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We use three-flavor chiral perturbation theory (yPT) to calculate the pressure, light, and s-quark
condensates of QCD in the confined phase at finite temperature to O(p®) in the low-energy expansion. We
also include electromagnetic effects to order 2, where the electromagnetic coupling e counts as order p.
Our results for the pressure and the condensates suggest that yPT converges very well for temperatures up
to approximately 150 MeV. We combine yPT and the hadron resonance gas (HRG) model by adding
heavier baryons and mesons. Our results are compared with lattice simulations and the agreement is very
good for temperatures below 170 MeV, in contrast to the results from yPT which agree with the lattice only
up to 7'~ 120 MeV. Our value for the chiral crossover temperature is 160.1 MeV, which compares

favorably to the lattice result of 157.3 MeV.
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I. INTRODUCTION

In massless QCD with three flavors, the QCD
Lagrangian has a global SU(3), x SU(3)g x U(1)y sym-
metry in addition to alocal SU(N.) gauge symmetry. In the
vacuum, this symmetry is broken down to SU(3),, x U(1)g
via the formation of a quark condensate, which gives rise to
eight massless Goldstone bosons, the charged and neutral
pions, the charged and neutral kaons, and the eta. In nature,
this symmetry is explicitly broken by finite quark masses
down to SU(2), x U(1)y x U(1)p giving rise to pseudo-
Goldstone bosons whose masses are small compared to the
typical hadronic scale. The low-energy effective theory that
describes the pseudo-Goldstone bosons is chiral perturba-
tion theory (yPT), which is based only on the global
symmetries of QCD and the low-energy degrees of freedom
[1-3]. It therefore provides a model-independent frame-
work for describing the low-energy dynamics of QCD.

The original formulation of yPT was in the strong sector.
Gasser and Leytwyler developed a consistent power count-
ing scheme such that the effective Lagrangian can be written
as an infinite series of terms in a low-energy expansion. The
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leading-order Lagrangian is simply the nonlinear sigma
model. The next-to-leading order Lagrangian for two flavors
was derived in Ref. [2] and for three flavors in Ref. [3]. At
next-to-next-to leading order, the effective Lagrangian was
derived in Refs. [4-6]. A review of the phenomenology of
chiral perturbation theory was given in Ref. [7].

In the strong sector, the charged and neutral pions have
the same tree-level masses. A mass difference between the
u and the d quarks, produces isospin breaking effects in
hadron masses. For pions, this effect is second order in
m, — m,. For charged and neutral kaons it turns out that
their mass difference is linear in the quark mass difference
m, — my. However, there is another important source of the
mass differences between the neutral and charged mesons,
namely the effects of virtual photons. The leading electro-
magnetic effects of order e? were first included in Ref. [8],
while the systematic inclusion of the effects of virtual
photons in yPT at next-to-leading order, i.e., O(e?p?) and
O(e*) was carried out in Refs. [9-12]. The power counting
rule in yPT developed in [9] is such that e counts as order p.

Given the success of chiral perturbation theory at 7 = 0,
one may hope that it also provides a good description of
the QCD thermodynamics at low temperature. In the chiral
limit, the pions are massless and their typical momenta
are of order 7. If T is sufficiently small, the low-energy
expansion ought to converge. Again, in the massless limit,
the pion decay constant f is the only scale that appears in
the leading-order Lagrangian. Up to corrections given
by the low-energy constants that appear at higher orders
in the low-energy expansion, 7'/ f is the expansion param-
eter of yPT. In a series of papers, the low-temperature
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expansions of the pressure P and quark condensate (gq) in
two-flavor yPT were calculated and show the expected
form [13-15]
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where (gq), is condensate in the vacuum, A, =275+
65 MeV and A, =470+ 110 MeV [I5]. A, and A,

depend on the low-energy constants /;, which up to a
factor are the running couplings //(A) evaluated at the scale
A = m, m being the (bare) pion mass. The expansions
show good convergence properties for temperatures up to
approximately 140 MeV [15].

However, at high enough temperature, yPT ceases to be
valid since other degrees of freedom are excited and one
must use other methods. Lattice Monte Carlo techniques is
a first-principles method that can be used to study finite-
temperature QCD: At zero (and small) baryon chemical
potential, one can carry out lattice simulations to calculate
thermodynamic quantities such as the pressure and inter-
action measure as well as the approximate order parameters
that characterize confinement and chiral symmetry break-
ing, namely the Polyakov loop and the quark condensates.
For physical quark masses and two quark flavors, the
transition is a smooth crossover at a transition temperature
of around 155 MeV [16-19].

The hadron resonance gas (HRG) model treats finite-
temperature QCD as a gas of noninteracting hadrons and
their resonances. As T gets higher, it is necessary to include
more and more particles, and typically one has included the
approximately 200 hadrons below 2.5 GeV. It can be easily
generalized to finite chemical potentials as well as be
“distorted” by using not the physical masses but masses
that take into account lattice discretization effects. It has
also been combined with results from two-flavor yPT by
adding the contributions from heavier hadrons [18].
Comparing predictions for e.g. the pressure and the quark
condensate of lattice QCD and the HRG model, one finds,
perhaps surprisingly, very good agreement given the fact
that the latter does not include interactions (unless com-
bined with e.g. yPT) [18,20-23].

Finite temperature calculations within yPT including
electromagnetic effects are scarce. In Ref. [24], the authors
calculate the quark condensates at NLO in two-flavor
and three-flavor yPT. In Ref. [25], they calculate the pole
masses and the damping rate for the charged pion in two-
flavor yPT at LO in the classes of covariant and Coulomb
gauges. While the pole mass is gauge-fixing independent in

the two classes of gauges and coincide, the damping rate
depends on the gauge. In particular, the damping rate in
covariant gauge is negative indicating an instability. This is
reminiscent of the old problem of the gauge dependence of
the gluon damping rate in hot QCD. The problem was
solved by Braaten and Pisarski who realized that a one-loop
calculation is incomplete and that one must use effective
propagators and vertices to obtain a complete leading-order
result [26,27]. This is summarized in a nonlocal effective
Lagrangian that upon expansion generates the correction
terms [28,29]. This Lagrangian has been generalized to all
temperatures and densities in Ref. [30] and can possibly be
used to resolve the gauge dependence of the damping rate
in yPT.

In the present paper, we consider three-flavor yPT
at finite temperature including electromagnetic effects to
leading order in 2. We calculate the pressure and the quark
condensates to O(p®). In order to extend the validity of our
calculations to higher temperatures, we combine the results
from yPT and the hadron resonance gas model. The latter
has enjoyed considerable success in describing the thermo-
dynamics of low-temperature QCD as obtained from
the lattice. The paper is organized as follows. In Sec. II,
we briefly discuss the chiral Lagrangian. In Sec. III, we
calculate the pressure to O(p®) in the low-energy expan-
sion. In Sec. IV, we discuss the extension of the chiral
Lagrangian to include the effects of electromagnetic inter-
actions. In Sec. V, the pressure is again calculated to O(p®)
in the low-energy expansion. In Sec. VI, we calculate the
quark condensates while in Sec. VII we briefly discuss
the hadron resonance gas model. In Sec. VIII, we present
and discuss our numerical results. We have included four
appendices providing the reader with definitions and useful
calculational details. In particular, we calculate the quark
condensate at 7 =0 including electromagnetic effects,
which is required in the calculation of the finite-temper-
ature dependent quark condensates.

II. CHIRAL LAGRANGIAN

In massless three-flavor QCD, the Lagrangian has a
global SU(3), x SU(3); symmetry in addition to the
global U(1), baryon symmetry and the local SU(N,)
gauge symmetry. In the vacuum, this symmetry is broken
to SU(3), by the formation of a quark condensates. For
two massless and one massive quark, the symmetry is
SU(2), x SU(2)g, which is broken to SU(2), in the
vacuum. For two degenerate light quarks and one massive
quark, this symmetry is explicit broken to SU(2),. If the
two quarks are nondegenerate, we have three U(1) sym-
metries, one for each quark flavor.

Chiral perturbation theory is a low-energy effective
theory of QCD which is based on the global symmetries
and relevant degrees of freedom [1-3]. For three-flavor
QCD, the degrees of freedom are the eight mesons: three
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pions, four kaons, and the 7. In the chiral Lagrangian each
factor of a quark mass counts two powers of momentum
and each factor of a derivative counts one power of
momentum. The leading-order Lagrangian is given by [3]

Ly, = %f2(aﬂ26"2"'> + %fzoﬂ‘Z +Zy), (3)

where (A) denotes the trace of a matrix A in flavor space, f
is the bare pion decay constant, and y is given in terms of
the quark mass matrix

¥ = 2Bydiag(m,, my, m). (4)

Finally,

a¢a:|

T = exp[ 5
7 (5)
with ¢, being the meson fields parametrizing the Goldstone
manifold and where 4, are the Gell-Mann matrices that
satisfy (A,4;) = 26,4,

Expanding the Lagrangian £, to second order in the
fields ¢,, we find

i 1
quadratic __ + - 2 4 - 0 0
L, =0 —my gt +§6ﬂﬂ o'n

]
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|
i 2 20 1
quartic 20)4 + my, )
2 24f2( ) 12f2( =) TR

where the meson fields are expressed in terms of ¢, as

1
= 7§(¢1 F ithy), (7)
7 = ¢s. (8)

1
K* = 72@54 F ips), 9)

- 1

K°/K® = ﬁ(d’ﬁ F i), (10)
n=¢s. (11)

The tree-level masses are
m? o = Bo(m, + my), (12)
m2. o= Bo(m, +m,). (13)
méo’o = By(my + my), (14)

5  By(my, +my+4my)
m o = 3 )

(15)

Since we are working in the isospin limit, there is no mixing
between z° and 7. As long as e = 0, the charged and neutral
kaons have the same bare mass which is denoted by m g.
The quartic terms of the Lagrangian £, contains a large
number of terms. They can conveniently be written as

1
(16my o —Tm2,)n* ——[2(7°)?0,x " #n~ + 27" 7~ 0,7° " n°

612

1 1
—mioata (20| - —ata 20,a O —mi gt ]—§K+K [20,KT0* K~ —mj (K"K

612

il of
1 _
12f2 [K()Koa 71'0()”77«'0"‘( ) @,Koa"Ko— (m
= (m7 o +mi o) (7°)? KT K~]
1 _
-— K"K~ 0,K°0"K°+ K°K°0,KT0" K~ —2m% (K"K~ K°K"]
6f ~

2o =3 K K]~

1
7 [0,KT 0K~ —m% (K"K~ | —— K"K~ [0,z" n~ —m2 yx 7]

20+ mi o) (7°)* KoK -

-——[3K°K°0,n0"n+3n*0, K 0*K° + (m

1 _ _ _
—?[ZKOKO(}”KOG"KO —m% o(K°K®)?]

2 [KTK~0,m00" g+ (n°)%0,K 0" K~

| _ _
67 [K°K°0,n* #n~ + a0, K°0K® — (m o+ mj o) n* n~ K°K?|

1
—W[3K+K‘dﬂn0“n+3nzdﬂK+a“K‘

70— 3mi o) KK, (16)
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where we have omitted terms that do not contribute to the
pressure or quark condensates at two loops in the isospin
limit.

At next-to-leading order in the low-energy expansion,
there are 12 terms in the chiral Lagrangian [3]. The terms
that are relevant for the present calculations are

Ly =L4(0,Z70"Z) (y 'S + yZ7)
+ Ls((0,Z70"Z) (y "= + x=7))
+ Le(X'S + x=7)2 + L, (y 7 — 4'Z)?
+ Lg(r Sy 2 4+ x 22T + Hy ('), (17)

where L; are the so-called low-energy constants
(i=0,1,2...10), H; are the coefficients of the contact
terms in chiral Lagrangian, and referred to as high-energy
constants (i = 1,2). The relations between the bare cou-
plings L; and H; and their renormalized counterparts L}
and H/ are

L — r
M

g(;\;; E+ 1], (18)

AN 1
H,=H —— -+ 1]. 19
i 1 2(4]1’)2 [€+ i| ( )

The constants I'; and A; assume the following values [3]

1 3 11
r,=-—, ==, QA — 20
1=3 s=3 6= 114 (20)
5 5
7=0, 8748 2704 (21)

Since the bare parameters are independent of the scale A,
differentiation of Egs. (18) and (19) immediately gives rise
to equations governing the running of the renormalized
couplings. The renormalization group equations read

dL; T,

dA (4n)>’ dA

dH] A;
(4n)*
We note that I'; = 0, which implies that L} does not run

and we write L; = L.
The quadratic part of the Lagrangian Eq. (17) is given by

A

(22)

) 4L _
Lgudnte = 228 (m2 o+ 2m% o) [20,4 #a” + 0,2°02° + 20,K ¥ K~ + 20,K°#K° + 0,0

?

4Ls

7
8L,

-
64L,
372
1

_|_

mz o — Mg,

f2

Finally, there are static terms from L4 that contribute at
O(p®) to the pressure, but they are temperature indepen-
dent and only serve to renormalize the vacuum energy.

III. PRESSURE
The free energy density is given by

T

F=- log Z, (24)

sys

where V. is the volume of the system and Z is the
partition function which can be expressed as a path integral
in the imaginary-time formalism

16Lg
(2 g — 2 oo — [mi.o

3
+ 3 <4m‘,‘(’0 - 4m72r,0m%(,0 + ) mi,o) ’72} .

[m; (20,2 # 7~ + 9,2°2°) + 2m5 (9, KT # K~ + 9,K°0K°) + m; ,0,n0" 1]
(m o+ 2mi o) [m; o (2a 7™ + (7°)?) + 2m o (KK~ + K°K®) + m; oir’]

1 _
mtam +—my o (7°)? + my o(KTK™ + K°K°)

2

(23)

z /D¢e— LﬂdrfzﬁxﬁE, (25)

where L is the Euclidean Lagrangian, f = 1/T, and ¢ is
short-hand notation for all the fields integrated over. The
pressure is then given by P = —F. The loop diagrams that
contribute to the pressure are ultraviolet divergent and must
be regularized. We use dimensional regularization where
power divergences are set to zero and logarithmic diver-
gences show up as poles in €, where d = 3 — 2¢. There are
both temperature-independent and temperature-dependent
divergences. The counterterms diagrams that are used to
cancel the 7' = 0 divergences are also sufficient to cancel
the temperature-dependent ones. In the present paper, we
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are interested in finite-temperature effects and so we simply
throw away the 7T = 0 divergences.

The O(p?) contribution is given by the static part of the
Lagrangian £,. Since this term is temperature independent,
we ignore it henceforth. In the following, we denote the
finite-temperature contribution at O(p*") by P,_; with
n=1,2,3.... The result through O(p**) is denoted

by Positn-1-

A. Op%

The one-loop pressure is given by

3 1
P = 5%(’";2:0) + 216(’"%(,0) + Elﬁ(mi,o)’ (26)

where Ij,(m) is given by Eq. (A6). Since we are only
interested in the temperature dependence, we keep the
terms Jo(fm) to obtain

¢ [3 1
Pop = (an)? Efo(ﬂmﬂ,o) +2J(Bm ) + Efo(ﬂmn,o) ,

(27)

where the thermal integrals J,,(fm) are defined in Eq. (A8)
and where J,(fm) is to be evaluated at € = 0.

B. O(p%)

At O(p®), there are three contributions to the pressure:
the tree-level graphs, the one-loop graphs with a mass or
derivative insertion, and the two-loop graphs. The tree graphs
are temperature independent and discarded. The one-loop
diagrams can be split into a temperature-independent term
and a temperature-dependent term, where both of them are
divergent. The two-loop graphs can be split in a similar
manner. The temperature-dependent divergent parts from the
one-loop graphs cancel against the temperature-dependent

|

4L, — 8Ly
f2
4L5

Pl =

+— [3’”;1[.011 (mzzro) + 4’”‘1‘(.011 (m%co) + mf;.oll (mio)] -

f2
8Ly

—5 [3my o1y (m3 ) 4 4mi o 11 (m ) +

f2

4 2 2 4
8my o — 8my gmy o + 3my

FIG. 1. Two-loop Feynman graphs contributing to the pressure
at O(p®). Dashed line represents a neutral meson and solid line
represents a charged meson.

FIG. 2. One-loop Feynman graphs with a mass or derivate
counterterm insertion (indicated by a black blob) contributing to
the pressure at O(p°).

divergent parts from the two-loop graphs, showing that
renormalization at 7 =0 is sufficient to obtain a finite
expression for the pressure.

The two-loop graphs are shown in the Fig. 1. Their
expression is

m2 3 1 7
Py = =50 (L)~ g1 g )+ L)
m% 2 2
- R ) =g R 28)

where the integral I,(m?) is defined in Eq. (A7). The one-
loop counterterm graphs are shown in Fig. 2. Their
expression is

(m2 o+ 2my o) [3my o1y (m3 ) + 4mi oIy (mF o) + m;27.011 (m;%o)]

64L,
352

(mlzr.O - m%(.o)zll (m;zy,o)

3 I, (mi’o) . (29)

Adding Eqgs. (28) and (29), and renormalizing the couplings using Eq. (18), we obtain
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P, = ( ”)03;2 [8 B(pmao) — =T, (Bmyo)Jy (Bm, o) +ﬁJ%(ﬂmn,o)] —% Eh(ﬁmk,o)h (Bm, ) —%J%<ﬁmn.0>
% (m2 o+ 2m% o) [3m2 o J (Bmyo) + 4mg oJ1 (Bmg o) + mi,OJI ()]
+ (4L—§2T;2 [B3miy o1 (Pmr) + 4mi o1 (B o) + miy o1 (Bmyo)] = 6(17LT;2T;2 (m3 o = mi 0)*J1(Bmy0)
(8L;2T;2 [3’”?[.0] 1(Bmg) + 4mi o1 (Pmg o) + % (8mi o — 8my gmi o 4 3miy )J (ﬁmﬂ’O)]
% (4 mg ,lo mAT:O - %mi,omz,o logmA—;O> + % <§ mi gy o log A:ﬂ)

where J,(fm) is to be evaluated at ¢ = 0.

The terms proportional to the renormalized couplings L
and the logarithms can be absorbed in the one-loop result
by replacing the bare meson masses with the physical
meson masses at one loop, listed in Appendix D. This can
be seen by writing the meson masses schematically as m? +
om? and expanding the one-loop contribution as

I(m? + 6m?) = I)(m?) — 6m?I,(m?), (31)

where we have used Eq. (AS). Similarly, using Eq. (A9) for
¢ =0, we find

Jo(ﬂ V m2 + (sz) = Jo(ﬂm)

—om*p2J,(pm).  (32)

The sum of Egs. (27) and (30) gives in the limit ¢ — 0, the
finite-temperature pressure through O(p?)

4
Posisa =@TT)2 ECIAREY I RREVATTA

20T [3 L
( ;)4f2 |:8 1(ﬂmn0) 4
m%mT4

7 2
+7—21%(ﬂm,70)] —W |:§J1 (ﬂmK,O)Jl (ﬂmn.O)

J1(Pmg)Jy (Pmy0)

—%J%wm,,,o)]. (33)

We note that the result simplifies significantly in the
chiral limit since the terms proportional to m%’o vanish. In
the two-flavor case, the correction to the Stefan-Boltzmann
result is of O(p?), cf. Eq. (1).

IV. INCLUDING ELECTROMAGNETIC
INTERACTIONS

Electromagnetic interactions in the framework of chiral
perturbation theory were first included by Urech in Ref. [9]
in the three-flavor case. The SU(2),, symmetry of the chiral
Lagrangian is then becoming a local U(1) gauge symmetry.
Moreover, he showed that one can find a consistent power
counting scheme also in this case, if the electromagnetic
coupling e counts as O(p) and the electromagnetic field A,
counts as O(1). The leading-order Lagrangian is now given
by [8]

L, = —%FWF’”’ + %ﬂ(vyzwzw + Zl‘fzoﬁz +Z7y)
+ C<QZQZI> + ‘Cgf + ‘Cghosu (34)

where the first term is the kinetic term for the photons. The
covariant derivatives are

VEX=0XZ+i[A,0.2] (35)
V2 =09,2" +i[A,0.27]. (36)
where the charge matrix of the quarks is

0 :%e(ﬂ3+%ﬂg>. (37)

Since our calculations involve the dynamical gauge field
Ay, we need to fix the gauge. In the class of covariant
gauges, the gauge-fixing term is

1

Lo = 2%

= (0,412, (38)

where £ is the gauge-fixing parameter. The corresponding
ghost term is
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1
Lonon = 50,20 (39)

The ghost completely decouples from the rest of the
Lagrangian. In a general covariant gauge, the Euclidean
space photon and ghost propagators are

BulP) = s (B0 = (1=0"5). o)
Aghost(P) = % (41)

At O(p*), the partial derivatives are also replaced by
covariant derivatives in Eq. (17). The O(p*) chiral
Lagrangian has an additional 17 terms whose coefficients
were computed in the Feynman gauge, £ =1 [9-12].
Generally, the coefficients of the operators depend on
the gauge, an explicit example is given in Ref. [31].
Some of the operators have two powers of e and two
derivatives, or two powers of e with one power of the
quark mass, or four powers of e. The 14 operators
required are

L] = K fH(V,ETVFEN(0%) + Ko f2(V, T VFE) (QZ0XT) + K3 f2((V, 27 QX) (VFET 0F) + (V,Z0XT)(VFE05))
+ K, f*(V, 2T 0%) (VFEQZY) + K5 f2((V, ' VFE + V, EVFET) 0?) 4 K f2(V, I VFEQET 0T + V, EVFET 02 0FT)
T K fP (0% + Ko P E + ZT) (QZ0ZT) + Ko fA (W 'E+ Zfy + 42" + 241 0%)
+ Kiof ("2 + 20 0ZT 0% + (rEF + ") OZOZT) + K ("=~ T7y) 02T OE + (v =7 - ") QT OT)
+ K15 (QZ0%T)? + K 16/*(QZOZT)(Q?) + K17/*(0%)?, (42)

where K|—K ;7 are constants. The last operator is a contact
term. The relation between the bare and renormalized
couplings is

A%Y 1
K=K ————|-+1], 43
=K~ e )
where the constants X; are
3
X = T X =2, (44)
3
23 = —Z, 24 = 2Z, (45)
9 3
Yo = ——, X ==2, 46
s=-2. Te=3 (46)
27:0, Zg—Z, (47)
1 3
o= ——, o=-+=2Z, 48
9 10 4+2 (48)
1 3 )
211 :g, 215 :§+3Z+ 14Z N (49)
3 3 3
S e=-3--7Z-272 Y ==—=Z+572 50
16 > ; 7=373 +527%, (50)

and Z = f% The running of K is given by the solution to
the renormalization group equation

dK; 3

A—L=— :
dA (41)?

(51)

Note that 2; = 0 which implies that K; does not run and
we write K; = K7.

The charged mesons receive a contribution to the tree-
level mass from the term C(QTQX') in the Lagrangian
Eq. (34). Expanding this term to second order in the fields,
we find

ZE Cf—f 7+ 3+ 4 + 43
= —2Cf—622 [zta™ + KYK), (52)
and therefore
mii’o = By(m, + my) + ZCf—iz, (53)
my. o = Bo(m, +my) + ZC—ez (54)

e

The new term which is of purely electromagnetic origin
gives rise to the mass splitting of the neutral and charged
mesons that is nonzero in the chiral limit.

We also need the Lagrangian to fourth order in the fields.
The new terms are coming from the covariant derivative
and from the term C(QXQX"). We find
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o Cé?
Q.quartic __

8(ntn™)? + dnta (2°)? + 162t n~ KYK™ + 22 2~ KOK? + (2°)2KT K~ + 8(KTK~)?

+2K"K~K°K® + 3KTK™n*] + ie(n"0,n~ — 7 0,x")A* + ie(KT0,K~ — K~9,K™)A*

+ e*(nta + KTK™)A,Ax.

(55)

The one-loop counterterms are found by expanding [Zf in Eq. (42) to second order in the fields. One finds

4 _ 1
LZ-auadmtic _ geQ(K1 + K,)[0,7°07° + 20,7 0* 7~ +20,K T * K~ +20,K°0*K° + 0,n0"n] — §e2(2K3 -K,)

2 _
x [30,2°0z° + 9,n0"n) + §e2(K5 + K¢)[50,7°0" " + 100,70~ + 100, K 0" K~ + 40, K°0* K® + 30,110/

4 _
- gez(K7 + Ky)[m3 o(2°)? +2mZ gn w4+ 2mig o (K K™ + KOK®) + my gi°] — 4€*Kg (m o + 2mi )

2¢°K _
X (ata”+KTK™) - 627 2[m2 o (30mt = + 15(z°)? + 18K K~ + %) + m} o(12K* K~ + 12K°K° + 81?)]
2¢°K _
- 627 O [m2 (1387 7~ + 15(2°)% + 18K+ K~ + 1) + my o (120K K~ + 12K°K° + 8»%)]
8 4
— 8Ky (m2 ynta +mk (KTK™) —§f2€4K15(ﬂ,’+ﬂ_ +K*tK™) —§f2e4K16(7r+7r_ +K*tK™). (56)

Again there will be static terms from £6Q contributing to
the renormalization of the vacuum energy and we will not
need them.

V. PRESSURE REVISITED

In this section, we calculate the pressure through O(p®)
including electromagnetic interactions. Since the neutral
and charged mesons are no longer degenerate in masses, we
must express the pressure in terms of all the five different
meson masses. As mentioned before, the chiral Lagrangian
including virtual photons is known only to O(p*). It
therefore not possible to renormalize the vacuum energy
through O(p%), but it is possible to renormalize the finite-
temperature part since the counterterms at the relevant order
are given by the O(p*) Lagrangian.

A. O(pY)

Again the temperature-independent O(p?)-term is omit-
ted. The mesonic one-loop contribution to the pressure is
the same as before, except that the charged masses have
changed according to Egs. (53) and (54). In addition, there
is a contribution from the massless photons, giving

1
P = 516(’“,2:.0) + Io(m2. ) + Io(mi. ) + Iy (m )
1
+ *16(’"%,0) +

; (d=1)15(0). (57

|
where d = 3 — 2¢. Omitting the temperature-independent
divergent terms yields in the limit € — 0

4
(47"7)2 %Jo(ﬂmn,o) +Jo(Bmye o) + Jo(Bmg o)

Folpmieg) + 3 dolBmye) + 1O, (59

Plz

where J(0) = 162",

B. O(p°)

The two-loop diagrams are those given in the previous
section as well as a number of new ones coming from the
interaction terms in Eq. (55). The second group of diagrams
are shown in Fig. 3. These are the only diagrams involving
the photon propagator. We note in passing that the
individual diagrams are gauge-fixing dependent, but the
sum is independent of £ in covariant gauge. The same result
is obtained in the Coulomb gauge with gauge parameter ¢.

OIS

FIG. 3. Feynman graphs contributing to the pressure at next-to-
next-to leading order. Solid lines represent a charged meson and
wavy lines represent a photon. The setting-sun diagram is shown
to the right.
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The expression for the diagrams in Fig. 1 is

m2 1 1 1 1
P3 == f2,0 {—gl%(mizz,o) + gll(mjzri’())ll(mizr,o) - 51%(’",2;,0) - gll(mit’o)ll(m%(.o)
1 2 2 1 2 2 1 2 2 T oo
- gll(m,ri,o)ll(mp,o) - ﬁll(mn.oﬂl(mn.o) —gll(m,,i,o)ll(mn,o) + 7—211(’“;1,0)
meo - O T 1 1
e gll(mﬂi,o)ll(mﬂ,o)+§I1(m,,i,0)+811( )Il(mK0)+6ll(mi )M (m £p)
m2 1 1 1 1
- f—’io [—51%(’"?@,0) - Ell(mﬁ,o)ll(mii,o) - 611(’",2,;0)11 (Mg ) _gll(m%(,o)ll (M. o)
2
1 2, 0, Mgro |l 5, 5 1 2
+ 1 (m ) (m 0) + Ell( )11( )‘gh(’%,o)}_ 12 511(’" ) Ell( no)l (mKi,o)
1 1 1
+ gll(m,z,i_o)ll(mii,o) telh (mg o)1y (m. ) + le(mii,o)ll(mﬁ,o)} ; (59)

where the charged masses are given by Eqs. (53) and (54). Setting e = 0, i.e., for degenerate meson masses, Eq. (59)
reduces to Eq. (28), as it should.
The first set of one-loop graphs with insertions is shown in Fig. 2. Their expression is

Pb 4;;4 (m 721.0 + Zm%(_o)[Zmiiyoll(miiwo) + mi.oll( no) + mei 0 (mii,o) + 2m%<’011(m§<_0) + m,%’oll(m%,o)}
+ 4fL25 [m§’0(2m72[i’011 (m? io) + m2 1, (m? o)) + 2m% o(m %{tyoll (M) 4+ mi ol (mg o)) + my oIy (my )]
8;26 (m ;zz,o + Zm%(,o)[mi’o(le(mii’O) +1; (mizr,O)) + Zm%’o(ll(mii’o) +1 (m%m)) + m%,oll (mio)]
- 634;27 (mz o = mi0)* 11 (my,) = 1;158 [mi.o (11 (m2. ) + %11(’";2:.0)) + mi o (11 (M ) + 11 (mi o))
+ % <4m‘}<’0 —4m ymy o + %mi’o) I (m%o)} . (60)

The expression for diagrams arising from the interactions in Eq. (55) and shown in Fig. 3 is

1
Ps=—(d- l)ezll(mii‘o)ll(O) - 5621%(1112i ) — 262;112i olsun(mlzﬁ.o) —(d- 1)6211(m§<i,0)11(0)

1 ce?
- 5621%(’” 0 ) 26 mKi OIsun(m2 ) 6f4 [411( 7[0)11 (mlzzi’()) + 161%(’/”,2[10) + 16Il (mjzzi’o)ll (m?(iqo)
+11(m72r,0>11(m%(i’0) + le(m,zzi,g)l (ml(o) + 16[2( )+21 ( o)ll(m%(.o) + 311( Ki ())I ( ;70)] (61)

where d = 3 — 2¢ and I,,(m?) is defined in Eq. (B1). Iy,,(m?) is evaluated in Appendix B. Finally, the expression for the
diagrams arising from Eq. (56) are given by
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4
Py = §eQ(K1 + Ky)[m3 o1, (mi,o) + Zmii’oll (mjzri’o) + 2m%<,011 (m%(,o) + 2’"’1%@_011 (mii,o) + mﬁ,oln (mio)]

1 2
+ gez(—2K3 + Ky)[3m3 o I3 (my o) + my oI5 (my, )] + §€2(K5 + Ko [5m o1 (m7 o) 4+ 10m2, (11 (m2, )

4
+ lomii,oll(m?@,o) + dmi oIy (m o) + 3my o1 (m; )] = 562(1@ + Kg)[m o (1) (m3 ) + 211 (m2. )

+2mi o (I (mis o) + L (mi ) + my ol (mg )] = 42K (m7 o + 2mi o) (11 (m2 ) + 11 (i )]

2€2K9
27

262K]0

+811(my )] 77

(M3 0301y (2. ) + 151, (m7 ) + 1811 (mi ) + 11 (my ) + mi o (1213 (. ) + 121 (mi )

[mzzz.o(]3811(m,2,i,0) + 151y (m3 ) + 18[1(’”%@,0) +1 (m;%o)) + m%’O(IZOII(mi(i‘O)

+ 121 (mg ) + 811(’”5,0))] - 862K11[m,2,.011(m72[i’0) + m%(.oll(mii,g)]- (62)

The complete result for the pressure is then given by the sum of Egs. (58)—(62). Again we can absorb the terms that involve
the low-energy constants by replacing the bare meson masses with their one-loop expression. The final result is

T4

Partea = (gt | 00ma) + Jopmgs) 4 JoBme) + ol Pmngs) + 3 () + 140

m2 T* [1

6

1 1 1
— 1 [5 Ji(Pmygs o) J1 (Pmy) — gf%(ﬁmn.o) - Efl (Bmz o)\ (Bmy0) = —J 1 (Pmge o)J 1 (Bmy )

(4m)"f?

L <ﬂm,,,o>} -

m%{,o T4 1
72

(4n)*f2 (3

2Tt

J1(Bmg o)1 (Pmy0) + %11 (Bmy= o)1 (Pmy0) — %J% (ﬁmn,o)]

1 1
- {zfl (B 0)71(0) + 3 T3 (B o) + 27 (B )71(0) + Ewm,{ip)} = 2m2 lia(ml. )

(4r)*
CeT*

- Zm?(t.oezlgtzu)l(mz ) + =77 (2T (Bmys o) + 201 (Bm: o)1 (Bmge o) + 207 (Bmge o). (63)

K*,0

(4m)'f*

where 1§§;(m2) is defined in Eq. (B16) and we note that

J1(0) =42,

VI. QUARK CONDENSATES

In the vacuum, the light and s-quark condensates are
defined as

(g = 0, (64)
(@, =5 (65)
(5s)o = oo, (66)

where V is the vacuum energy density. By introducing the
sum m = 1 (m, + my) and difference Am =1 (m, —mg)
of the light quark masses, we calculate the sum and
difference of the light quark condensates as

(i + (@) = (@a)o =5 (67)
(o~ (dd)y = . (68)

At finite temperature, we replace V by V — P [15] and we
therefore have

(@a) = (a0l |1 + ) I
(55) =(55)¢ {1 + Z;—z ;HZ] , (70)

where the sum is over the eight mesons and the coefficients
are

2
om;,

om

ca ==*—(qq);". (71)

014010-10



THERMODYNAMICS AND QUARK CONDENSATES OF ...

PHYS. REV. D 107, 014010 (2023)

2 (55)g". (72)

om

__
cm f a s
The expressions for the coefficients are obtained by using
the results for the condensates at 7 = 0 given by (C5) and

(C6) and the meson masses listed in Egs. (D1)-(D8).

VII. HADRON RESONANCE GAS MODEL

In the HRG model, one approximates the partition
function of the system by the partition function of a gas
of noninteracting hadrons and resonances. The pressure P
is therefore given by the sum of independent contributions
‘P, coming from the different species,

P= th
ZZdh (2s +1 / dppzlog[l Fe VP +’"h}
(73)

where d), is the multiplicity, s is the spin, m,, is the hadron
mass, and the upper (lower) sign is for mesons (baryons).
The lightest hadrons we include in the sum are shown in
Table 1. In the numerical work, the used HRG model
includes more than 200 known mesons and baryons below
2.5 GeV in Particle Data Group [32]. As known from
Ref. [18], it is reasonable to add those known resonances.
Of course, it includes those broad light flavor mesons e.g.
f0(500), fo(1370), and K;(700) where we take the central
values of the estimated masses.

We also need the expressions for the condensates in the
HRG model. They are given by

(@4) = (ag)o~ 2
(@q)o + Znh amh (74)

TABLE I. Lightest hadrons included in the hadron resonance
gas model.

Hadron m(MeV) s d, Hadron m(MeV) s d,
zt 13957 0 2 p 93827 1/2 2
70 13498 0 1 n 939.57 172 2
K* 49368 0 2 0 957.78 0 1

K/K° 49761 0 2 fo 990+20 O 1

n 54786 0 1 ag 980+20 1 1

p* 77526 1 2 ¢ 1019.46 1 1

P 77526 1 1 A 1115.68 1/2 1

® 78266 1 1 hy 1166 £6 1 1

K+ 891.67 1 2 o+ 1189.37 1/2 2
¢ 89555 1 2 0 119264 1/2 1

opP

- (75)

(55) = (35)0 =

(76)

where the temperature dependent density of hadrons is
Sdh 2s + 1) m,p> 1

\/p +ml VP
(77)

n(T) =

The derivatives of the hadrons masses with respect to the
light quark mass m and the strange quark mass m, can be
written as [18]

amh Or.h
= 2By ——, 78
om 0 mio ( )
omy, _ ogn _ Osp Bo(m + my) (79)
omg  mg  mi my '

The sigma terms for the fundamental states are taken from
[33]. It is difficult to calculate the sigma terms for each
particle, but we follow Ref. [18] and assume that all
hadrons have the same sigma term as their fundamental
state.

VIII. NUMERICAL RESULTS AND DISCUSSION

In this section, we present and discuss our numerical
results. As input we will use the physical meson masses
and the pion decay constant taken from the Particle Data
Group [32]

mo = 134.98 MeV, (80)
m,: = 139.57 MeV, (81)
my: = 493.68 MeV, (82)
myo = 497.61 MeV, (83)
m, = 547.86 MeV, (84)

fr =92.07 MeV. (85)

The numerical values of the low-energy constants that we
need are [7,34], where Ref. [7] includes L} — Lg and H} is
taken from Ref. [34],

L, = (0.0+0.3) x 1073, (86)

LL=(12+0.1)x 1072, (87)
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LI = (0.0 +£0.4) x 1073, (88)
L7 = (-03+02) x 1073, (89)
L;=(0.54+02) x 1072, (90)
Hj = (-34+15) x 1073, (91)

These couplings are at the scale of the p mass, A =
775.26 MeV.

Including electromagnetic interactions, we need a num-
ber of additional couplings. The electromagnetic coupling
is [32]

e? = 0.092. (92)

The numerical value of the constant C has been estimated
by Urech [9]. Its value is

C = 61.1 x 1075(GeV)*. (93)

At tree level, this gives rise to a mass splitting between the
neutral and charged pion of approximately 4.8 MeV, which
is very close the experimental value of 4.6 MeV. Finally, we
need [7,35,36]

Ki=-27x1073, (94)
K, =0.7x 1073, (95)
K5 =27x1073, (96)
K, =14x1073, (97)
K:=11.6x 1073, (98)
K:=28x1073, (99)

K5 =0x1073, (100)

K =0x 1073, (101)
K5 =-13x1073, (102)
Ky =4x1073, (103)
K, =13x1073, (104)

where all the K] are assigned a conservative 100%
uncertainty [35]. The low-energy constants K| — Kg and
K1, can be found in Ref. [7], K§ and K7, are from Ref. [36].

If we ignore electromagnetic interactions, the charged
pion is degenerate with the neutral pion, and the charged
kaon is degenerate with the neutral kaon. In this case, we

use the experimental values for the masses of the neutral
mesons as well as f,. Using these values together with
the low-energy constants, Egs. (D1), (D2), and (D9) (here
with e = 0) give us the tree-level values for m, g, mg,
and f. The tree-level value of the eta mass is then given by
the relation m} = 1 (4my o —m3,). The bare values we
find are

m, o = 135.52 MeV, (105)
mgo = 536.72 MeV, (106)
m,o = 614.79 MeV, (107)

S =76.93 MeV. (108)

Adding electromagnetic effects, we obtain

myo = 135.97 MeV, (109)
mg:o = 137.11 MeV, (110)
my=o = 531.85 MeV, (111)
mgo = 537.14 MeV, (112)
m, o = 61525 MeV, (113)

f =76.69 MeV. (114)

In both cases, we see that renormalization effects are
modest, except for the pion-decay constant.

In Fig. 4, we show some of the individual contributions
to the pressure in the HRG model in units of 10™* GeV* as a
function of temperature in MeV. This is essentially the same

2.0

1.6 -

12

Px10"(GeV*)

0.4 -

0.0

0 50 100 150 200 250
T (MeV)

FIG. 4. Individual contributions to the pressure in the HRG
model as a function of the temperature in MeV. See main text for
details.
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1.0 T T v T v T TT T
-+« xPTLO 4L
—— yPTNLO 3
08F —__ / .
XPT NLO+y B
== =yPT NLO+HRG A -
A Lattice /; -7
06
w
<
04
02~
0.0 : : :
0 50 100 150 200
T (MeV)
FIG. 5. Pressure normalized by T* as a function of the

temperature in MeV. See main text for details.

as Fig. 2 of Ref. [37]. As expected, at any given temperature,
the lightest states contribute more to the total pressure
than the heavier states. Up to approximately 100 MeV, only
the pions contribute significantly. From 120 to 130 MeV
onwards, heavier states that are not included in three-flavor
xPT start to contribute significantly.

In Fig. 5, we show the pressure P normalized to T* in
various approximations. The dotted line is the O(p?) result
in ¥PT, while the blue line is O(p*) result. The red dashed
line is the O(p*) result including electromagnetic effects.
The green line shows the resulting normalized pressure
combining yPT and the hadron resonance gas model.
Doing this, the eight mesons in three-flavor yPT are
excluded from the sum in Eq. (73) so we do not count
degrees of freedom twice. The black triangles are the lattice
results taken from Ref. [18]. For low temperatures, the
contribution to the pressure from the massive states is
Boltzmann suppressed. This implies that the normalized
pressure vanishes, except for the case where the contribu-
tion from the photons is included. The normalized pressure
in the limit 7 — 0 is therefore 2 x % = 0.22. The differ-
ence between the red and the blue line is fairly constant
over the temperature range shown, indicating that electro-
magnetic interactions contribute relatively little to the total
pressure. The green and blue lines are essentially on top of
each other until a temperature of approximately 90 MeV,
where they start to deviate. The steep increase of the green
curves shows the effects of including heavier states. The
agreement between the resulting normalized pressure and
the lattice result up to the largest temperatures is good.

In Fig. 6, we show the light quark condensate normalized
to its zero-temperature value in different approximations as
a function of the temperature. The blue (green) line is the
O(p?) result without (with) electromagnetic interactions.
The yellow (red) line is the O(p*) result without (with)
electromagnetic interactions. For comparison, we show in

T T T T T T T T T T T T T

08 -
A -
| § 06
A
I§ 041 --—-yPTLO .
v —-=- yPTNLO
- - —=xPTLO+y
0.2 . pPTNLO+y .
—— 4PTNLO+#+HRG ;
00 n 1 n 1 n 1 n 1 " n n \1\
0 40 80 120 160 200 240 280
T (MeV)
FIG. 6. Normalized light quark condensate (gq)/(gq), as a

function of the temperature in MeV. See main text for details.

black the result from the HRG model. Obviously, yPT is
not valid in the entire temperature range shown, but for low
temperatures, up to 7'~ 150 MeV, it seems to be converg-
ing very well and electromagnetic effects are not very large.
However, from Figs. 5 and 8 below, it is also clear that yPT
alone cannot explain the lattice results beyond approxi-
mately 120 MeV.

In Fig. 7, we show the strange quark condensate
normalized to its zero-temperature value in different
approximations as a function of the temperature. The
features are essentially the same as in Fig. 6, except that
the electromagnetic effects are somewhat larger in this case.

In Fig. 8, we plot the dimensionless quantity A, ;, which
is defined as [18]

(115)

1.0

0.8

0.6

<s5>/<s5>,

041 -----4PTLO §
——- yPTNLO
- = —yPTLO+y
02 L PTNLO+y 1
— yPT NLO+»+HRG
00 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n ““l \\ n
0 40 80 120 160 200 240 280 320

T (MeV)

FIG. 7. Normalized strange quark condensate (5s)/(3s), as a
function of the temperature in MeV. See main text for details.
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—— 4PT NLO A\

PP \
02k «PT NLO+y N |

— = 4PT NLO+/+HRG a

A Lattice A A .
A
0.0 1 1 1 ' 1 “‘
0 50 100 150 200
T (MeV)

FIG.8. A, as afunction of the temperature in MeV. The dotted
horizontal curve indicates the value A, = % See main text for
details.

The ratio of light quark mass m and strange quark mass m;
equals 1/30.21, which is obtained by using the bare values
of m, o and my o. The green (blue) line is the O(p?) results
without (with) electromagnetic contributions. The red
dotted line is for the results combined with the HRG
model, which includes all the resonances states below
2.5 GeV in [32]. For comparison, we also plot the lattice
results in triangles from Ref. [18]. At low temperatures, the
xPT predictions do converge well and the electromagnetic
contributions are small. The agreement between the lattice
results and the HRG is excellent all the way up to
T =~ 170 MeV. For QCD with physical quark masses, there
is no critical temperature. However, one can define a
crossover temperature in different ways. For example,
the temperature at which the chiral condensate has
decreased to half its vacuum value, or similarly the
temperature at which A, has decreased to half its vacuum
value. It can also be defined as the temperature at which
the quark susceptibilities has its peak. Depending on the
quantity, the crossover temperature in Ref. [18] is in the
150-170 MeV range. Using the definition A, :% they
obtain Tp,. = 157.3 MeV. Using the same definition, we
obtain 160.1 MeV, the dotted line in Fig. 8 indicates this
value. This crossover temperature is also very close to
Ty = 161.2 MeV obtained by a very recent HRG model
analysis [23]. Of course, one should bear in mind that the
HRG model does not know about the deconfined phase of
QCD so the excellent agreement for 7', obtained here, can
to some extent be accidental. Likewise, the agreement with
lattice data for temperatures above approximately 150 MeV
should be taken with a grain of salt for the same reason.
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APPENDIX A: SUM-INTEGRALS

In the imaginary-time formalism, the four-momentum is
P = (po,p) with P2 = p} + p* and p, = 2znT being the
Matsubara frequencies for bosons. Loop integrals involve
sums over Matsubara frequencies and integrals over spatial
momenta. We use momentum-space dimensional regulari-
zation to regulate both infrared and ultraviolet divergences.
The sum-integrals are defined as

=T ,
IP ZZ!;}TT /P

Po

(A1)

where the sum is over Matsubara frequencies and integrals
over momenta are denoted by

eyEAZ € ddp
=) [
where d = 3 — 2¢ and A is an arbitrary momentum scale
that coincides with the renormalization scale in the MS

scheme. The one-loop integrals that appear in the calcu-
lations are of the form

(A2)

Iy(m?) = —ip log [P + m?], (A3)

In(mz) = IP (PZ _i_lmZ)n ’ (A4)

where the prime denotes differentiation with respect to the
index n evaluated at n = 0. They satisfy the relations

0 0

Wlf):—ll, Wlnz_nlnﬂ' (AS)

The sum-integral /,, can be evaluated by standard contour-
integration techniques. We specifically need

I E e

+2olpmr (A6)
Iy(m?) = —@ (%)26 [G+ o 1+212€>mz
- 5,(m)r| (A7)

where the thermal integrals J,(fm) are defined as
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Ju(Pm) =

46}’561"( ) m2€ 0 p4—2n—2€
A n(E,) dp,

l—*(i —n- ) T4—2n »

(A8)

n(E,) =1/(ef» — 1) is the Bose-Einstein (BE) distribu-
tion function, $ is the inverse of temperature, and E, =

\/p? + m?. The thermal integrals J,,(x) satisfy the recur-
sion relation

xJh(x) = 2eJ,(x) = 2x2J 41 (x). (A9)

For € =0 and in the limit m — 0, the thermal integrals
behave as

167*

J T e
07 45

(A10)

2
Iy~ 2(log/i— 2+ yE) (pm).  (All)

2r pm

We notice that 1 7,(0) reduces to Z; 7, which is the Stefan-
Boltzmann limit for the pressure of a massless bosonic
degree of freedom.

APPENDIX B: EVALUATION OF I, (m?)

In this appendix, we calculate

. 1
)= L, e T O

We use the method of Bugrij and Shadura [38]. The sum-
integrals over Euclidean momenta are replaced by integrals
over four momenta p = (py,p) in Minkowski space,
Y — —i [,» where integrals in Minkowski space are

(B1)

The Euclidean propagator is replaced by the Minkowski
propagator in the real-time formalism,

(| pol)28(p3 — Eé)).

(B3)

1 . i
P2+m2_)l<p(2)—Ef,+i€+

The sum-integral /,,(m?) is then given by the real part of
the resulting expression. Some of the integrals involve one
or more factors of the BE distribution. The remaining
integrals may conveniently be Wick-rotated back to
Euclidean space, f v =i f p» Where the integral is defined as

eyEAZ € dd+1p
[)_< 4n > /(271')‘1“’

with d = 3 — 2¢. The term with zero thermal factors reads

(B4)

)/ 2y _ 1
Isun(m*~) =
)= | e o
1
— [ —p), B5
[ ) (B5)
where the superscript (i) (i = 0, 1,2, 3) of I éfl)n(mz) denotes

the number of BE factors and where we have defined

1

HP) = /Q Q>+ m)[(P+ Q) +m?]’

(B6)

The bubble integrals can be calculated e.g. by using
Feynman parameters,

7 csc en (e'EA?)¢

M(P) = o) @y /Ol dx[m?® + P?x(1 - x)] .

defined as (B7)
/ / dpo / . (B2) Integrating first over four-momenta P and then over x
yields
|
©0), o mcseen( e}’EA2 / / 5 m* (A% , (d—1)z*cscen
Iy d Px(1 - €= — — ree . (B8
") == | x )l N =i \n) " 2arpcg ©®
Expanding in powers of e through order € gives
2 de 2
©), - m A 1 3 z
u = - — —S+-—4+T7+—+0(¢)]|. B9

The terms with one thermal factor are
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(1) _ 1
Isun(mz) - An(lpoDZﬂé(P(z) _Pz) /Q (Qz —|—m2)[(P+ Q)2 + m2] o +2A/Ii’l(|po|)27l'5<p(2) — Ei)
1
) /Q (Q* 4+ m*)(P+ Q)| prp (B10)

The integral over Q in the first term is I1(P) in Eq. (B7), evaluated at P> = 0. The integral over Q in the second term can be
evaluated in the same way. Expanding the resulting expressions in powers of ¢ yields

Lt e o s = () L [ T Ll

1 AN2¢T1

== (4”)2 (Z) |:E + O(G)] s (Bll)

1 1 /(A\*[1 Lo xm? +x(1—x)P?

formmror—mr(n) e ] e o)
_ ! A * ! 240 B12
~ () o2+ 0] (12
Substituting Egs. (B11) and (B12) into Eq. (B10) and integrating over p, yields

ooy L (A 2€/ [H(P)l 2n(E,) (1 )]

Tsuin(m*) = (an) <m) T e + E, - +2]. (B13)

The terms with two thermal factors are

1

(Po+q0)* = (p+q)*
1

(Po+q0)* —(p+q)* —m*

Iﬁﬁi(mz)=/wn(lpol)%ﬁ(lﬂ%—E%)AH(ICJOI)ZM(%—Eé)

+2 /M n(|pol)225(2 = p?) A n((ol)275(g? — E2) (B14)

This integral is convergent in three dimensions so we set € = 0. We first integrate over p, and ¢y, which yields

@ 2y = L [ MEIN(E) ! :
Lsun(m7) = 2/m E,E, [(E,, TE)N-®ta” (B, -E)-(+ ‘l)z]

n(p)n(E,) 1 1
/pq PE, [(p +E) - (p+q)-m e E)*—(p+q) - mz] ' (B15)

Averaging over the angle between p and q gives

@ n_ 8 /°° pn(E,)qn(E,)  (p—q)*
Ign(m*) = Io dpdq, B16
() @) Jo E,E, 8t q)r (B16)

where we notice that the angular average of the term in the second line of Eq. (B15) vanishes. Finally, the term with three
thermal factors, /. 232‘(m2) is purely imaginary and is dropped. Adding Egs. (B9), (B13), and (B16), we obtain the result for

the setting-sun diagram

Q) [0 O [ 2 )

8 [wpn(E,)qn(E,)  (p—q)*
A EE, 2 (piaqP

dpdq. (B17)
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APPENDIX C: ONE-LOOP VACUUM ENERGY 1 , ) ) 5
Vi== [ log|P-+m —|—/10P—i—mi
In this appendix, we calculate the vacuum energy V ! 2/1: el ol P el T ’0]
including electromagnetic effects. From V it is easy to 5 5 5
derive the one-loop corrections to the quark condensates L log[P* + mki 0] A log[P* + mi o]
that are needed in our finite-temperature formulas. The |
O(p?) contribution is +§/ log[P? + my o] + (d = 1) / log[P?], (C2)
P P
) f 2(’”72:,0 + 2’”%(,0)- (C1) where the last term comes from the photons and ghost and
vanishes at zero temperature. The O(p*) counterterm
The O(p*) contribution from the loops is contribution is

ot 2 2 \2 4 4 4e? 2m72r,0 4 4
Vl = _(4L6_2L8 —HQ)(m”!O—I—ZmK’O) _4(2L8 +H2)(mﬂ_0+2mK‘0) —73 K7+K8+§K9 +§K10
8e? f2m? 1 1 4 £
- % [1@ + Ky + Ko+ gKm} -5 (K5 + K6 + K1) (C3)

After renormalization, we find the vacuum energy for three-flavor yPT to O( p4) including electromagnetic effects.
1
Vour = =3 f2 (g + 2k ) = (AL = 2L = HE) (2 + 2 o) = 42LG + HE)md o + 2 )
4 2 4 2 4 2
mn_o < A 1> mﬂi.o < A 1> mKi.O ( A 1>
——2=(log—+ - log +=-]——=(log——+=
4(4rx)? ,2[0 2 2(4r)? mii,o 2 2(4n)? m%(i,() 2

m A1 m A2 1\ 4eélfPm? 4
K0 <1ogm2 +—) -0 (log—2+—> -0 {K; + K 4=

4
K+ Ko

 2(4x)? %o 2/ 4(4n)? m,, 2 3 3
8e2 2m? 1 1 4et
- —fs - {Ks + Ky + 5 Ky + 3’%] =2 K + K+ K (C4)

The light and s-quark condensates to O(p*) in the vacuum are

(3q)y = —2fB {1+ Mo <16L’+8L’+4H’ LI A2> mi <32L’ ! ———log Az)
’ ’ Iz ° 2(4n)* " m; f2 2(47)* " mico

Mpg N My A mhy A }
+ ~— log + log + log
(477:)2f2 m,zrir.() ( )Zfz m?(i’() ( )2f2 m%()
1662 2B 5 5
—30(1<;+Kg+61(g+61<;0>, (C5)
4m? mk 1 A2
$5) = —f2By | 1 4 2z 4L; — 2L} — H} 32L% + 16L; + 8H) + log ——
(35)0 f 0[ - 7 ( 8 )+ —5 f2 ( + +oH; + (4”)2 0g m%(’o)
2
+ A? 2m; A>T 8e*f’B 1 1
s 0 1,0 0 r r r r
T log—5—+ 34 )zle ] 3 <K7 + Ky 3K+ 5Klo). (C6)
K*,0

Note that quark condensates depend on the coupling H%, which is unphysical in the sense that it arises from a contact term
in the O(p*) Lagrangian.
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APPENDIX D: MESON MASSES AND PION-DECAY CONSTANT

In this appendix, we list the meson masses to one-loop order including the leading electromagnetic effects, i.e. through
. The meson masses without electromagnetic corrections were calculated in Ref. [3], while electromagnetism was
included in Ref. [9]. The meson masses without electromagnetic corrections are

mlzt 1 A2 m% m2, A2
M%:mio{l E <8L’+8L’ 16Lg—16L§+2(4ﬂ)zlogm§0> -5 (16L£—32Lg)+ﬂ7”10gf], (D1)

2 2 mizfqo r r m%{-o r r r r m’%so A2
MK :mK.O 1 —?(SLL‘— 16L6>—?(16L4+8L5—32L6— 16L8) —Wlogm—zo s (DZ)
.
2 2 2 2
1 A 1 A
M2 = m? [1 <8L —16L; + log—> (16L —32L; + —=log >
' 0 f2 N 6(4”)2 mi,o f2 ! 6 (47)* K 0
2 2 2 2
. 2 A , 128(mﬂ’0 - mK,o) . 16
f2 <8L 3an)? log m_ﬁo)] + L% 372 + L} 37 (3miy o — 8mZ ymy , + 8mi ()
n Mo A2 /ZIOm%(O A? (D3)

2ny By " 3 f? E iy

After including the one-loop yPT contribution to meson masses and electromagnetic effects up to order ¢, the charged and
neutral meson masses are

8 8 20 20 8 8 20 20

2<Ce A2 s <1 e A) .

=M;+ ¢ Sk Sk 201(’ 20K’+8K’+20K’+20K’+92K + 8K}
m?, = e?m’ | —= K, —-Kj——
a A3 379 9 3 3 9 9 !

em?, A? 16Ce? 16Ce>mz
(47)'2 ( —> = Li——(mgo +2mg ) — L ST
Ce’m2, A2 Ce’my, A

log +2 ;
(477)2f4 ;%o (4n )2f4 m%(,o

+ 8e?m} (K§ +

+4

8 20 20 8 32 8 80
3713 9 9 3 3 9 9

8
mii:MijLezm%(yO(——K’——Kg — K ——K{ + =Ky +— K + —Ki +— K, + 8K,

. 4 4 e*mk A2 . 16Ce?
+ e?m? <4K 3K 3K ) +W (4+3logmi’0) - L 7 (m7 o+ 2m% )
16Ce’my,, _Ce*mi, A>  Ce*my, A

— L +2 log +4 )
> I (4r)>f* mfzz,o (4n)*f* m%(,o

8
2m% o(=3K} — 3K} — K. — KL + 3K? + 3K; + Ky + K'), (D7)

mKO—M%(+9

8 ., 8 4 2 4 4 8 8
m§:M5+e2mn0(—§K — 3Ky 3K = 3K -3 K-S KG+ 3K 3

4 2Ce’m2,, A? Ce’m% A?
+—e?m? o (Ky+ Kiy) == ——5 1 <1 —log > + ’ <1 —410g). (D8)
9 ’ 3 (4n)*f* mzo)  3(4m)’ft m o

8 8
K3 K3 K
[+ 5K+ KT
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Finally, including electromagnetic effects, the neutral pion-decay constant f o is

my my 4. 4 10 10
f f 3 3 9 9
2 2 )
m”i 0 A2 mKi 0 A2 mKO A2
+ ~—log + — log + ——log (D9)
(4r)? f? mii,o 4(4x)%f? m%(i,o 4(4m)f2 T my
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