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We calculate azimuthal asymmetries in back-to-back production of J=ψ and a photon in electron-proton
scattering process at the future electron-ion collider using the transverse momentum dependent parton
distribution (TMD) factorization framework. We consider the cases where the proton is unpolarized or
transversely polarized. For the formation of J=ψ , nonrelativistic QCD is used. We find that the cross section
gets contributions from only one color octet state. As a result, the azimuthal modulations become
independent of the long-distance matrix elements, and thus can be used to probe, in particular the gluon
TMDs which are dominant in this kinematics. We show estimates of the upper bounds of different
azimuthal asymmetries using the positivity bounds on TMDs. In addition, we show an estimate of
asymmetries using the Gaussian parametrization of the TMDs.
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I. INTRODUCTION

The quest for a three-dimensional representation of the
nucleons in the momentum space is fundamentally depen-
dent on transverse momentum dependent parton distribu-
tions (TMDs) [1–6], which are nonperturbative objects.
These carry information on the inherent transverse motion
of the partons and the correlations between the transverse
momenta and the spins of the parent nucleons and partons.
TMDs can be thought of as an extension of one-
dimensional, collinear parton distribution functions
(PDFs). Over a few decades, study of the TMDs has been
of great interest to the scientific community in hadron
physics. Both experimental and theoretical studies on the
semi-inclusive deep-inelastic scattering (SIDIS) processes
have brought fairly significant information on the quark
TMDs but not much has been achieved yet, on the gluon
TMDs. TMDs, unlike PDFs, are not universal in general.
The operator structure of the quark TMDs and the gluon
TMDs, involve gauge links or Wilson lines, in order to
make them gauge-invariant quantities [7–10]. The presence

of the Wilson line introduces its sensitivity to the color
flows and soft gluon exchanges in the processes in which
they are probed. Hence, they are process-dependent
objects. Moreover, the process dependence of the gluon
TMDs are more involved due to the presence of two gauge
links than the quark TMDs which include only one [11].
One such example has been predicted with the Sivers
functions; basically the Sivers function observed in a SIDIS
process is expected to have opposite sign as compared with
its observation in Drell-Yan (DY) process. This is due to the
difference in the gauge link structure, or in other words,
initial/final state effects [10]. Recent data from RHIC are in
favor of this theoretical prediction [12], however, more data
is needed to make a firm understanding of the process
dependence of the TMDs. Experimental verification of
such properties could test our understanding of the TMD
formalism and nonperturbative QCD effects in general.
At leading-twist, there are eight gluon TMDs [13].

Among them, linearly polarized gluon distribution [13]
inside an unpolarized proton and the gluon Sivers function
[14,15] inside a transversely polarized proton have attracted
a lot of interest in the last few years. Linearly polarized
gluon TMDs, also referred to as azimuthal correlated gluon
distribution, cause azimuthal asymmetries (like cos 2ϕ) and
affects the transverse momentum distribution of the out-
going particles in the unpolarized electron-proton scatter-
ing process [16]. On the other hand the gluon Sivers
function, which describes the correlation between the
intrinsic transverse motion of the unpolarized gluon and
the transverse spin of the parent hadron, could also
cause azimuthal asymmetries and single-spin asymmetries
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[14,15] in scattering processes, like electron-proton colli-
sion, where the proton is transversely polarized with respect
to its direction of motion.
In general, we do not have much information on the

gluon TMDs yet, except the theoretical positivity bounds
[13,17,18]. They could play a crucial role in two-scale
processes, such as SIDIS, where one measures the trans-
verse momentum of the outgoing particle in addition to the
photon virtuality and the DY process, where the transverse
momentum of the outgoing lepton-pair provides the second
scale. The generalized factorization using TMDs can be
used for these kinds of processes. However, TMD factori-
zation has not been proven for all processes [19]. Many
proposals have been put forward in order to probe the gluon
TMDs both in the lepton-proton and proton-proton colli-
sions processes [16,20–37]; however, experimentally, they
are harder to be extracted as compared with the quark
TMDs. Most of the proposals are based on analyzing the
TMD azimuthal asymmetries in the heavy quark-antiquark
pair productions or the bound state quarkonia productions
because they are sensitive to the gluon content of hadrons,
specially in the small longitudinal-momentum fraction, x,
domain [33]. Depending on the types of gauge links present
in the operator structure of the gluon TMDs [11], which
corresponds to the configurations—namely, one past and
one future pointing gauge links, ½þ;−� or ½−;þ� and both
past or both future-pointing gauge links, ½−;−� or ½þ;þ�—
they are called f-type and d-type, respectively, each having
a different operator structure [11]. In the small-x domain,
they are described in the literature as dipole [38] and
Weizsacker-Williams (WW) [39,40] gluon distributions,
respectively.
In this work, we present a study of azimuthal asymme-

tries in J=ψ-photon production in the electron-proton
scattering process, ep → eJ=ψγX [41,42], where we con-
sider both the unpolarized and transversely polarized initial
protons. The associated production of an energetic photon
besides J=ψ allows the kinematics where, their individual
transverse momenta may not be constrained to be small. In
this case one can assume the TMD factorization for this
process as the soft scale provided by the total transverse
momentum of the outgoing particles, J=ψ+ photon, which
is required to be much smaller than its invariant mass. This
kinematic condition can be achieved by considering a
channel where the J=ψ and the photon are almost back
to back in the transverse plane. This scenario provides an
advantage that one can access the TMDs over a range of
scales by varying the invariant mass of the pair. This
process probes the kinematic region of z < 1, where z is the
fraction of energy of the virtual photon taken by J=ψ in the
proton rest frame.
For the calculation of the J=ψ production rate, we have

employed the nonrelativistic QCD (NRQCD) effective field
theory framework [43–45], which is extensively used since
it gives a rigorous description of heavy quarkonium

generation and decay [46,47]. Within this framework,
the amplitude for a quarkonium production, here a J=ψ ,
can be given as a factorization of the hard process that
corresponds to production of cc̄ pair and the soft process of
hadronization of the cc̄ pair to the J=ψ state. A non-
perturbative quantity called long-distance matrix elements
(LDMEs) encodes the soft hadronization process which
describes the transition probability to form a quarkonium
state from the heavy quark pair that are produced in the
hard process [46]. This is expected to be process indepen-
dent and can be extracted by fitting data. Several LDME
sets exist in the literature. In terms of the heavy-quark
velocity parameter v, LDMEs are anticipated to scale with a
specific power of v in the limit v ≪ 1 [48,49]. With v2 ≈
0.3 for charmonium, NRQCD introduces an expansion in v
in the cross section, besides the common expansion in
running coupling constant αs. As a result, the heavy-quarks
pair could be produced in different quantum states that can

be represented as 2Sþ1Lð1;8Þ
J . Here, S, L, and J represent

their spin, orbital, and total angular momentum, respec-
tively. The color configuration is given by (1,8), where
(1) represents color singlet (CS) and (8) represents color
octet (CO), i.e., NRQCD incorporates both the CS and CO
contributions to the cross section, in general.
In our recent publications, we studied the azimuthal

asymmetries in J=ψ [50] and J=ψþ jet [51,52] productions
in the electron-proton collision, where we probed similar
kinematics of z < 1 at the next-to-leading order in αs. We
considered the TMD formalism, and the J=ψ production
rate has been calculated using the NRQCD framework. In
many cases, azimuthal asymmetries that are suggested to
probe gluon TMDs show a significant dependency on the
choice of the LDME set [50,52]. This introduces some
uncertainty in the extraction of the gluon TMDs from these
observables. In the process considered here, as we have
shown below, the azimuthal asymmetries are independent
of the LDMEs. This is because only one color octet state
3Sð8Þ1 contributes at the cross section level. We present some
numerical estimates of the upper bounds of the asymme-
tries using model independent positivity bounds on the
TMDs [13] as well as using the Gaussian parametrization.
The paper is organized as follows. The introduction of

the paper is given in Sec. I. The theoretical formalism and
azimuthal asymmetries are presented, respectively, in
Secs. II and III. Sections IV and V discuss the numerical
results and conclusion of the paper. Analytic results for the
amplitude modulations are given in the Appendix.

II. FORMALISM

We consider the production of associated J=ψ þ γ in
(un)polarized electron-proton collision process

eðlÞ þ p↑ðPÞ → eðl0Þ þ J=ψðPψÞ þ γðpγÞ þ X; ð1Þ
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where, the 4-momenta of each particle is given in the round
brackets, and the transverse polarization of the proton is
represented with an arrow in the superscript. We consider
the photon-proton center-of-mass frame, wherein the pho-
ton and proton move along the z-axis. The 4-momenta of
the target proton P and the virtual photon q are given by

Pμ ¼ nμ− þM2
p

2
nμþ ≈ nμ−;

qμ ¼ −xBnμ− þ Q2

2xB
nμþ ≈ −xBPμ þ ðP · qÞnμþ; ð2Þ

where, the nþ and n− are two lightlike vectors with n2þ ¼
n2− ¼ 0 and nþ · n− ¼ 1. The invariant mass of the virtual

photon is Q2 ¼ −q2 and the Bjorken variable, xB ¼ Q2

2P·q.
The mass of the proton is denoted by Mp. The center-of-

mass energy of the electron-proton system is S ¼ ðPþ
lÞ2 ¼ 2P · l ¼ 2P·q

y and that leads to having Q2 ¼ xByS.

Here y ¼ P·q
P·l is the energy fraction carried by the photon.

The virtual photon-proton invariant mass is defined as

W2
γp ¼ ðqþ PÞ2 ¼ Q2ð1−xBÞ

xB
¼ yS −Q2. The 4-momentum

of the incoming lepton reads

lμ ¼ 1 − y
y

xBnμ− þ 1

y
Q2

2xB
nμþ þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

Ql̂μ⊥; ð3Þ

here, l̂μ⊥ is the unit transverse vector.
The differential cross section within the TMD factori-

zation framework can be written as [16]

dσ ¼ 1

2S
d3l0

ð2πÞ32El0

d3Pψ

ð2πÞ32Eψ

d3pγ
ð2πÞ32Eγ

×
Z

dxd2pTð2πÞ4δ4ðqþ p − Pψ − pγÞ

×
1

Q4
Lμνðl; qÞΦρσ

g ðx; pTÞHμρH�
νσ: ð4Þ

In the above equation, the leptonic tensor, Lμν, has the
standard form

Lμν ¼ e2Q2

�
−gμν þ 2

Q2
ðlμl0ν þ lνl0μÞ

�
; ð5Þ

where the averaging over spins of the initial lepton is
assumed, and the 4-momentum of the final scattered lepton
is l0 ¼ l − q. Using Eqs. (2) and (3), the leptonic tensor can
be recast in the following form

Lμν ¼ e2
Q2

y2

�
−ð1þ ð1 − yÞ2ÞgμνT þ 4ð1 − yÞϵμLϵνL

þ 4ð1 − yÞ
�
l̂μ⊥ l̂

ν⊥ þ 1

2
gμνT

�

þ 2ð2 − yÞ
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
ðϵμLl̂ν⊥ þ ϵνLl̂

μ
⊥Þ
�
; ð6Þ

where the transverse metric tensor is defined as gμνT ¼ gμν−
nμþnν− − nνþnμ−, and

ϵμLðqÞ ¼
1

Q

�
qμ þ Q2

P · q
Pμ

�
; ð7Þ

is the longitudinal polarization vector of the virtual photon
with ϵ2LðqÞ ¼ 1 and ϵμLðqÞqμ ¼ 0. The H contains the
scattering amplitude of virtual photon-gluon fusion; γ�ðqÞ þ
gðpÞ → J=ψðPψÞ þ γðpγÞ partonic process whose corre-
sponding Feynman diagram is shown in Fig. 1. Moreover,
at leading order one, more partonic processes γ�ðqÞ þ
γðpÞ → J=ψðPψÞ þ γðpγÞ can contribute to our process,
wherein the emission of photons off the proton
can happen elastically or inelastically. In this process, J=ψ
production happens through color singlet mechanism.
However, its contribution is insignificant as compared with
the virtual photon-gluon fusion subprocess due to the much
higher density of gluons than photons in the proton as
discussed in Ref. [53]. Although the CO states, for example

h0jOð3Sð8Þ1 Þj0i, are suppressed relative to h0jOð3Sð1Þ1 Þj0i by
Oðv4Þ, this does not overcome the number density
suppression.
We use the NRQCD framework for J=ψ production

[30,54], where at leading order, only the CO state 3Sð8Þ1

contributes to the J=ψ production in the partonic process:,
γ�ðqÞ þ gðpÞ → J=ψðPψ Þ þ γðpγÞ; hence, the cross sec-

tion contains only one LDME i.e., h0jOð3Sð8Þ1 Þj0i. As a
result, the asymmetry becomes independent of the choice
of LDMEs, and can be used to extract the gluon TMDs.
The 4-momenta of the gluon, J=ψ and final photon are

the following:

FIG. 1. Feynman diagram representation of J=ψ-photon pro-
duction in SIDIS process.
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pμ ⋍ xPμ þ pμ
T;

Pμ
ψ ¼ zðP · qÞnμþ þM2

ψ þ P2
ψ⊥

2zP · q
Pμ þ Pμ

ψ⊥;

pμ
γ ¼ ð1 − zÞðP · qÞnμþ þ p2γ⊥

2ð1 − zÞP · q
Pμ þ pμ

γ⊥; ð8Þ

where x ¼ p · nþ and pT are, respectively, the longitudinal
momentum fraction and transverse momentum of the
gluon. The inelastic variable z ¼ P·Pψ

P·q , is defined as the
energy fraction of the virtual photon carried by J=ψ in
the proton rest frame. Pψ⊥ and pγ⊥ are transverse momenta
of the J=ψ and photon, respectively. Mψ represents the
quarkonium mass.

At the partonic level, the Mandelstam variables are
defined as

ŝ ¼ ðpþ qÞ2 ¼ Q2

�
x − xB
xB

�
;

t̂ ¼ ðq − PψÞ2 ¼
1

z
ðz − 1ÞðzQ2 þM2

ψÞ −
P2
ψ⊥
z

;

û ¼ ðp − Pψ Þ2 ¼ M2
ψ − xz

Q2

xB
: ð9Þ

In Eq. (4), the gluon correlator, Φμν
g , a nonperturbative

quantity, contains the dynamics of gluons inside a proton.
For an unpolarized proton, its parametrization in terms of
the gluon TMDs is given by [13,55,56]

Φμν
U ðx; pTÞ ¼

1

2x

�
−gμνT fg1ðx; p2TÞ þ

�
pμ
Tp

ν
T

M2
p

þ gμνT
p2T
2M2

p

�
h⊥g
1 ðx; p2TÞ

�
; ð10Þ

where the fg1 and h⊥g
1 , T-even TMDs, encode the distribution of unpolarized and linearly polarized gluons, respectively.

These TMDs can be nonzero, even if, initial- and final-state interactions are absent in the process. Similarly, for the
transversely polarized protons, with their transverse spin vector ST, we have [13,55,56]

Φμν
T ðx; pTÞ ¼

1

2x

�
−gμνT

ϵρσT pTρSTσ
Mp

f⊥g
1T ðx; p2TÞ þ iϵμνT

pT · ST
Mp

gg1Tðx; p2TÞ

þ pTρϵ
ρfμ
T pνg

T

2M2
p

pT · ST
Mp

h⊥g
1T ðx; p2TÞ −

pTρϵ
ρfμ
T SνgT þ STρϵ

ρfμ
T pνg

T

4Mp
hg1Tðx; p2TÞ

�
; ð11Þ

where the notations are given by the antisymmetric tensor ϵμνT ¼ ϵμνρσPρnþσ with ϵ12T ¼ þ1 and the symmetric tensor

pTρϵ
ρfμ
T pνg

T ¼ pρ
TðϵρμT pν

T þ ϵρνT pμ
TÞ. In Eq. (11), we have three T-odd TMDs; the Sivers function, f⊥g

1T , describes the density

of unpolarized gluons, while h⊥g
1T and hg1T , are linearly polarized gluon densities of a transversely polarized proton. The g

g
1T ,

T-even TMD, is the distribution of circularly polarized gluons in a transversely polarized proton, which does not contribute
when the lepton is unpolarized, as it is in the antisymmetric part of the correlator.
The momentum conservation delta function, given in Eq. (4), can be decomposed as follows:

δ4ðqþ p − Pψ − pγÞ ¼
2

yS
δð1 − z − z̄Þδ

�
x −

z̄ðM2
ψ þ P2

ψ⊥Þ þ zp2γ⊥ þ zz̄Q2

zð1 − zÞyS
�
δ2ðpT − Pψ⊥ − pγ⊥Þ; ð12Þ

where z̄ ¼ P:pγ

P:q is the energy fraction carried by the final photon. The phase space of outgoing particles is given by

d3l0

ð2πÞ32El0
¼ 1

16π2
dQ2dy;

d3Pψ

ð2πÞ32Eψ
¼ d2Pψ⊥dz

ð2πÞ32z ;
d3pγ

ð2πÞ32Eγ
¼ d2pγ⊥dz̄

ð2πÞ32z̄ : ð13Þ

After integrating over z̄, pT and x using Eq. (12), the cross section in Eq. (4) can be rewritten as

dσ
dzdydQ2d2qTd2K⊥

¼ 1

ð2πÞ4
1

16yS2zð1 − zÞQ4
Lμνðl; qÞΦρσ

g ðx; qTÞHμρH�
νσ: ð14Þ

In the above equation, we have introduced the following transverse vectors

qT ≡ Pψ⊥ þ pγ⊥; K⊥ ≡ Pψ⊥ − pγ⊥
2

: ð15Þ
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III. AZIMUTHAL ASYMMETRIES

We consider the kinematical region, qT ≪ K⊥, where
qT ≡ jqT j and K⊥ ≡ jK⊥j, which allows assuming TMD
factorization for the considered process. This kinematical
condition leads to the scenario where the outgoing particles,

particularly J=ψ and photon, are almost back-to-back in the
transverse plane with respect to the line of collision of
virtual photon-proton system as illustrated in Fig. 2. We can
then approximate that Pψ⊥ ≃ −pγ⊥ ≃ K⊥. With these kin-
ematics, one can write the differential cross section as [16]

dσ
dzdydxBd2qTd2K⊥

≡ dσðϕS;ϕT;ϕ⊥Þ ¼ dσUðϕT;ϕ⊥Þ þ dσTðϕS;ϕT;ϕ⊥Þ: ð16Þ

where, for the case of an unpolarized proton,

dσU ¼ N
�
ðA0 þA1 cosϕ⊥ þA2 cos 2ϕ⊥Þfg1ðx; q2TÞ þ ðB0 cos 2ϕT þ B1 cosð2ϕT − ϕ⊥Þ

þ B2 cos 2ðϕT − ϕ⊥Þ þ B3 cosð2ϕT − 3ϕ⊥Þ þ B4 cosð2ϕT − 4ϕ⊥ÞÞ
q2T
M2

p
h⊥g
1 ðx; q2TÞ

�
; ð17Þ

while, for the case of a transversely polarized proton,

dσT ¼ N jST j
�
sinðϕS − ϕTÞðA0 þA1 cosϕ⊥ þA2 cos 2ϕ⊥Þ

jqT j
Mp

f⊥g
1T ðx; q2TÞ

þ cosðϕS − ϕTÞðB0 sin 2ϕT þ B1 sinð2ϕT − ϕ⊥Þ þ B2 sin 2ðϕT − ϕ⊥Þ

þ B3 sinð2ϕT − 3ϕ⊥Þ þ B4 sinð2ϕT − 4ϕ⊥ÞÞ
jqT j3
M3

p
h⊥g
1T ðx; q2TÞ

þ ðB0 sinðϕS þ ϕTÞ þ B1 sinðϕS þ ϕT − ϕ⊥Þ þ B2 sinðϕS þ ϕT − 2ϕ⊥Þ

þ B3 sinðϕS þ ϕT − 3ϕ⊥Þ þ B4 sinðϕS þ ϕT − 4ϕ⊥ÞÞ
jqT j
Mp

hg1Tðx; q2TÞ
�
; ð18Þ

where N ¼ 1
ð2πÞ4

1
16yS2zð1−zÞQ4 is the kinematical factor. ϕS,

ϕT , and ϕ⊥ are, respectively, azimuthal angles of the three-
vectors ST , qT , andK⊥ that are measured with respect to the
lepton plane (ϕl ¼ ϕl0 ¼ 0) as shown in Fig. 2. The
amplitude modulations Ai with i ¼ 0, 1, 2 and Bj with
j ¼ 0, 1, 2, 3, 4 are amplitude square of the γ� þ g →
J=ψ þ γ process, which are given in the Appendix.
The cross section in Eqs. (17) and (18) has azi-

muthal modulations that allow us to extract the specific

gluon TMD by measuring the weighted azimuthal
asymmetry.
The weighted azimuthal asymmetry, gives the ratio of

specific gluon TMD over unpolarized fg1 and is defined as
[57]

AWðϕS;ϕTÞ ≡ 2

R
dϕSdϕTdϕ⊥WðϕS;ϕTÞdσðϕS;ϕT;ϕ⊥ÞR

dϕSdϕTdϕ⊥dσðϕS;ϕT;ϕ⊥Þ
;

ð19Þ

where WðϕS;ϕTÞ is the weight factor and the denominator
is given by

Z
dϕSdϕTdϕ⊥dσðϕS;ϕT;ϕ⊥Þ

¼
Z

dϕSdϕTdϕ⊥dσUðϕT;ϕ⊥Þ ¼ ð2πÞ3NA0f
g
1ðx; q2TÞ:

ð20Þ

By integrating over the azimuthal angle ϕ⊥, the trans-
versely polarized cross section, Eq. (18), can be simplified
further as

FIG. 2. Representation of azimuthal angles in J=ψ-photon
production in SIDIS process.
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Z
dϕ⊥dσT ¼ 2πN jST j

jqT j
Mp

�
A0 sinðϕS − ϕTÞf⊥g

1T ðx; q2TÞ

−
1

2
B0 sinðϕS − 3ϕTÞ

jqT j2
M2

p
h⊥g
1T ðx; q2TÞ

þ B0 sinðϕS þ ϕTÞhg1ðx; q2TÞ
�
; ð21Þ

where we have used the relation

hg1 ≡ hg1T þ p2T
2M2

p
h⊥g
1T ; ð22Þ

which vanishes in the collinear configuration [58] unlike
their counterpart, quark transversity TMD. The h⊥g

1 gluon
TMD could be extracted by studying the following two
azimuthal asymmetries, for specific weight factors,

Acos 2ϕT ¼ q2T
M2

p

B0

A0

h⊥g
1 ðx; q2TÞ
fg1ðx; q2TÞ

; ð23Þ

and

Acos 2ðϕT−ϕ⊥Þ ¼ q2T
M2

p

B2

A0

h⊥g
1 ðx; q2TÞ
fg1ðx; q2TÞ

: ð24Þ

Using Eq. (21) with jST j ¼ 1, one could exploit the
asymmetries given below to extract the f⊥g

1T , h
g
1, and h⊥g

1T
TMDs

AsinðϕS−ϕT Þ ¼ jqT j
Mp

f⊥g
1T ðx; q2TÞ
fg1ðx; q2TÞ

; ð25Þ

AsinðϕSþϕT Þ ¼ jqT j
Mp

B0

A0

hg1ðx; q2TÞ
fg1ðx; q2TÞ

; ð26Þ

and

AsinðϕS−3ϕTÞ ¼ −
jqT j3
2M3

p

B0

A0

h⊥g
1T ðx; q2TÞ
fg1ðx; q2TÞ

: ð27Þ

In the Sivers asymmetry, AsinðϕS−ϕT Þ, the amplitude modu-
lation term A0 has been canceled in the numerator and
denominator, because we have fixed the kinematical
variables in the cross section.

IV. RESULTS

A. Unpolarized cross section

In this section we present numerical results. First we start
with the unpolarized cross section. The free parameters
entering the cross section are the long-distance matrix
elements. There are several sets in the literature, although,

they are expected to be universal. Different assumptions are
adopted in their extractions resulting in several sets; for
instance, theoretical accuracy of perturbative calculation,
kinematical cuts imposed mainly on the transverse momen-
tum, and chosen data sets. As aforementioned, only the

CO state 3Sð8Þ1 contributes to the present study. We consider

h0jOJ=ψð3Sð8Þ1 Þj0i ¼ 2.24 × 10−3 GeV3 from Ref. [59].
One could use a different LDME set; in such case,
our results will be rescaled as per the value of

h0jOJ=ψð3Sð8Þ1 Þj0i. In Ref. [59], LDMEs were extracted
by performing a global fit on J=ψ data from pp collision,
within the NRQCD framework at NLO, and a kinematical
cut pTψ > 3 GeV was imposed on the transverse momen-
tum of the J=ψ in the fit.
As shown in Eq. (20), only the A0 term and gluon TMD

fg1ðx; q2TÞ contribute to the unpolarized cross section after
integrating over the azimuthal angles. The modulation term
A0, given in Eq. (A1), matches with the results given in
Ref. [53]. For the parametrization of unpolarized gluon
TMD, we follow a Gaussian parametrization of TMDs (see
Ref. [60]) given as [28,30]

fg1ðx; q2TÞ ¼ fg1ðx; μÞ
e−q

2
T=hq2Ti

πhq2Ti
; ð28Þ

where fg1ðx; μÞ is the collinear gluon PDF at the probing

scale μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ψ þQ2
q

[61]. We use MSTW2008 set [62]

for the collinear PDF. The Gaussian parametrization of
TMDs with Gaussian width hq2Ti ¼ 1 GeV2 for gluons,
describes the data reasonably well as reported in Ref. [63],
so we use the same parametrization here.
The future EIC detector [64] is expected to reach large

integrated luminosities at different
ffiffiffi
S

p
. Therefore, we

consider two center-of-mass energies; namely,
ffiffiffi
S

p ¼
45 GeV and

ffiffiffi
S

p ¼ 140 GeV. The cross section for
J=ψ þ γ production could also receive a contribution from
diffractive scattering off the proton via the Pomeron
exchange process; however, such a process contributes at
z ≈ 1. As a result, we impose an upper cut z < 0.9 to avoid
such contribution to the cross section. This kinematical cut
also prevents hitting infrared divergences, see Eq. (14).
Furthermore, we impose a lower cut 0.3 < z to avoid
contribution via the resolved-photon channel, which con-
tributes in the low-z regions. The virtuality of the photon
is restricted as 3 < Q2 < 100 GeV2, to exclude photo-
production. For lower energy,

ffiffiffi
S

p ¼ 45 GeV, where the
cross section is relatively small, we consider the interval
10 < Wγp < 40 GeV. While for

ffiffiffi
S

p ¼ 140 GeV, we
choose 20 < Wγp < 80 GeV, where Wγp is the invariant
mass of the photon-proton system. qT is the sum of the
transverse momenta of the final J=ψ and γ, which is equal
to the transverse momentum of the initial gluon, and is
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integrated in the interval 0 < qT < 1 GeV, while, their
average transverse momentum is considered to be K⊥ > 1.
With these choices of interval, we are safely in the limit,
jqT j ≪ jK⊥j which corresponds to a scenario of almost
back-to-back J=ψ − γ pair production.
In Fig. 3, we show the unpolarized cross section as a

function of K⊥ and z for
ffiffiffi
S

p ¼ 45 and 140 GeV, where z is
the energy fraction carried by J=ψ. The theoretical uncer-
tainties in Fig. 3 are obtained by varying the probing scale
½0.5μ; 2μ�, and its variation is more evident in the lower-
energy case compared to high energy. Comparing this
with

ffiffiffi
S

p ¼ 140 GeV, the transverse momentum spectrum
decreases very rapidly for

ffiffiffi
S

p ¼ 45 GeV, while the z-
spectrum increases with z. The covered kinematical ranges
of longitudinal momentum fraction are x ≈ ½3 × 10−3; 9 ×
10−1� and x ≈ ½1 × 10−2; 9 × 10−1� at ffiffiffi

S
p ¼ 140 GeV and

45 GeV, respectively. The low-x range at
ffiffiffi
S

p ¼ 140 leads
to high gluon density inside a proton and as a result the
cross section is high compared to the low center-of-mass
energy. Moreover, it leads to small theoretical uncertainty
band in Fig. 3 for high center-of-mass energy.
From Fig. 3, we obtain the integrated cross section which

is about 2 fb at
ffiffiffi
S

p ¼ 140 GeV. The future EIC is expected
to reach 100 fb−1 integrated luminosity, hence we can
expect at least 10 event signals. As we have discussed
above, within a relevant kinematical range, this cross
section results from a contribution of only the CO state,
3Sð8Þ1 , so their measurement could provide a clean probe of
the CO mechanism, and hence the NRQCD framework
in general. Using the cross section data, one can fit the

CO LDME h0jOJ=ψð3Sð8Þ1 Þj0i, and hence it can also provide
a clean extraction of this LMDE [65].

B. Upper bound

In general, the polarized gluon TMDs are expected to
satisfy the model independent positivity bounds, which are
given in Ref. [66]. By saturating the positivity bounds on
the TMDs, we estimate the allowed model-independent
upper bound of the asymmetries, which is defined as the
maximum of the absolute value asymmetry. From
Eqs. (23)–(27) we obtain the following upper-bound
relations on the absolute value of the Acos 2ϕT and
Acos 2ðϕT−ϕ⊥Þ asymmetries,

jAcos 2ϕT j ≤ 2
jB0j
A0

; jAcos 2ðϕT−ϕ⊥Þj ≤ 2
jB2j
A0

; ð29Þ

and the upper bound for the Sivers asymmetry, AsinðϕS−ϕTÞ,
becomes equal to one, while the upper bounds for
AsinðϕSþϕTÞ and AsinðϕS−3ϕT Þ are just half of the upper bound
of Acos 2ϕT . We show the upper bounds at two fixed values
ofQ2, namely,Q2 ¼ 10; 20 GeV2. We take the value ofK⊥
as the same order of Mψ , i.e., K⊥ ¼ 3 GeV ≈Mψ . We
found that the above upper bounds of the asymmetries are
maximum at y ¼ 0.1 and z ¼ 0.4 for jAcos 2ϕT j, while
jAcos 2ðϕT−ϕ⊥Þj is maximum at z ¼ 0.7. Moreover, the upper
bounds of these asymmetries are independent of the center-
of-mass energy,

ffiffiffi
S

p
, as the coefficients Bi and Ai are

independent of
ffiffiffi
S

p
. The only dependence of

ffiffiffi
S

p
on the

asymmetries comes through longitudinal momentum

(a) (b)

FIG. 3. Unpolarized differential cross section of eþ p → eþ J=ψ þ γ þ X process as a function of K⊥ (a) and z (b) at
ffiffiffi
S

p ¼ 45 and
140 GeV. The kinematical cuts are 1 < K⊥ < 10 GeV, 0 < qT < 1 GeV, and 0.3 < z < 0.9. For

ffiffiffi
s

p ¼ 140 GeV we have taken
20 < Wγp < 80GeV while for

ffiffiffi
s

p ¼ 45 GeV, 10 < Wγp < 40GeV. The bands are obtained by varying the factorization scale in the
range 1

2
μ < μ < 2μ.
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fraction, x [see Eq. (12)]. As we discussed above, in our
case, the cross section depends only on one LDME, that is

h0jOJ=ψð3Sð8Þ1 Þj0i. This allows the asymmetries to be
independent of the LDME as this cancels in the ratios.
This makes the process considered here important for
probing the gluon TMDs.
In Fig. 4, we show the upper bound of Acos 2ϕT (a) and

Acos 2ðϕT−ϕ⊥Þ (b) as function of the transverse momentum of
the outgoing particle K⊥ for two values of the virtuality
of the photon Q2 ¼ 10; 20 GeV2. The dependence on
Q2 is interesting; the magnitude of Acos 2ϕT increases
with increasing Q2, whereas Acos 2ðϕT−ϕ⊥Þ decreases with

increasing Q2. However, at relatively large virtuality of the
photon, both these asymmetries do not show significant
dependency. Such behavior is more evident in the relatively
low-transverse momentum K⊥ regions, where these asym-
metries are quite sizable.
The y dependence of the above upper bounds are shown

in Fig. 5. In the lower y (y < 0.3) region, the nature of both
these bounds are similar as both are approaching saturation
in their magnitude, so we have considered 0.1 < y as we do
not see any significant change in their magnitudes beyond
this. However, the nature of these two bounds are different
in the upper limit of y → 1. The upper bound of Acos 2ϕT

vanishes, which is expected as there is a factor of (1 − y) in

(a) (b)

FIG. 5. Upper bound for the Acos 2ϕT (a) and Acos 2ðϕT−ϕ⊥Þ (b) azimuthal asymmetries in eþ p → eþ J=ψ þ γ þ X process as function
of y at fixed values of K⊥ ¼ 3 GeV, z ¼ 0.4 (a) and z ¼ 0.7 (b) for two values of Q2.

(a) (b)

FIG. 4. Upper bound for the Acos 2ϕT (a) and Acos 2ðϕT−ϕ⊥Þ (b) azimuthal asymmetries in eþ p → eþ J=ψ þ γ þ X process as function
of K⊥ at fixed values of y ¼ 0.1, z ¼ 0.4 (a) and z ¼ 0.7 (b) for two values of Q2.
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the expression of B0 coefficient, wherein only the longi-
tudinal photon contributes, see the Eq. (A4). However, for
Acos 2ðϕT−ϕ⊥Þ, both transverse and longitudinal photons
contribute, see the B2 coefficient in Eq. (A6). As a result
it vanishes before y → 1, in particular, at y ≈ 0.8 and 0.9 for
Q2 ¼ 20 and 10 GeV2, respectively.
In Fig. 6 we show the upper bounds of asymmetries as

function of z. As discussed before, we consider z in the
region 0.3 < z < 0.9. The asymmetry Acos 2ϕT vanishes as
z → 0.9; the reason being the coefficient B0 vanishes in that
limit. However, the upper bound of Acos 2ðϕT−ϕ⊥Þ vanishes at
z ≈ 0.4 and 0.5 for Q2 ¼ 10 and 20 GeV2, respectively.
The nature of this asymmetry can be attributed to the
contribution from both transversely- and longitudinally
polarized photons in the modulation of the amplitude B2.

C. Gaussian parametrization of the TMDs

One can parametrize gluon TMDs to estimate predic-
tions. These estimates are dependent on the parametriza-
tions, in contrast to the model-independent positivity
bounds as discussed above. We adopt the following
Gaussian parametrization for the linearly polarized gluon
TMD h⊥g

1 as given in Ref. [28,30]

h⊥g
1 ðx; q2TÞ ¼

M2
pf

g
1ðx; μÞ

πhq2Ti2
2ð1 − rÞ

r
e
1−

q2
T

rhq2
T
i; ð30Þ

where, Mp is the proton mass. rð0 < r < 1Þ and the
average intrinsic transverse momentum width of incoming
gluon, hq2Ti, are parameters to this model. In our numerical
estimation, we take r ¼ 1=3 and hq2Ti ¼ 1 GeV2. For the
unpolarized gluon TMD, fg1, we use the parametrization
given in Eq. (28).

In order to obtain model-dependent Acos 2ϕT asymmetry,
we have substituted Eqs. (30) and (28) for h⊥g

1 and fg1,
respectively in Eq. (23). In the same way, Acos 2ðϕT−ϕ⊥Þ is
obtained by using Eq. (24). In Fig. 7, we show qT-
dependent Acos 2ϕT (a) and Acos 2ðϕT−ϕ⊥Þ (b) azimuthal
asymmetries, which are estimated for the same fixed values
of kinematic variables that were discussed in Sec. IV B. By
fixing the kinematics, the asymmetries become indepen-
dent of

ffiffiffi
S

p
, though they show a slight dependence on

ffiffiffi
S

p
via their dependence on x. Both these asymmetries have
peak value at qT ≈ 0.7 which is about 4% for Acos 2ϕT at
y ¼ 0.1, z ¼ 0.4 and K⊥ ¼ 3 GeV for Q2 ¼ 20 GeV2,
whereas Acos 2ðϕT−ϕ⊥Þ is estimated to be about 5% at
y ¼ 0.1, z ¼ 0.7 and K⊥ ¼ 3 GeV for Q2 ¼ 10 GeV2.
Similarly, we use the gluon Sivers function f⊥g

1T para-
metrization adopted in Ref. [67]

ΔNfg=p↑ðx;qTÞ¼
�
−
2jqT j
MP

�
f⊥g
1T ðx;qTÞ

¼2

ffiffiffiffiffi
2e

p

π
N gðxÞfg=pðxÞ

ffiffiffiffiffiffiffiffiffiffi
1−ρ

ρ

s
qT

e−q
2
T=ρhq2T i

hq2Ti3=2
;

ð31Þ

where

N gðxÞ ¼ Ngxαð1 − xÞβ ðαþ βÞðαþβÞ

ααββ
; ð32Þ

and the extracted best-fit parameters at hq2Ti ¼ 1 GeV2 are

Ng ¼ 0.25; α¼ 0.6; β ¼ 0.6; ρ¼ 0.1: ð33Þ

(b)(a)

FIG. 6. Upper bound for the Acos 2ϕT (a) and Acos 2ðϕT−ϕ⊥Þ (b) azimuthal asymmetries in eþ p → eþ J=ψ þ γ þ X process as function
of z at fixed values of y ¼ 0.1 and K⊥ ¼ 3 GeV for two values of Q2.

AZIMUTHAL ASYMMETRIES IN J=ψ-PHOTON … PHYS. REV. D 107, 014008 (2023)

014008-9



To obtain model dependent Sivers asymmetry, we sub-
stituted Eqs. (31) and (28) for f⊥g

1T and fg1, respectively in
Eq. (25). In Fig. 8 the Sivers asymmetry AsinðϕS−ϕTÞ is
shown as a function of qT at

ffiffiffi
S

p ¼ 45 and 140 GeV. Within
the above adopted Gaussian parametrization, it turns out
that the Sivers asymmetry strongly depends on

ffiffiffi
S

p
. This is

due to the presence of an x-dependent term N gðxÞ in the
parametrization [see Eq. (31)]. The estimated Sivers asym-
metry is negative and is about 25% and 7% for

ffiffiffi
s

p ¼ 45
and 140 GeV, respectively at fixed kinematic variables y ¼
0.1 and z ¼ 0.4 and K⊥ ¼ 3 GeV. The reason for large
Sivers asymmetry at lower energy is that the magnitude of

N gðxÞ, given in Eq. (32), is one order of magnitude larger
than at the higher energy. Asymmetry hardly depends on
the virtuality due to the presence of the same coefficientA0

in the numerator and denominator of the Sivers asymmetry
definition.

V. CONCLUSION

In this work, we have presented a study of J=ψ − γ pair
production in electron-proton collision within the kinemat-
ics of future proposed EIC. We have considered a kin-
ematical scenario where the J=ψ and photon(γ) are almost
back-to-back in the transverse plane. We have assumed the

(b)(a)

FIG. 8. Sivers asymmetry AsinðϕS−ϕT Þ in ep↑ → eþ J=ψ þ γ þ X process as function of qT at
ffiffiffi
s

p ¼ 45 GeV (a) and
ffiffiffi
s

p ¼ 140 GeV
(b) for fixed values of K⊥ ¼ 3 GeV, y ¼ 0.1 and z ¼ 0.4 and two different values of Q2.

(a) (b)

FIG. 7. Absolute values of Acos 2ϕT (a) and Acos 2ðϕT−ϕ⊥Þ (b) azimuthal asymmetries in eþ p → eþ J=ψ þ γ þ X process as function of
qT at fixed values of K⊥ ¼ 3 GeV, y ¼ 0.1 and z ¼ 0.4 (a) and K⊥ ¼ 3 GeV, y ¼ 0.1 and z ¼ 0.7 (b) for two values of Q2.
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TMD factorization for this process and used the NRQCD
framework for the J=ψ production where only CO state,
3Sð8Þ1 , contributes. Thus, the only LDME present gets
canceled in the asymmetry, which can be a good probe
of the gluon TMDs. Both the unpolarized and polarized
cross sections contain some specific azimuthal modula-
tions. In particular, the Acos 2ϕT and Acos 2ðϕT−ϕ⊥Þ azimuthal
asymmetries can probe the linearly polarized gluon TMD,
whereas the AsinðϕS−ϕT Þ can probe the gluon Sivers TMD.
We have used the theoretical positivity bounds on the gluon
TMDs that allow us to estimate the model independent
upper bound of these asymmetries. Apart from these
model-independent estimates, we have also estimated the
transverse momentum-dependent asymmetries using the
Gaussian parametrization of TMDs. Within the kinematics
we have considered, the estimated model-independent
upper bounds on the asymmetries as well as the predictions
made with using a model show some significant azimuthal
asymmetries which would be very useful experimental

probes at the EIC to examine some of the still unknown
gluon TMDs.
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APPENDIX: AMPLITUDE MODULATIONS

We redefine the partonic Mandelstam variables as the
following:

s ¼ ŝþQ2; u ¼ ûþQ2; t ¼ t̂:

The amplitude modulations are listed here:

A0 ¼ −
32ð4πÞ4αsα3e4cQ2

3Mψs2y2ðsþ tÞ2ðsþ uÞ2ðtþ uÞ2
�
ð1þ ð1 − yÞ2Þ

h
2Q6t2ðs2 þ t2Þ −Q4tðs3ð3t − 2uÞ þ 3s2tðtþ uÞ

þ 2st2ðt − uÞ þ 2t3ðtþ uÞÞ þQ2ðs4t2 þ su2ðs − 2tÞðs2 þ t2Þ − 2stuðsþ tÞðs2 þ t2ÞÞ
− s2ðsþ tþ uÞðs2ðt2 þ tuþ u2Þ þ stuðtþ uÞ þ t2u2Þ

i
þ 16ð1 − yÞQ2

h
2Q4t2ðs2 − 2t2Þ

− 2Q2tðs2 − 2t2Þðsðt − uÞ þ tðtþ uÞÞ þ sðu2ðs3 þ st2 þ 4t3Þ þ 2t2uðsþ tÞðsþ 2tÞ þ st2ðsþ tÞ2Þ
i�

; ðA1Þ

A1 ¼ −
64ð4πÞ4αsα3e4cMψQ2t

3s2y2ðsþ tÞ2ðsþ uÞ2ðtþ uÞ2 ð1 − yÞðQ2tþ suÞð−2Q2t2 þ s3 þ s2ðtþ uÞÞ; ðA2Þ

A2 ¼ −
64ð4πÞ4αsα3e4cQ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðQ2tþ suÞ

p
3Mψs2y2ðsþ tÞ2ðsþ uÞ2ðtþ uÞ2

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
ð2 − yÞ

h
−4Q4t3 þQ2tðs3 þ s2ðtþ uÞ þ 2stð2t − uÞ

þ 4t2ðtþ uÞÞ þ suðs2 þ 2t2Þðsþ tþ uÞ
i
; ðA3Þ

B0 ¼ −
32ð4πÞ4αsα3e4cMψQ4t2

3s2y2ðsþ tÞ2ðsþ uÞ2ðtþ uÞ2 ð1 − yÞðQ2t2 − s3 − s2ðtþ uÞÞ; ðA4Þ

B1 ¼
32ð4πÞ4αsα3e4cMψQ3t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðQ2tþ suÞ

p
3s2y2ðsþ tÞ2ðsþ uÞ2ðtþ uÞ2

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
ð2 − yÞð−2Q2t2 þ s3 þ s2ðtþ uÞÞ; ðA5Þ

B2 ¼
16ð4πÞ4αsα3e4cMψQ2t

3s2y2ðsþ tÞ2ðsþ uÞ2ðtþ uÞ2
h
ð1þ ð1 − yÞ2ÞðQ2tþ suÞð2Q2ðs2 þ t2Þ − s2ðsþ tþ uÞÞ

− 4ð1 − yÞQ2ðs2 − 2t2ÞðQ2tþ suÞ
i
; ðA6Þ

B3 ¼ −
64ð4πÞ4αsα3e4cMψQ3t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðQ2tþ suÞ

p
3s2y2ðsþ tÞ2ðsþ uÞ2ðtþ uÞ2

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
ð2 − yÞtðQ2tþ suÞ; ðA7Þ

B4 ¼ −
32ð4πÞ4αsα3e4cMψQ2t2

3s2y2ðsþ tÞ2ðsþ uÞ2ðtþ uÞ2 ð1 − yÞðQ2tþ suÞ2: ðA8Þ
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