;0þm2
K;0Þðπ0Þ2K0K̄0�− 1

12f2
½KþK−

∂μπ0∂
μπ0þðπ0Þ2∂μKþ

∂
μK−

−ðm2
π;0þm2

K;0Þðπ0Þ2KþK−�− 1

6f2
½K0K̄0

∂μπ
þ
∂
μπ−þπþπ−∂μK0

∂
μK̄0−ðm2

π;0þm2
K;0Þπþπ−K0K̄0�

−
1

6f2
½KþK−

∂μK0
∂
μK̄0þK0K̄0

∂μKþ
∂
μK−−2m2

K;0K
þK−K0K̄0�− 1

12f2
½3KþK−

∂μη∂
μηþ3η2∂μKþ

∂
μK−

þðm2
π;0−3m2

K;0ÞKþK−η2�− 1

12f2
½3K0K̄0

∂μη∂
μηþ3η2∂μK0

∂
μK̄0þðm2

π;0−3m2
K;0ÞK0K̄0η2�; ð16Þ

THERMODYNAMICS AND QUARK CONDENSATES OF … PHYS. REV. D 107, 014010 (2023)

014010-3



where we have omitted terms that do not contribute to the
pressure or quark condensates at two loops in the isospin
limit.
At next-to-leading order in the low-energy expansion,

there are 12 terms in the chiral Lagrangian [3]. The terms
that are relevant for the present calculations are

L4 ¼ L4h∂μΣ†
∂
μΣihχ†Σþ χΣ†i

þ L5hð∂μΣ†
∂
μΣÞðχ†Σþ χΣ†Þi

þ L6hχ†Σþ χΣ†i2 þ L7hχΣ† − χ†Σi2
þ L8hχ†Σχ†Σþ χΣ†χΣ†i þH2hχχ†i; ð17Þ

where Li are the so-called low-energy constants
(i ¼ 0; 1; 2…10), Hi are the coefficients of the contact
terms in chiral Lagrangian, and referred to as high-energy
constants (i ¼ 1; 2). The relations between the bare cou-
plings Li and Hi and their renormalized counterparts Lr

i
and Hr

i are

Li ¼ Lr
i −

ΓiΛ−2ϵ

2ð4πÞ2
�
1

ϵ
þ 1

�
; ð18Þ

Hi ¼ Hr
i −

ΔiΛ−2ϵ

2ð4πÞ2
�
1

ϵ
þ 1

�
: ð19Þ

The constants Γi and Δi assume the following values [3]

Γ4 ¼
1

8
; Γ5 ¼

3

8
; Γ6 ¼

11

144
; ð20Þ

Γ7 ¼ 0; Γ8 ¼
5

48
; Δ2 ¼

5

24
: ð21Þ

Since the bare parameters are independent of the scale Λ,
differentiation of Eqs. (18) and (19) immediately gives rise
to equations governing the running of the renormalized
couplings. The renormalization group equations read

Λ
dLr

i

dΛ
¼ −

Γi

ð4πÞ2 ; Λ
dHr

i

dΛ
¼ −

Δi

ð4πÞ2 : ð22Þ

We note that Γ7 ¼ 0, which implies that Lr
7 does not run

and we write L7 ¼ Lr
7.

The quadratic part of the Lagrangian Eq. (17) is given by

Lquadratic
4 ¼ 4L4

f2
ðm2

π;0 þ 2m2
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0
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8L6
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K;0ðKþK− þ K0K̄0Þ þm2

η;0η
2�

−
64L7

3f2
ðm2

π;0 −m2
K;0Þ2η2 −

16L8

f2

�
m4

π;0π
þπ− þ 1

2
m4

π;0ðπ0Þ2 þm4
K;0ðKþK− þ K0K̄0Þ

þ 1

3

�
4m4

K;0 − 4m2
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2
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3

2
m4
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�
η2
�
: ð23Þ

Finally, there are static terms from L6 that contribute at
Oðp6Þ to the pressure, but they are temperature indepen-
dent and only serve to renormalize the vacuum energy.

III. PRESSURE

The free energy density is given by

F ¼ −
T
Vsys

logZ; ð24Þ

where Vsys is the volume of the system and Z is the
partition function which can be expressed as a path integral
in the imaginary-time formalism

Z ¼
Z

Dϕe−
R

β

0
dτ
R

d3xLE ; ð25Þ

where LE is the Euclidean Lagrangian, β≡ 1=T, and ϕ is
short-hand notation for all the fields integrated over. The
pressure is then given by P ¼ −F. The loop diagrams that
contribute to the pressure are ultraviolet divergent and must
be regularized. We use dimensional regularization where
power divergences are set to zero and logarithmic diver-
gences show up as poles in ϵ, where d ¼ 3 − 2ϵ. There are
both temperature-independent and temperature-dependent
divergences. The counterterms diagrams that are used to
cancel the T ¼ 0 divergences are also sufficient to cancel
the temperature-dependent ones. In the present paper, we
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are interested in finite-temperature effects and so we simply
throw away the T ¼ 0 divergences.
The Oðp2Þ contribution is given by the static part of the

Lagrangian L2. Since this term is temperature independent,
we ignore it henceforth. In the following, we denote the
finite-temperature contribution at Oðp2nÞ by Pn−1 with
n ¼ 1; 2; 3…. The result through Oðp2nÞ is denoted
by P0þ1þ���n−1.

A. Oðp4Þ
The one-loop pressure is given by

P1 ¼
3

2
I00ðm2

π;0Þ þ 2I00ðm2
K;0Þ þ

1

2
I00ðm2

η;0Þ; ð26Þ

where I00ðmÞ is given by Eq. (A6). Since we are only
interested in the temperature dependence, we keep the
terms J0ðβmÞ to obtain

P0þ1 ¼
T4

ð4πÞ2
�
3

2
J0ðβmπ;0Þ þ 2J0ðβmK;0Þ þ

1

2
J0ðβmη;0Þ

�
;

ð27Þ

where the thermal integrals JnðβmÞ are defined in Eq. (A8)
and where J0ðβmÞ is to be evaluated at ϵ ¼ 0.

B. Oðp6Þ
At Oðp6Þ, there are three contributions to the pressure:

the tree-level graphs, the one-loop graphs with a mass or
derivative insertion, and the two-loop graphs. The tree graphs
are temperature independent and discarded. The one-loop
diagrams can be split into a temperature-independent term
and a temperature-dependent term, where both of them are
divergent. The two-loop graphs can be split in a similar
manner. The temperature-dependent divergent parts from the
one-loop graphs cancel against the temperature-dependent

divergent parts from the two-loop graphs, showing that
renormalization at T ¼ 0 is sufficient to obtain a finite
expression for the pressure.
The two-loop graphs are shown in the Fig. 1. Their

expression is

Pa
2 ¼−

m2
π;0

f2

�
3

8
I21ðm2

π;0Þ−
1

4
I1ðm2

π;0ÞI1ðm2
η;0Þþ

7

72
I21ðm2

η;0Þ
�

−
m2

K;0

f2

�
2

3
I1ðm2

K;0ÞI1ðm2
η;0Þ−

2

9
I21ðm2

η;0Þ
�
; ð28Þ

where the integral I1ðm2Þ is defined in Eq. (A7). The one-
loop counterterm graphs are shown in Fig. 2. Their
expression is

Pb
2 ¼

4L4 − 8L6

f2
ðm2

π;0 þ 2m2
K;0Þ½3m2

π;0I1ðm2
π;0Þ þ 4m2

K;0I1ðm2
K;0Þ þm2

η;0I1ðm2
η;0Þ�

þ 4L5

f2
½3m4

π;0I1ðm2
π;0Þ þ 4m4

K;0I1ðm2
K;0Þ þm4

η;0I1ðm2
η;0Þ� −

64L7

3f2
ðm2

π;0 −m2
K;0Þ2I1ðm2

η;0Þ

−
8L8

f2

�
3m4

π;0I1ðm2
π;0Þ þ 4m4

K;0I1ðm2
K;0Þ þ

8m4
K;0 − 8m2

K;0m
2
π;0 þ 3m4

π;0

3
I1ðm2

η;0Þ
�
: ð29Þ

Adding Eqs. (28) and (29), and renormalizing the couplings using Eq. (18), we obtain

FIG. 1. Two-loop Feynman graphs contributing to the pressure
at Oðp6Þ. Dashed line represents a neutral meson and solid line
represents a charged meson.

FIG. 2. One-loop Feynman graphs with a mass or derivate
counterterm insertion (indicated by a black blob) contributing to
the pressure at Oðp6Þ.
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P2 ¼ −
m2

π;0T
4

ð4πÞ4f2
�
3

8
J21ðβmπ;0Þ −

1

4
J1ðβmπ;0ÞJ1ðβmη;0Þ þ

7

72
J21ðβmη;0Þ

�
−

m2
K;0T

4

ð4πÞ4f2
�
2

3
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2

9
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�

þ ð4Lr
4 − 8Lr

6ÞT2

ð4πÞ2f2 ðm2
π;0 þ 2m2

K;0Þ½3m2
π;0J1ðβmπ;0Þ þ 4m2

K;0J1ðβmK;0Þ þm2
η;0J1ðβmη;0Þ�

þ 4Lr
5T

2

ð4πÞ2f2 ½3m
4
π;0J1ðβmπ;0Þ þ 4m4

K;0J1ðβmK;0Þ þm4
η;0J1ðβmη;0Þ� −

64Lr
7T

2

3ð4πÞ2f2 ðm
2
π;0 −m2

K;0Þ2J1ðβmη;0Þ

−
8Lr

8T
2

ð4πÞ2f2
�
3m4

π;0J1ðβmπ;0Þ þ 4m4
K;0J1ðβmK;0Þ þ

1

3
ð8m4

K;0 − 8m2
π;0m

2
K;0 þ 3m4

π;0ÞJ1ðβmη;0Þ
�

þ T2J1ðβmπ;0Þ
ð4πÞ4f2

�
3

4
m4

π;0 log
Λ2

m2
π;0

−
1

4
m2

π;0m
2
η;0 log

Λ2

m2
η;0

�
þ T2J1ðβmK;0Þ

ð4πÞ4f2
�
2

3
m2

K;0m
2
η;0 log

Λ2

m2
η;0

�

þ T2J1ðβmη;0Þ
ð4πÞ4f2

�
−
1

4
m4

π;0 log
Λ2

m2
π;0

þ 2

3
m4

K;0 log
Λ2

m2
K;0

−
1

3
m4

η;0 log
Λ2

m2
η;0

þ 1

12
m2

π;0m
2
η;0 log

Λ2

m2
η;0

�
; ð30Þ

where J1ðβmÞ is to be evaluated at ϵ ¼ 0.
The terms proportional to the renormalized couplings Lr

i
and the logarithms can be absorbed in the one-loop result
by replacing the bare meson masses with the physical
meson masses at one loop, listed in Appendix D. This can
be seen by writing the meson masses schematically asm2 þ
δm2 and expanding the one-loop contribution as

I00ðm2 þ δm2Þ ¼ I00ðm2Þ − δm2I1ðm2Þ; ð31Þ

where we have used Eq. (A5). Similarly, using Eq. (A9) for
ϵ ¼ 0, we find

J0ðβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ δm2

p
Þ ¼ J0ðβmÞ − δm2β2J1ðβmÞ: ð32Þ

The sum of Eqs. (27) and (30) gives in the limit ϵ → 0, the
finite-temperature pressure through Oðp6Þ

P0þ1þ2 ¼
T4

ð4πÞ2
�
3

2
J0ðβMπÞþ2J0ðβMKÞþ

1

2
J0ðβMηÞ

�

−
m2

π;0T
4

ð4πÞ4f2
�
3

8
J21ðβmπ;0Þ−

1

4
J1ðβmπ;0ÞJ1ðβmη;0Þ

þ 7

72
J21ðβmη;0Þ

�
−
m2

K;0T
4

ð4πÞ4f2
�
2

3
J1ðβmK;0ÞJ1ðβmη;0Þ

−
2

9
J21ðβmη;0Þ

�
: ð33Þ

We note that the result simplifies significantly in the
chiral limit since the terms proportional to m2

π;0 vanish. In
the two-flavor case, the correction to the Stefan-Boltzmann
result is of Oðp8Þ, cf. Eq. (1).

IV. INCLUDING ELECTROMAGNETIC
INTERACTIONS

Electromagnetic interactions in the framework of chiral
perturbation theory were first included by Urech in Ref. [9]
in the three-flavor case. The SUð2ÞV symmetry of the chiral
Lagrangian is then becoming a localUð1Þ gauge symmetry.
Moreover, he showed that one can find a consistent power
counting scheme also in this case, if the electromagnetic
coupling e counts asOðpÞ and the electromagnetic field Aμ

counts asOð1Þ. The leading-order Lagrangian is now given
by [8]

L2 ¼ −
1

4
FμνFμν þ 1

4
f2h∇μΣ∇μΣ†i þ 1

4
f2hχ†Σþ Σ†χi

þ ChQΣQΣ†i þ Lgf þ Lghost; ð34Þ

where the first term is the kinetic term for the photons. The
covariant derivatives are

∇μΣ ¼ ∂μΣþ i½AμQ;Σ�; ð35Þ

∇μΣ† ¼ ∂μΣ† þ i½AμQ;Σ†�: ð36Þ

where the charge matrix of the quarks is

Q ¼ 1

2
e
�
λ3 þ

1ffiffiffi
3

p λ8

�
: ð37Þ

Since our calculations involve the dynamical gauge field
Aμ, we need to fix the gauge. In the class of covariant
gauges, the gauge-fixing term is

Lgf ¼
1

2ξ
ð∂μAμÞ2; ð38Þ

where ξ is the gauge-fixing parameter. The corresponding
ghost term is
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Lghost ¼
1

2
∂μc̄∂μc: ð39Þ

The ghost completely decouples from the rest of the
Lagrangian. In a general covariant gauge, the Euclidean
space photon and ghost propagators are

ΔμνðPÞ ¼
1

P2

�
δμν − ð1 − ξÞPμPν

P2

�
; ð40Þ

ΔghostðPÞ ¼
1

P2
: ð41Þ

At Oðp4Þ, the partial derivatives are also replaced by
covariant derivatives in Eq. (17). The Oðp4Þ chiral
Lagrangian has an additional 17 terms whose coefficients
were computed in the Feynman gauge, ξ ¼ 1 [9–12].
Generally, the coefficients of the operators depend on
the gauge, an explicit example is given in Ref. [31].
Some of the operators have two powers of e and two
derivatives, or two powers of e with one power of the
quark mass, or four powers of e. The 14 operators
required are

LQ
4 ¼ K1f2h∇μΣ†∇μΣihQ2i þK2f2h∇μΣ†∇μΣihQΣQΣ†i þK3f2ðh∇μΣ†QΣih∇μΣ†QΣi þ h∇μΣQΣ†ih∇μΣQΣ†iÞ

þK4f2h∇μΣ†QΣih∇μΣQΣ†i þK5f2hð∇μΣ†∇μΣþ∇μΣ∇μΣ†ÞQ2i þK6f2h∇μΣ†∇μΣQΣ†QΣþ∇μΣ∇μΣ†QΣQΣ†i
þK7f2hχ†Σþ Σ†χihQ2i þK8f2hχ†Σþ Σ†χihQΣQΣ†i þK9f2hðχ†Σþ Σ†χ þ χΣ† þ Σχ†ÞQ2i
þK10f2hðχ†Σþ Σ†χÞQΣ†QΣþ ðχΣ† þ Σχ†ÞQΣQΣ†i þK11f2hðχ†Σ− Σ†χÞQΣ†QΣþ ðχΣ† − Σχ†ÞQΣQΣ†i
þK15f4hQΣQΣ†i2 þK16f4hQΣQΣ†ihQ2i þK17f4hQ2i2; ð42Þ

where K1–K17 are constants. The last operator is a contact
term. The relation between the bare and renormalized
couplings is

Ki ¼ Kr
i −

Λ−2ϵΣi

2ð4πÞ2
�
1

ϵ
þ 1

�
; ð43Þ

where the constants Σi are

Σ1 ¼
3

4
; Σ2 ¼ Z; ð44Þ

Σ3 ¼ −
3

4
; Σ4 ¼ 2Z; ð45Þ

Σ5 ¼ −
9

4
; Σ6 ¼

3

2
Z; ð46Þ

Σ7 ¼ 0; Σ8 ¼ Z; ð47Þ

Σ9 ¼ −
1

4
; Σ10 ¼

1

4
þ 3

2
Z; ð48Þ

Σ11 ¼
1

8
; Σ15 ¼

3

2
þ 3Z þ 14Z2; ð49Þ

Σ16 ¼ −3 −
3

2
Z − Z2; Σ17 ¼

3

2
−
3

2
Z þ 5Z2; ð50Þ

and Z ¼ C
f4. The running of Kr

i is given by the solution to

the renormalization group equation

Λ
dKr

i

dΛ
¼ −

Σi

ð4πÞ2 : ð51Þ

Note that Σ7 ¼ 0 which implies that K7 does not run and
we write K7 ¼ Kr

7.
The charged mesons receive a contribution to the tree-

level mass from the term ChQΣQΣ†i in the Lagrangian
Eq. (34). Expanding this term to second order in the fields,
we find

δLquadratic
2 ¼ −

Ce2

f2
½ϕ2

1 þ ϕ2
2 þ ϕ2

4 þ ϕ5
2�

¼ −2
Ce2

f2
½πþπ− þ KþK−�; ð52Þ

and therefore

m2
π�;0 ¼ B0ðmu þmdÞ þ 2

Ce2

f2
; ð53Þ

m2
K�;0 ¼ B0ðmu þmsÞ þ 2

Ce2

f2
: ð54Þ

The new term which is of purely electromagnetic origin
gives rise to the mass splitting of the neutral and charged
mesons that is nonzero in the chiral limit.
We also need the Lagrangian to fourth order in the fields.

The new terms are coming from the covariant derivative
and from the term ChQΣQΣ†i. We find
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LQ;quartic
2 ¼ Ce2

6f4
½8ðπþπ−Þ2 þ 4πþπ−ðπ0Þ2 þ 16πþπ−KþK− þ 2πþπ−K0K̄0 þ ðπ0Þ2KþK− þ 8ðKþK−Þ2

þ2KþK−K0K̄0 þ 3KþK−η2� þ ieðπþ∂μπ− − π−∂μπ
þÞAμ þ ieðKþ

∂μK− − K−
∂μKþÞAμ

þ e2ðπþπ− þ KþK−ÞAμAμ: ð55Þ

The one-loop counterterms are found by expanding LQ
4 in Eq. (42) to second order in the fields. One finds

LQ;quadratic
4 ¼ 4

3
e2ðK1 þK2Þ½∂μπ0∂μπ0 þ 2∂μπ

þ
∂
μπ− þ 2∂μKþ

∂
μK− þ 2∂μK0

∂
μK̄0 þ ∂μη∂

μη�− 1

3
e2ð2K3 −K4Þ

× ½3∂μπ0∂μπ0 þ ∂μη∂
μη� þ 2

9
e2ðK5 þK6Þ½5∂μπ0∂μπ0 þ 10∂μπ

þ
∂
μπ− þ 10∂μKþ

∂
μK− þ 4∂μK0

∂
μK̄0 þ 3∂μη∂

μη�

−
4

3
e2ðK7 þK8Þ½m2

π;0ðπ0Þ2 þ 2m2
π;0π

þπ− þ 2m2
K;0ðKþK− þK0K̄0Þ þm2

η;0η
2�− 4e2K8ðm2

π;0 þ 2m2
K;0Þ

× ðπþπ− þKþK−Þ− 2e2K9

27
½m2

π;0ð30πþπ− þ 15ðπ0Þ2 þ 18KþK− þ η2Þ þm2
K;0ð12KþK− þ 12K0K̄0 þ 8η2Þ�

−
2e2K10

27
½m2

π;0ð138πþπ− þ 15ðπ0Þ2 þ 18KþK− þ η2Þ þm2
K;0ð120KþK− þ 12K0K̄0 þ 8η2Þ�

− 8e2K11ðm2
π;0π

þπ− þm2
K;0K

þK−Þ− 8

3
f2e4K15ðπþπ− þKþK−Þ− 4

3
f2e4K16ðπþπ− þKþK−Þ: ð56Þ

Again there will be static terms from LQ
6 contributing to

the renormalization of the vacuum energy and we will not
need them.

V. PRESSURE REVISITED

In this section, we calculate the pressure through Oðp6Þ
including electromagnetic interactions. Since the neutral
and charged mesons are no longer degenerate in masses, we
must express the pressure in terms of all the five different
meson masses. As mentioned before, the chiral Lagrangian
including virtual photons is known only to Oðp4Þ. It
therefore not possible to renormalize the vacuum energy
through Oðp6Þ, but it is possible to renormalize the finite-
temperature part since the counterterms at the relevant order
are given by the Oðp4Þ Lagrangian.

A. Oðp4Þ
Again the temperature-independent Oðp2Þ-term is omit-

ted. The mesonic one-loop contribution to the pressure is
the same as before, except that the charged masses have
changed according to Eqs. (53) and (54). In addition, there
is a contribution from the massless photons, giving

P1 ¼
1

2
I00ðm2

π;0Þ þ I00ðm2
π�;0Þ þ I00ðm2

K�;0Þ þ I00ðm2
K;0Þ

þ 1

2
I00ðm2

η;0Þ þ
1

2
ðd − 1ÞI00ð0Þ; ð57Þ

where d ¼ 3 − 2ϵ. Omitting the temperature-independent
divergent terms yields in the limit ϵ → 0

P1 ¼
T4

ð4πÞ2
�
1

2
J0ðβmπ;0Þ þ J0ðβmπ�;0Þ þ J0ðβmK;0Þ

þ J0ðβmK�;0Þ þ
1

2
J0ðβmη;0Þ þ J0ð0Þ

�
; ð58Þ

where J0ð0Þ ¼ 16π4

45
.

B. Oðp6Þ
The two-loop diagrams are those given in the previous

section as well as a number of new ones coming from the
interaction terms in Eq. (55). The second group of diagrams
are shown in Fig. 3. These are the only diagrams involving
the photon propagator. We note in passing that the
individual diagrams are gauge-fixing dependent, but the
sum is independent of ξ in covariant gauge. The same result
is obtained in the Coulomb gauge with gauge parameter ξ.

FIG. 3. Feynman graphs contributing to the pressure at next-to-
next-to leading order. Solid lines represent a charged meson and
wavy lines represent a photon. The setting-sun diagram is shown
to the right.
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The expression for the diagrams in Fig. 1 is

Pa
2 ¼ −

m2
π;0

f2

�
−
1

8
I21ðm2

π;0Þ þ
1

6
I1ðm2

π�;0ÞI1ðm2
π;0Þ −

1

3
I21ðm2

π�;0Þ −
1

6
I1ðm2

π�;0ÞI1ðm2
K;0Þ

−
1

6
I1ðm2

π�;0ÞI1ðm2
K�;0Þ −

1

12
I1ðm2

π;0ÞI1ðm2
η;0Þ −

1

6
I1ðm2

π�;0ÞI1ðm2
η;0Þ þ

7

72
I21ðm2

η;0Þ
�

−
m2

π�;0

f2

�
1

3
I1ðm2

π�;0ÞI1ðm2
π;0Þ þ

1

3
I21ðm2

π�;0Þ þ
1

6
I1ðm2

π�;0ÞI1ðm2
K;0Þ þ

1

6
I1ðm2

π�;0ÞI1ðm2
K�;0Þ

�

−
m2

K;0

f2

�
−
1

3
I21ðm2

K�;0Þ −
1

12
I1ðm2

π;0ÞI1ðm2
K�;0Þ −

1

6
I1ðm2

π�;0ÞI1ðm2
K�;0Þ −

1

6
I1ðm2

K;0ÞI1ðm2
K�;0Þ

þ 1

3
I1ðm2

K0;0ÞI1ðm2
η;0Þ þ

1

12
I1ðm2

K�;0ÞI1ðm2
η;0Þ −

2

9
I21ðm2

η;0Þ
�
−
m2

K�;0

f2

�
1

3
I21ðm2

K�;0Þ þ
1

12
I1ðm2

π;0ÞI1ðm2
K�;0Þ

þ 1

6
I1ðm2

π�;0ÞI1ðm2
K�;0Þ þ

1

6
I1ðm2

K;0ÞI1ðm2
K�;0Þ þ

1

4
I1ðm2

K�;0ÞI1ðm2
η;0Þ

�
; ð59Þ

where the charged masses are given by Eqs. (53) and (54). Setting e ¼ 0, i.e., for degenerate meson masses, Eq. (59)
reduces to Eq. (28), as it should.
The first set of one-loop graphs with insertions is shown in Fig. 2. Their expression is

Pb
2 ¼

4L4

f2
ðm2

π;0 þ 2m2
K;0Þ½2m2

π�;0I1ðm2
π�;0Þ þm2

π;0I1ðm2
π;0Þ þ 2m2

K�;0I1ðm2
K�;0Þ þ 2m2

K;0I1ðm2
K;0Þ þm2

η;0I1ðm2
η;0Þ�

þ 4L5

f2
½m2

π;0ð2m2
π�;0I1ðm2

π�;0Þ þm2
π;0I1ðm2

π;0ÞÞ þ 2m2
K;0ðm2

K�;0I1ðm2
K�;0Þ þm2

K;0I1ðm2
K;0ÞÞ þm4

η;0I1ðm2
η;0Þ�

−
8L6

f2
ðm2

π;0 þ 2m2
K;0Þ½m2

π;0ð2I1ðm2
π�;0Þ þ I1ðm2

π;0ÞÞ þ 2m2
K;0ðI1ðm2

K�;0Þ þ I1ðm2
K;0ÞÞ þm2

η;0I1ðm2
η;0Þ�

−
64L7

3f2
ðm2

π;0 −m2
K;0Þ2I1ðm2

η;0Þ −
16L8

f2

�
m4

π;0

�
I1ðm2

π�;0Þ þ
1

2
I1ðm2

π;0Þ
�
þm4

K;0ðI1ðm2
K�;0Þ þ I1ðm2

K;0ÞÞ

þ 1

3

�
4m4

K;0 − 4m2
π;0m

2
K;0 þ

3

2
m4

π;0

�
I1ðm2

η;0Þ
�
: ð60Þ

The expression for diagrams arising from the interactions in Eq. (55) and shown in Fig. 3 is

Pc
2 ¼ −ðd − 1Þe2I1ðm2

π�;0ÞI1ð0Þ −
1

2
e2I21ðm2

π�;0Þ − 2e2m2
π�;0Isunðm2

π�;0Þ − ðd − 1Þe2I1ðm2
K�;0ÞI1ð0Þ

−
1

2
e2I21ðm2

K�;0Þ − 2e2m2
K�;0Isunðm2

K�;0Þ þ
Ce2

6f4
½4I1ðm2

π;0ÞI1ðm2
π�;0Þ þ 16I21ðm2

π�;0Þ þ 16I1ðm2
π�;0ÞI1ðm2

K�;0Þ

þI1ðm2
π;0ÞI1ðm2

K�;0Þ þ 2I1ðm2
π�;0ÞI1ðm2

K;0Þ þ 16I21ðm2
K�;0Þþ2I1ðm2

K�;0ÞI1ðm2
K;0Þ þ 3I1ðm2

K�;0ÞI1ðm2
η;0Þ�; ð61Þ

where d ¼ 3 − 2ϵ and Isunðm2Þ is defined in Eq. (B1). Isunðm2Þ is evaluated in Appendix B. Finally, the expression for the
diagrams arising from Eq. (56) are given by
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Pd
2 ¼

4

3
e2ðK1 þ K2Þ½m2

π;0I1ðm2
π;0Þ þ 2m2

π�;0I1ðm2
π�;0Þ þ 2m2

K;0I1ðm2
K;0Þ þ 2m2

K�;0I1ðm2
K�;0Þ þm2

η;0I1ðm2
η;0Þ�

þ 1

3
e2ð−2K3 þ K4Þ½3m2

π;0I
2
1ðmπ;0Þ þm2

η;0I
2
1ðmη;0Þ� þ

2

9
e2ðK5 þ K6Þ½5m2

π;0I1ðm2
π;0Þ þ 10m2

π�;0I1ðm2
π�;0Þ

þ 10m2
K�;0I1ðm2

K�;0Þ þ 4m2
K;0I1ðm2

K;0Þ þ 3m2
η;0I1ðm2

η;0Þ� −
4

3
e2ðK7 þ K8Þ½m2

π;0ðI1ðm2
π;0Þ þ 2I1ðm2

π�;0ÞÞ
þ 2m2

K;0ðI1ðm2
K�;0Þ þ I1ðm2

K;0ÞÞ þm2
η;0I1ðm2

η;0Þ� − 4e2K8ðm2
π;0 þ 2m2

K;0Þ½I1ðm2
π�;0Þ þ I1ðm2

K�;0Þ�

−
2e2K9

27
½m2

π;0ð30I1ðm2
π�;0Þ þ 15I1ðm2

π;0Þ þ 18I1ðm2
K�;0Þ þ I1ðm2

η;0ÞÞ þm2
K;0ð12I1ðm2

K�;0Þ þ 12I1ðm2
K;0Þ

þ 8I1ðm2
η;0ÞÞ� −

2e2K10

27
½m2

π;0ð138I1ðm2
π�;0Þ þ 15I1ðm2

π;0Þ þ 18I1ðm2
K�;0Þ þ I1ðm2

η;0ÞÞ þm2
K;0ð120I1ðm2

K�;0Þ
þ 12I1ðm2

K;0Þ þ 8I1ðm2
η;0ÞÞ� − 8e2K11½m2

π;0I1ðm2
π�;0Þ þm2

K;0I1ðm2
K�;0Þ�: ð62Þ

The complete result for the pressure is then given by the sum of Eqs. (58)–(62). Again we can absorb the terms that involve
the low-energy constants by replacing the bare meson masses with their one-loop expression. The final result is

P0þ1þ2 ¼
T4

ð4πÞ2
�
1

2
J0ðβmπ0Þ þ J0ðβmπ�Þ þ J0ðβmK0Þ þ J0ðβmK�Þ þ 1

2
J0ðβmηÞ þ J0ð0Þ

�

−
m2

π;0T
4

ð4πÞ4f2
�
1

2
J1ðβmπ�;0ÞJ1ðβmπ;0Þ −

1

8
J21ðβmπ;0Þ −

1

12
J1ðβmπ;0ÞJ1ðβmη;0Þ −

1

6
J1ðβmπ�;0ÞJ1ðβmη;0Þ

þ 7

72
J21ðβmη;0Þ

�
−

m2
K;0T

4

ð4πÞ4f2
�
1

3
J1ðβmK;0ÞJ1ðβmη;0Þ þ

1

3
J1ðβmK�;0ÞJ1ðβmη;0Þ −

2

9
J21ðβmη;0Þ

�

−
e2T4

ð4πÞ4
�
2J1ðβmπ�;0ÞJ1ð0Þ þ

1

2
J21ðβmπ�;0Þ þ 2J1ðβmK�;0ÞJ1ð0Þ þ

1

2
J21ðβmK�;0Þ

�
− 2m2

π�;0e
2Ið2Þsunðm2

π�;0Þ

− 2m2
K�;0e

2Ið2Þsunðm2
K�;0Þ þ

Ce2T4

ð4πÞ4f4 ½2J
2
1ðβmπ�;0Þ þ 2J1ðβmπ�;0ÞJ1ðβmK�;0Þ þ 2J21ðβmK�;0Þ�: ð63Þ

where Ið2Þsunðm2Þ is defined in Eq. (B16) and we note that
J1ð0Þ ¼ 4π2

3
.

VI. QUARK CONDENSATES

In the vacuum, the light and s-quark condensates are
defined as

hūui0 ¼
∂V
∂mu

; ð64Þ

hd̄di0 ¼
∂V
∂md

; ð65Þ

hs̄si0 ¼
∂V
∂ms

; ð66Þ

where V is the vacuum energy density. By introducing the
sum m ¼ 1

2
ðmu þmdÞ and difference Δm ¼ 1

2
ðmu −mdÞ

of the light quark masses, we calculate the sum and
difference of the light quark condensates as

hūui0 þ hd̄di0 ¼ hq̄qi0 ¼
∂V
∂m

; ð67Þ

hūui0 − hd̄di0 ¼
∂V
∂Δm

: ð68Þ

At finite temperature, we replace V by V − P [15] and we
therefore have

hq̄qi ¼ hq̄qi0
�
1þ

X
a

ca
f2

∂P
∂m2

a

�
; ð69Þ

hs̄si ¼hs̄si0
�
1þ

X
a

csa
f2

∂P
∂m2

a

�
; ð70Þ

where the sum is over the eight mesons and the coefficients
are

ca ¼ −f2
∂m2

a

∂m
hq̄qi−10 ; ð71Þ
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csa ¼ −f2
∂m2

a

∂ms
hs̄si−10 : ð72Þ

The expressions for the coefficients are obtained by using
the results for the condensates at T ¼ 0 given by (C5) and
(C6) and the meson masses listed in Eqs. (D1)–(D8).

VII. HADRON RESONANCE GAS MODEL

In the HRG model, one approximates the partition
function of the system by the partition function of a gas
of noninteracting hadrons and resonances. The pressure P
is therefore given by the sum of independent contributions
Ph coming from the different species,

P ¼
X
h

Ph

¼∓ 8T
ð4πÞ2

X
h

dhð2sþ 1Þ
Z

∞

0

dpp2 log
h
1∓ e−β

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

h

p i
;

ð73Þ

where dh is the multiplicity, s is the spin, mh is the hadron
mass, and the upper (lower) sign is for mesons (baryons).
The lightest hadrons we include in the sum are shown in
Table I. In the numerical work, the used HRG model
includes more than 200 known mesons and baryons below
2.5 GeV in Particle Data Group [32]. As known from
Ref. [18], it is reasonable to add those known resonances.
Of course, it includes those broad light flavor mesons e.g.
f0ð500Þ, f0ð1370Þ, and K�

0ð700Þ where we take the central
values of the estimated masses.
We also need the expressions for the condensates in the

HRG model. They are given by

hq̄qi ¼ hq̄qi0 −
∂P
∂m

¼ hq̄qi0 þ
X
h

nhðTÞ
∂mh

∂m
; ð74Þ

hs̄si ¼ hs̄si0 −
∂P
∂ms

ð75Þ

¼ hs̄si0 þ
X
h

nhðTÞ
∂mh

∂ms
; ð76Þ

where the temperature dependent density of hadrons is

nhðTÞ ¼
8dhð2sþ 1Þ

ð4πÞ2
Z

∞

0

dp
mhp2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

h

p 1

eβ
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

h

p
∓ 1

:

ð77Þ

The derivatives of the hadrons masses with respect to the
light quark mass m and the strange quark mass ms can be
written as [18]

∂mh

∂m
¼ 2B0

σπ;h
m2

π0
; ð78Þ

∂mh

∂ms
¼ σs;h

ms
¼ σs;h

m2
K;0

B0ðmþmsÞ
ms

: ð79Þ

The sigma terms for the fundamental states are taken from
[33]. It is difficult to calculate the sigma terms for each
particle, but we follow Ref. [18] and assume that all
hadrons have the same sigma term as their fundamental
state.

VIII. NUMERICAL RESULTS AND DISCUSSION

In this section, we present and discuss our numerical
results. As input we will use the physical meson masses
and the pion decay constant taken from the Particle Data
Group [32]

mπ0 ¼ 134.98 MeV; ð80Þ

mπ� ¼ 139.57 MeV; ð81Þ

mK� ¼ 493.68 MeV; ð82Þ

mK0 ¼ 497.61 MeV; ð83Þ

mη ¼ 547.86 MeV; ð84Þ

fπ ¼ 92.07 MeV: ð85Þ

The numerical values of the low-energy constants that we
need are [7,34], where Ref. [7] includes Lr

4 − Lr
8 and Hr

2 is
taken from Ref. [34],

Lr
4 ¼ ð0.0� 0.3Þ × 10−3; ð86Þ

Lr
5 ¼ ð1.2� 0.1Þ × 10−3; ð87Þ

TABLE I. Lightest hadrons included in the hadron resonance
gas model.

Hadron mðMeVÞ s dh Hadron mðMeVÞ s dh

π� 139.57 0 2 p 938.27 1=2 2
π0 134.98 0 1 n 939.57 1=2 2
K� 493.68 0 2 η0 957.78 0 1
K0=K̄0 497.61 0 2 f0 990� 20 0 1
η 547.86 0 1 a0 980� 20 1 1
ρ� 775.26 1 2 ϕ 1019.46 1 1
ρ 775.26 1 1 Λ 1115.68 1=2 1
ω 782.66 1 1 h1 1166� 6 1 1
K�� 891.67 1 2 Σ� 1189.37 1=2 2
K0� 895.55 1 2 Σ0 1192.64 1=2 1
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Lr
6 ¼ ð0.0� 0.4Þ × 10−3; ð88Þ

Lr
7 ¼ ð−0.3� 0.2Þ × 10−3; ð89Þ

Lr
8 ¼ ð0.5� 0.2Þ × 10−3; ð90Þ

Hr
2 ¼ ð−3.4� 1.5Þ × 10−3: ð91Þ

These couplings are at the scale of the ρ mass, Λ ¼
775.26 MeV.
Including electromagnetic interactions, we need a num-

ber of additional couplings. The electromagnetic coupling
is [32]

e2 ¼ 0.092: ð92Þ

The numerical value of the constant C has been estimated
by Urech [9]. Its value is

C ¼ 61.1 × 10−6ðGeVÞ4: ð93Þ

At tree level, this gives rise to a mass splitting between the
neutral and charged pion of approximately 4.8 MeV, which
is very close the experimental value of 4.6 MeV. Finally, we
need [7,35,36]

Kr
1 ¼ −2.7 × 10−3; ð94Þ

Kr
2 ¼ 0.7 × 10−3; ð95Þ

Kr
3 ¼ 2.7 × 10−3; ð96Þ

Kr
4 ¼ 1.4 × 10−3; ð97Þ

Kr
5 ¼ 11.6 × 10−3; ð98Þ

Kr
6 ¼ 2.8 × 10−3; ð99Þ

Kr
7 ¼ 0 × 10−3; ð100Þ

Kr
8 ¼ 0 × 10−3; ð101Þ

Kr
9 ¼ −1.3 × 10−3; ð102Þ

Kr
10 ¼ 4 × 10−3; ð103Þ

Kr
11 ¼ 1.3 × 10−3; ð104Þ

where all the Kr
i are assigned a conservative 100%

uncertainty [35]. The low-energy constants Kr
1 − Kr

8 and
Kr

11 can be found in Ref. [7],K
r
9 andK

r
10 are from Ref. [36].

If we ignore electromagnetic interactions, the charged
pion is degenerate with the neutral pion, and the charged
kaon is degenerate with the neutral kaon. In this case, we

use the experimental values for the masses of the neutral
mesons as well as fπ. Using these values together with
the low-energy constants, Eqs. (D1), (D2), and (D9) (here
with e ¼ 0) give us the tree-level values for mπ;0, mK;0,
and f. The tree-level value of the eta mass is then given by
the relation m2

η;0 ¼ 1
3
ð4m2

K;0 −m2
π;0Þ. The bare values we

find are

mπ;0 ¼ 135.52 MeV; ð105Þ

mK;0 ¼ 536.72 MeV; ð106Þ

mη;0 ¼ 614.79 MeV; ð107Þ

f ¼ 76.93 MeV: ð108Þ

Adding electromagnetic effects, we obtain

mπ;0 ¼ 135.97 MeV; ð109Þ

mπ�;0 ¼ 137.11 MeV; ð110Þ

mK�;0 ¼ 531.85 MeV; ð111Þ

mK;0 ¼ 537.14 MeV; ð112Þ

mη;0 ¼ 615.25 MeV; ð113Þ

f ¼ 76.69 MeV: ð114Þ

In both cases, we see that renormalization effects are
modest, except for the pion-decay constant.
In Fig. 4, we show some of the individual contributions

to the pressure in the HRGmodel in units of 10−4 GeV4 as a
function of temperature in MeV. This is essentially the same

FIG. 4. Individual contributions to the pressure in the HRG
model as a function of the temperature in MeV. See main text for
details.
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as Fig. 2 of Ref. [37]. As expected, at any given temperature,
the lightest states contribute more to the total pressure
than the heavier states. Up to approximately 100 MeV, only
the pions contribute significantly. From 120 to 130 MeV
onwards, heavier states that are not included in three-flavor
χPT start to contribute significantly.
In Fig. 5, we show the pressure P normalized to T4 in

various approximations. The dotted line is the Oðp2Þ result
in χPT, while the blue line is Oðp4Þ result. The red dashed
line is the Oðp4Þ result including electromagnetic effects.
The green line shows the resulting normalized pressure
combining χPT and the hadron resonance gas model.
Doing this, the eight mesons in three-flavor χPT are
excluded from the sum in Eq. (73) so we do not count
degrees of freedom twice. The black triangles are the lattice
results taken from Ref. [18]. For low temperatures, the
contribution to the pressure from the massive states is
Boltzmann suppressed. This implies that the normalized
pressure vanishes, except for the case where the contribu-
tion from the photons is included. The normalized pressure
in the limit T → 0 is therefore 2 × π2

90
¼ 0.22. The differ-

ence between the red and the blue line is fairly constant
over the temperature range shown, indicating that electro-
magnetic interactions contribute relatively little to the total
pressure. The green and blue lines are essentially on top of
each other until a temperature of approximately 90 MeV,
where they start to deviate. The steep increase of the green
curves shows the effects of including heavier states. The
agreement between the resulting normalized pressure and
the lattice result up to the largest temperatures is good.
In Fig. 6, we show the light quark condensate normalized

to its zero-temperature value in different approximations as
a function of the temperature. The blue (green) line is the
Oðp2Þ result without (with) electromagnetic interactions.
The yellow (red) line is the Oðp4Þ result without (with)
electromagnetic interactions. For comparison, we show in

black the result from the HRG model. Obviously, χPT is
not valid in the entire temperature range shown, but for low
temperatures, up to T ≃ 150 MeV, it seems to be converg-
ing very well and electromagnetic effects are not very large.
However, from Figs. 5 and 8 below, it is also clear that χPT
alone cannot explain the lattice results beyond approxi-
mately 120 MeV.
In Fig. 7, we show the strange quark condensate

normalized to its zero-temperature value in different
approximations as a function of the temperature. The
features are essentially the same as in Fig. 6, except that
the electromagnetic effects are somewhat larger in this case.
In Fig. 8, we plot the dimensionless quantity Δl;s, which

is defined as [18]

Δl;s ¼
hq̄qiT − m

ms
hs̄siT

hq̄qi0 − m
ms
hs̄si0

: ð115Þ

FIG. 5. Pressure normalized by T4 as a function of the
temperature in MeV. See main text for details.

FIG. 6. Normalized light quark condensate hq̄qi=hq̄qi0 as a
function of the temperature in MeV. See main text for details.

FIG. 7. Normalized strange quark condensate hs̄si=hs̄si0 as a
function of the temperature in MeV. See main text for details.
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The ratio of light quark mass m and strange quark mass ms
equals 1=30.21, which is obtained by using the bare values
of mπ;0 and mK;0. The green (blue) line is the Oðp4Þ results
without (with) electromagnetic contributions. The red
dotted line is for the results combined with the HRG
model, which includes all the resonances states below
2.5 GeV in [32]. For comparison, we also plot the lattice
results in triangles from Ref. [18]. At low temperatures, the
χPT predictions do converge well and the electromagnetic
contributions are small. The agreement between the lattice
results and the HRG is excellent all the way up to
T ≈ 170 MeV. For QCD with physical quark masses, there
is no critical temperature. However, one can define a
crossover temperature in different ways. For example,
the temperature at which the chiral condensate has
decreased to half its vacuum value, or similarly the
temperature at which Δl;s has decreased to half its vacuum
value. It can also be defined as the temperature at which
the quark susceptibilities has its peak. Depending on the
quantity, the crossover temperature in Ref. [18] is in the
150–170 MeV range. Using the definition Δl;s ¼ 1

2
they

obtain Tpc ¼ 157.3 MeV. Using the same definition, we
obtain 160.1 MeV, the dotted line in Fig. 8 indicates this
value. This crossover temperature is also very close to
Tpc ¼ 161.2 MeV obtained by a very recent HRG model
analysis [23]. Of course, one should bear in mind that the
HRG model does not know about the deconfined phase of
QCD so the excellent agreement for Tpc obtained here, can
to some extent be accidental. Likewise, the agreement with
lattice data for temperatures above approximately 150 MeV
should be taken with a grain of salt for the same reason.
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APPENDIX A: SUM-INTEGRALS

In the imaginary-time formalism, the four-momentum is
P ¼ ðp0;pÞ with P2 ¼ p2

0 þ p2 and p0 ¼ 2πnT being the
Matsubara frequencies for bosons. Loop integrals involve
sums over Matsubara frequencies and integrals over spatial
momenta. We use momentum-space dimensional regulari-
zation to regulate both infrared and ultraviolet divergences.
The sum-integrals are defined as

XZ
P
¼ T

X
p0¼2nπT

Z
p
; ðA1Þ

where the sum is over Matsubara frequencies and integrals
over momenta are denoted by

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd ; ðA2Þ

where d ¼ 3 − 2ϵ and Λ is an arbitrary momentum scale
that coincides with the renormalization scale in the MS
scheme. The one-loop integrals that appear in the calcu-
lations are of the form

I00ðm2Þ ¼ −
XZ

P
log ½P2 þm2�; ðA3Þ

Inðm2Þ ¼
XZ

P

1

ðP2 þm2Þn ; ðA4Þ

where the prime denotes differentiation with respect to the
index n evaluated at n ¼ 0. They satisfy the relations

∂

∂m2
I00 ¼ −I1;

∂

∂m2
In ¼ −nInþ1: ðA5Þ

The sum-integral In can be evaluated by standard contour-
integration techniques. We specifically need

I00ðm2Þ ¼ 1

2ð4πÞ2
�
Λ
m

�
2ϵ
��

1

ϵ
þ 3

2
þOðϵÞ

�
m4

þ 2J0ðβmÞT4

�
; ðA6Þ

I1ðm2Þ ¼ −
1

ð4πÞ2
�
Λ
m

�
2ϵ
��

1

ϵ
þ 1þ π2 þ 12

12
ϵ

�
m2

− J1ðβmÞT2

�
; ðA7Þ

where the thermal integrals JnðβmÞ are defined as

FIG. 8. Δl;s as a function of the temperature in MeV. The dotted
horizontal curve indicates the value Δl;s ¼ 1

2
. See main text for

details.

JENS O. ANDERSEN, QING YU, and HUA ZHOU PHYS. REV. D 107, 014010 (2023)

014010-14



JnðβmÞ ¼ 4eγEϵΓð1
2
Þ

Γð5
2
− n − ϵÞ

m2ϵ

T4−2n

Z
∞

0

nðEpÞ
p4−2n−2ϵ

Ep
dp;

ðA8Þ

nðEpÞ ¼ 1=ðeβEp − 1Þ is the Bose-Einstein (BE) distribu-
tion function, β is the inverse of temperature, and Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. The thermal integrals JnðxÞ satisfy the recur-

sion relation

xJ0nðxÞ ¼ 2ϵJnðxÞ − 2x2Jnþ1ðxÞ: ðA9Þ

For ϵ ¼ 0 and in the limit m → 0, the thermal integrals
behave as

J0 →
16π4

45
; ðA10Þ

J1 →
4π2

3
− 4πβm − 2

�
log

βm
4π

−
1

2
þ γE

�
ðβmÞ2; ðA11Þ

J2 →
2π

βm
þ 2

�
log

βm
4π

þ γE

�
: ðA12Þ

We notice that 1
2
I00ð0Þ reduces to π2

90
T4, which is the Stefan-

Boltzmann limit for the pressure of a massless bosonic
degree of freedom.

APPENDIX B: EVALUATION OF Isunðm2Þ
In this appendix, we calculate

Isunðm2Þ≡XZ
PQ

1

ðP2 þm2ÞðQ2 þm2ÞðPþQÞ2 : ðB1Þ

We use the method of Bugrij and Shadura [38]. The sum-
integrals over Euclidean momenta are replaced by integrals
over four momenta p ¼ ðp0;pÞ in Minkowski space,PR

P → −i
R
M, where integrals in Minkowski space are

defined as

Z
M
¼

Z
∞

−∞

dp0

2π

Z
p
: ðB2Þ

The Euclidean propagator is replaced by the Minkowski
propagator in the real-time formalism,

1

P2 þm2
→ i

�
i

p2
0 − E2

p þ iϵ
þ nðjp0jÞ2πδðp2

0 − E2
pÞ
�
:

ðB3Þ

The sum-integral Isunðm2Þ is then given by the real part of
the resulting expression. Some of the integrals involve one
or more factors of the BE distribution. The remaining
integrals may conveniently be Wick-rotated back to
Euclidean space,

R
M → i

R
P, where the integral is defined as

Z
P
¼

�
eγEΛ2

4π

�
ϵ Z ddþ1p

ð2πÞdþ1
; ðB4Þ

with d ¼ 3 − 2ϵ. The term with zero thermal factors reads

Ið0Þsunðm2Þ ¼
Z
PQ

1

P2ðQ2 þm2Þ½ðPþQÞ2 þm2�
¼

Z
P

1

P2
ΠðPÞ; ðB5Þ

where the superscript (i) (i ¼ 0, 1, 2, 3) of IðiÞsunðm2Þ denotes
the number of BE factors and where we have defined

ΠðPÞ ¼
Z
Q

1

ðQ2 þm2Þ½ðPþQÞ2 þm2� : ðB6Þ

The bubble integrals can be calculated e.g. by using
Feynman parameters,

ΠðPÞ ¼ π csc ϵπ

Γð1 − ϵÞ
ðeγEΛ2Þϵ
ð4πÞ2

Z
1

0

dx½m2 þ P2xð1 − xÞ�−ϵ:

ðB7Þ

Integrating first over four-momenta P and then over x
yields

Ið0Þsunðm2Þ ¼ π csc ϵπ

Γð1 − ϵÞ
ðeγEΛ2Þϵ
ð4πÞ2

Z
1

0

dx
Z
P

1

P2
½m2 þ P2xð1 − xÞ�−ϵ ¼ −

m2

ð4πÞ4
�
Λ
m

�
4ϵ

e2γEϵ
ðd − 1Þπ2 csc2 ϵπ
2ðd − 2ÞΓ2ð2 − ϵÞ : ðB8Þ

Expanding in powers of ϵ through order ϵ0 gives

Ið0Þsunðm2Þ ¼ −
m2

ð4πÞ4
�
Λ
m

�
4ϵ
�
1

ϵ2
þ 3

ϵ
þ 7þ π2

6
þOðϵÞ

�
: ðB9Þ

The terms with one thermal factor are
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Ið1Þsunðm2Þ ¼
Z
M
nðjp0jÞ2πδðp2

0 − p2Þ
Z
Q

1

ðQ2 þm2Þ½ðPþQÞ2 þm2�
����
P2¼0

þ 2

Z
M
nðjp0jÞ2πδðp2

0 − E2
pÞ

×
Z
Q

1

ðQ2 þm2ÞðPþQÞ2
����
P2¼−m2

: ðB10Þ

The integral overQ in the first term is ΠðPÞ in Eq. (B7), evaluated at P2 ¼ 0. The integral overQ in the second term can be
evaluated in the same way. Expanding the resulting expressions in powers of ϵ yields

Z
Q

1

ðQ2 þm2Þ½ðPþQÞ2 þm2� ¼
1

ð4πÞ2
�
Λ
m

�
2ϵ
�
1

ϵ
−
Z

1

0

log
m2 þ xð1 − xÞP2

m2
dxþOðϵÞ

�

¼ 1

ð4πÞ2
�
Λ
m

�
2ϵ
�
1

ϵ
þOðϵÞ

�
; ðB11Þ

Z
Q

1

ðQ2 þm2ÞðPþQÞ2 ¼
1

ð4πÞ2
�
Λ
m

�
2ϵ
�
1

ϵ
−
Z

1

0

log
xm2 þ xð1 − xÞP2

m2
dxþOðϵÞ

�

¼ 1

ð4πÞ2
�
Λ
m

�
2ϵ
�
1

ϵ
þ 2þOðϵÞ

�
: ðB12Þ

Substituting Eqs. (B11) and (B12) into Eq. (B10) and integrating over p0 yields

Ið1Þsunðm2Þ ¼ 1

ð4πÞ2
�
Λ
m

�
2ϵ
Z
p

�
nðpÞ
p

1

ϵ
þ 2nðEpÞ

Ep

�
1

ϵ
þ 2

��
: ðB13Þ

The terms with two thermal factors are

Ið2Þsunðm2Þ ¼
Z
M
nðjp0jÞ2πδðp2

0 − E2
pÞ

Z
M
nðjq0jÞ2πδðq20 − E2

qÞ
1

ðp0 þ q0Þ2 − ðpþ qÞ2

þ 2

Z
M
nðjp0jÞ2πδðp2

0 − p2Þ
Z
M
nðjq0jÞ2πδðq20 − E2

qÞ
1

ðp0 þ q0Þ2 − ðpþ qÞ2 −m2
: ðB14Þ

This integral is convergent in three dimensions so we set ϵ ¼ 0. We first integrate over p0 and q0, which yields

Ið2Þsunðm2Þ ¼ 1

2

Z
pq

nðEpÞnðEqÞ
EpEq

�
1

ðEp þ EqÞ2 − ðpþ qÞ2 þ
1

ðEp − EqÞ2 − ðpþ qÞ2
�

þ
Z
pq

nðpÞnðEqÞ
pEq

�
1

ðpþ EqÞ2 − ðpþ qÞ2 −m2
þ 1

ðp − EqÞ2 − ðpþ qÞ2 −m2

�
: ðB15Þ

Averaging over the angle between p and q gives

Ið2Þsunðm2Þ ¼ 8

ð4πÞ4
Z

∞

0

pnðEpÞqnðEqÞ
EpEq

log
ðp − qÞ2
ðpþ qÞ2 dpdq; ðB16Þ

where we notice that the angular average of the term in the second line of Eq. (B15) vanishes. Finally, the term with three

thermal factors, Ið3Þsunðm2Þ, is purely imaginary and is dropped. Adding Eqs. (B9), (B13), and (B16), we obtain the result for
the setting-sun diagram

Isunðm2Þ ¼ −
m2

ð4πÞ4
�
Λ
m

�
4ϵ
�
1

ϵ2
þ 3

ϵ
þ 7þ π2

6

�
þ 1

ð4πÞ2
�
Λ
m

�
2ϵ
Z
p

�
nðpÞ
p

1

ϵ
þ 2nðEpÞ

Ep

�
1

ϵ
þ 2

��

þ 8

ð4πÞ4
Z

∞

0

pnðEpÞqnðEqÞ
EpEq

log
ðp − qÞ2
ðpþ qÞ2 dpdq: ðB17Þ
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APPENDIX C: ONE-LOOP VACUUM ENERGY

In this appendix, we calculate the vacuum energy V
including electromagnetic effects. From V it is easy to
derive the one-loop corrections to the quark condensates
that are needed in our finite-temperature formulas. The
Oðp2Þ contribution is

V0 ¼ −
1

2
f2ðm2
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K;0Þ: ðC1Þ

The Oðp4Þ contribution from the loops is

V1 ¼
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where the last term comes from the photons and ghost and
vanishes at zero temperature. The Oðp4Þ counterterm
contribution is
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After renormalization, we find the vacuum energy for three-flavor χPT to Oðp4Þ including electromagnetic effects.
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The light and s-quark condensates to Oðp4Þ in the vacuum are
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Note that quark condensates depend on the couplingHr
2, which is unphysical in the sense that it arises from a contact term

in the Oðp4Þ Lagrangian.
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APPENDIX D: MESON MASSES AND PION-DECAY CONSTANT

In this appendix, we list the meson masses to one-loop order including the leading electromagnetic effects, i.e. through
e2. The meson masses without electromagnetic corrections were calculated in Ref. [3], while electromagnetism was
included in Ref. [9]. The meson masses without electromagnetic corrections are
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After including the one-loop χPT contribution to meson masses and electromagnetic effects up to order e2, the charged and
neutral meson masses are
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Finally, including electromagnetic effects, the neutral pion-decay constant fπ0 is
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