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Very recently, the LHCb Collaboration reported the first observation of the hidden-charm pentaquark
with strangeness, PΛ

ψsð4338Þ0. Considering this state is very close to the Ξ0
cD̄0 and Ξþ

c D− thresholds, we
explore the possible bias of the Breit-Wigner parametrization, with emphasis on the effect of its coupling
to the double thresholds Ξ0

cD̄0 and Ξþ
c D−. We first use a qualitative picture based on the “uniformization”

of the Riemann surface of the two-channel system to understand the positions of the enhancement. Then we
use the Lippmann-Schwinger equation formalism (equivalent to the K-matrix parametrization) with two
models, the zero-range model and the Flatté model to investigate the J=ψΛ line shapes. Our results show
that the nominal peak of the PΛ

ψsð4338Þ0 could arise either from the pole well above the Ξþ
c D− threshold on

the ð−;þÞ sheet or from the pole well below the Ξ0
cD̄0 threshold on the ð−;−Þ sheet in the two-channel

system. Using the Breit-Wigner distribution to depict the above two line shapes could be misleading. We
also find a novel type of line shapes with the enhancement constrained by the threshold difference. We urge
the LHCb Collaboration to perform the refined experimental analysis considering the unitarity and
analyticity, e.g., using the K-matrix parametrization. As a by-product, we obtain that the ratio of the isospin
violating decay ΓPΛ

ψs→J=ψΣ=ΓPΛ
ψs→J=ψΛ could be up to 10%.

DOI: 10.1103/PhysRevD.107.014005

I. INTRODUCTION

Very recently, the LHCb Collaboration announced the
first observation of the hidden-charm pentaquark state with
strangeness [1]. The signal was observed in the J=ψΛ
invariant mass spectrum of the decay B− → J=ψΛp̄. The
state is composed of at least five quarks ðcc̄udsÞ. Within
the new naming convention recommended by the LHCb
Collaboration [2] (the convention will be adopted here and
following), the state is labeled as PΛ

ψsð4338Þ0. Within a
relativistic Breit-Wigner (BW) line shape fitting as shown
in Fig. 1, the mass and width of the resonance were
extracted,

m ¼ 4338.3� 0.7� 0.4 MeV;

Γ ¼ 7.0� 1.2� 1.3 MeV: ð1Þ

One can see that the resonance is very close to the ΞcD̄
thresholds (∼4336 MeV). Meanwhile, the amplitude
analysis prefers the 1

2
− spin-parity quantum numbers and

excludes the possibility of 1
2
þ at 90% confidence level.

The observation of PΛ
ψsð4338Þ0 is the follow-up story of

the PN
ψ states [3,4], see Refs. [5–11] for recent reviews

of the exotic states. The evidence of the pentaquark with
strangeness PΛ

ψsð4459Þ0 was reported by LHCb [12], but
the significance is less than 5σ. After the observation of
the PΛ

ψsð4338Þ0, Karliner and Rosner pointed out that the
proximity to the threshold, its JP ¼ 1

2
− quantum numbers,

and the narrow width strongly suggest its ΞcD̄ molecule
nature [13]. The partners of the PΛ

ψsð4338Þ0 were also
investigated in Refs. [14–16]. It is worthwhile to emphasize
that the PΛ

ψsð4338Þ0 had been predicted as the ΞcD̄
molecule before the experimental report. In 2019, we
investigated the spectrum of the strange hidden-charm
molecular pentaquarks systematically with chiral effective
field theory in Ref. [17] (see Ref. [11] for a recent review).
The ΞcD̄ bound state with quantum number IðJPÞ ¼ 0ð1

2
−Þ

was predicted. In the same work, the ΞcD̄� bound state
was also obtained, which coincides with the experimental
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PΛ
ψsð4459Þ0 state. Later, a unified description of the loosely

bound molecular systems composed of the heavy flavor
hadrons ðD̄; D̄�Þ, ðΛc;Σc;Σ�

cÞ, and ðΞc;Ξ0
c;Ξ�

cÞ was pre-
sented in Ref. [18], where the ΞcD̄ molecular state was
predicted around 4328 MeV. Either the ΞcD̄ bound state
or virtual state depending on the cutoff parameter was
predicted in the vector-meson-exchange model in Ref. [19].
Before the experimental results of LHCb, the hidden-charm
pentaquarks with strangeness were also investigated in
Refs. [20–25]. The evidences of PΛ

ψsð4459Þ0 incited a new
round of discussion [26–32].
The peak of the resonance in Fig. 1 is in the vicinity

of the ΞcD̄ thresholds. Specifically, the mass extracted from
the relativistic BW parametrization is about 0.93 MeV
above the Ξþ

c D− threshold as shown in Fig. 5. Considering
the uncertainty of the mass, it is hard to judge whether this
signal is a below- or above-threshold state. For a long time,
it has been realized that the line shape of the resonance
would be distorted from the conventional BW distribution
if it appears near the threshold and strongly couples to the
threshold at the same time [33–35]. Therefore, the present
BW mass and width could have large discrepancy to
the pole position. What is more, the effect of the Ξ0

cD̄0

threshold could also be important. It is about 3 MeV below
the BW mass, which is comparable to the half-width of
the resonance. In principle, the enhancement in the line
shape could arise from the pure kinetic effect, such as the
threshold effect and triangle singularity (see Ref. [36] for a
comprehensive review), rather than from the pole of the T
matrix. However, it rarely happens. The more common case
is that the resonance line shape is distorted by the threshold
effect, or equivalently, the threshold effect is amplified by
the nearby pole. Therefore, in this work, we focus on the
distorting effect of the double thresholds on the resonance
line shape. In contrast to the literature concerning one
threshold, the effect of the double thresholds will be
emphasized. We will first discuss the uniformization
[37–41] technique to unfold the Riemann sheets and

present a qualitative picture of the double threshold effect.
Then we will use two specific models to show the line
shapes explicitly.
In Sec. II, we analyze the topological structure of the

two-channel T matrix and introduce the uniformization of
the two-channel Riemann surface. In Sec. III, we introduce
the formalism to investigate the line shape of the J=ψΛ
in the B− → J=ψΛp̄ decay with two models to depict
the J=ψΛ-Ξ0

cD̄0-Ξþ
c D− rescattering effect. In Sec. IV, we

choose 12 different pole masses on different Riemann
sheets to show the possible line shapes of the resonances. In
Sec. V, we give a brief summary. In Appendix A, we will
clarify the relations between our two models in this work
and those in literature. In Appendix B, we evaluate the
isospin violating decay PΛ

ψsð4338Þ0 → J=ψΣ.

II. UNIFORMIZATION OF THE TWO-CHANNEL
RIEMANN SURFACE

In this work, we will focus on three channels,

j1i ¼ jJ=ψΛi; j2i ¼ jΞ0
cD̄0i; j3i ¼ jΞþ

c D−i: ð2Þ

The threshold of the corresponding channel jii is labeled
as mTi

. The resonance is in the vicinity of the mT2
and mT3

,
which is our energy region of interest. However, the mT1

is far below the energy region, mT2;3
−mT1

∼ 125 MeV,
which is also about the Q value of PΛ

ψsð4338Þ0 → J=ψΛ.
Very similar to the hidden-charm decays of the PN

ψ states,
such a large Q value only induced a small width about
7 MeV, which implies that the coupling between
PΛ
ψsð4338Þ0 and J=ψΛ is very weak and supports the

ΞcD̄molecular interpretation of the PΛ
ψsð4338Þ0. Arranging

two well-separated c and c̄ in the hadronic molecule into
a single meson (J=ψ) is suppressed naturally. Similar
mechanisms are also responsible for the dominant decay
patterns of the charmoniumlike states [42–44]. Based on
the above analyses, it is rational to assume that the
PΛ
ψsð4338Þ0 is generated from the ΞcD̄ interaction. The

inclusion of the J=ψΛ channel will not affect its existence
but slightly correct its pole position. In the following, we
will first focus on the two-channel problem (jΞþ

c D−i and
jΞ0

cD̄0i channels).
In general, the elements of the multichannel S matrix

are functions of momentum ki of each channel. Because of
the square-root-type function relating ki to energy E, the
elements of the S matrix become the multivalue functions
in the complex E plane. With the opening of each channel,
an extra branch of the S matrix comes up. The branch cut
is related to the unitarity of the S matrix and the starting
point (branch point) of the cut is just the threshold of the
new opening channel. In Figs. 2(a) and 3(a), we illustrate
the topological structures of the Riemann surfaces of the
single- and two-channel systems, respectively. We use
the signs of the imaginary parts of the momenta in the
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FIG. 1. The experimental fitting with the relativistic Breit-
Wigner line shape of the PΛ

ψsð4338Þ0 [1]. NR means the
nonresonant contributions.
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threshold ascending order to label different Riemann sheets
[45–47]. For example, there are four Riemann sheets for the
two-channel system, ðþ;þÞ, ð−;þÞ, ð−;−Þ, and ðþ;−Þ,
where the first and the second signs are for the lower and
higher channels, respectively. We also introduce the sub-
scripts U and L to label the upper- and lower-half planes,
respectively. The physical region appears on the real axis
of the physical sheet with all positive signs.
If the resonance pole is near the physical region but away

from the branch points, the pole surrounding could be
regarded as flat and one can use a simple pole of E to
parametrize the resonance,

T ∝
1

E − E0

∝
1

E −M þ iΓ=2
; ð3Þ

where E0 is the pole position with M and −Γ=2 as the
real and imaginary parts. This is the nonrelativistic BW
parametrization. However, when the resonance pole
appears near the thresholds, the branching behavior of
TðEÞ will make the simple parametrization unreasonable.
Alternatively, we could try to find a variable z to set a
mapping from E to z and make the T matrix a single value
function of z in the locally flat surface. This process is
called uniformization. It has been shown that the single-
and two-channel S matrix can be mapped into a single
plane [37–40].
For the single-channel system, the most convenient

uniformization is to go to the momentum plane. In
Fig. 2(b), we present the k plane of the S matrix. For
the two-channel system, we first introduce two momentum-
like variables ql and qh,

q2l ¼ ðE2 −m2
Tl
Þ; q2h ¼ ðE2 −m2

Th
Þ; ð4Þ

where mTl
and mTh

are the lower and higher thresholds,
respectively. For our problem, there are mTl

¼ mT2
and

mTh
¼ mT3

. Apparently, the sign of the imaginary part of
qiði ¼ l; hÞ should be related to different sheets of SðEÞ.
We can introduce the real positive Δ as

q2l − q2h ¼ m2
Th

−m2
Tl
≡ Δ2: ð5Þ

We set up the mapping E to z from the following relations:

ql þ qh ¼ Δz; ql − qh ¼
Δ
z
: ð6Þ

In Fig. 3(b), we present the z plane of the S matrix, where
the regions corresponding to four sheets and two cuts are
shown in different colors. Apparently, the element of the S
matrix will be a single value function of the z. The two
branch points in the E plane are unfolded into four points,
which are shown as open markers in Fig. 3(b). The origin
point corresponds to the infinities of ð−;þÞ and ðþ;−Þ
sheets. For the nonrelativistic system, one can introduce
ql;h as follows:

q2i ≡ ðmTh
þmTl

ÞðE −mTi
Þ ¼ ðmTh

þmTl
Þ k2i
2μi

; ð7Þ

where μi is the reduced mass for the corresponding channel.
The remaining derivations are the same as those of the
relativistic case.
In Fig. 4, we show the physical regions of the single- and

double-channel systems in the uniformized plane with the
solid red lines. For the single-channel system, the positive
imaginary axis (a) corresponds to the E < 0 region. The
positive real axis (c) corresponds to the cut in the physical
regions. The two lines form a right angle with vertex of the
branch point (b). Assuming a smooth function in the k

Re 

Im 

(b) plan

Re

(a) plan

Im

Thresh.

FIG. 2. The topological structure of Riemann surface [subfigure
(a)] and its uniformization for the single-channel system [sub-
figure (b)]. The different sheets are shown in different colors, with
label of signs of the imaginary parts of momenta. The subscripts
“U” and “L” represent upper- and lower-half sheets, respectively.
The red solid line, red dashed line, and red open markers
represent the k2 > 0, k2 < 0, and k2 ¼ 0, respectively. (a) Illus-
trates connection relations of different sheets by the colored lines
cross real axis in different regions, where the meanings of the
colors are the same as those in (b).

(a)( ) (b) 

FIG. 3. The topological structure of Riemann surface [subfigure
(a)] and its uniformization for the double-channel system [sub-
figure (b)]. The different sheets are shown in different colors, with
label of signs of the imaginary parts of momenta. The subscripts
U and L represent upper- and lower-half sheets, respectively. The
solid lines, dashed lines, and open markers represent the k2i > 0,
k2i < 0, and k2i ¼ 0 with red (blue) for the lower (higher) channel,
respectively. (a) Illustrates connection relations of different sheets
by the colored lines cross real axis in different regions, where the
meanings of the colors are the same as those in (b).
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plane, its value along the physical region ðaÞ → ðbÞ → ðcÞ
will become unsmooth at point (b). In this picture, one can
easily understand the appearance of the “cusp” effect in the
threshold. For the two-channel system, the physical regions
are (a) where neither channel opens, (b) the lower thresh-
old, (c) where the only the lower channel opens, (d) the
higher threshold, and (e) where both thresholds open. The
lines or arc form two right angles at two thresholds. Thus,
one can expect the unsmoothness to appear at two thresh-
olds for the amplitudes. It should be noticed that one could
choose other uniformizations, e.g., by introducing another
mapping with the arbitrary analytical function gðkÞ or gðzÞ.
However, the transformation introduced by the analytical
function will be conformal, which locally prevents the
angle. Thus, the above discussion about the threshold
effects based on the right angles will not change.
Now, we expect the T matrix will be the analytical

function of k or z after uniformization, except possible
poles. Naively, we could introduce the simplest pole
parametrizations, like the Breit-Wigner function, but in k
or z plane,

single channel∶ T ∝
1

ðk − k0Þ
∝

1

ðk − kr − ikiÞ
; ð8Þ

double channels∶ T ∝
1

ðz − z0Þ
∝

1

ðz − zr − iziÞ
; ð9Þ

where k0 ¼ kr þ iki and z0 ¼ zr þ izi are poles.
Apparently, the jTj2 is inversely proportional to the square
of the geometric distance between zðkÞ and z0 (k) in the
uniformized plane. Here we only keep the contribution
of the single pole. With this rough picture, we know the
physical jTj2 will achieve its maximum at the point closest
to the pole. In Fig. 4, we divide the whole plane into several
regions ðAÞ; ðBÞ;… according to their closest physical
regions ðaÞ; ðbÞ;…. For example, the pole that appears

in region (A) will give a peak at physical region (a).
Comparing Fig. 4 with Figs. 2(b) and 3(b), one can get a
rough impression where the peak will appear for the pole at
different sheets.
For the single-channel system, the pole on the ð−ÞL

sheet, the lower-half E plane of the second sheet, will give
a peak above the threshold. For every pole on the ð−ÞL
sheet, there is a conjugate pole at the ð−ÞU sheet (we will
discuss this in detail later). Such a pole could enhance the
threshold effect. The virtual state pole on the negative
imaginary axis of the k plane tends to contribute to a peak
on the threshold.
For the two-channel system, the pole on the ðþ;−Þ or

ð−;þÞ sheets only gives a peak between two thresholds
(including two thresholds). The large region (B) and (D)
will give a peak in thresholds, which include the whole
ðþ;−Þ sheet, upper-half ðþ;−Þ region, part of the ðþ;þÞ
sheet, and part of the ð−;−Þ sheet. Meanwhile, one can see
the pole on the ð−;−Þ sheet only gives a peak above the
lower threshold. The pole on the ðþ;þÞ sheet could give a
potential peak in all (a)–(e) regions.
Apart from the above topological property, the analy-

ticity constrains the S matrix from the Schwarz reflection
principle [48]. Apparently, the elements of the S matrix in
the (a) region in Fig. 4 are real and analytical, except for
the possible bound state poles. With the Schwarz reflection
principle, the elements of the S matrix satisfy

SðzÞ ¼ S�ð−z�Þ; ð10Þ
where z is the variable after uniformization and becomes
k for the single-channel systems. Considering the T ∼
ð1 − SÞ=ðik1Þ, the matrix elements of TðzÞ satisfy the same
reflection rule and the poles will appear in pairs as

TðzÞ ¼ c0
z − z0

−
c�0

zþ z�0
; ð11Þ

where c0 and −c�0 are the residues of the two poles. In the E
plane, the pole will become symmetric with respect to the
real axis for each sheet. If we assume c0 is real c0 ¼ c�0,
we can get the possible line shapes of the jTðzÞj2.
We take 12 different pole masses Mi;j ¼ Mi

re � iMj
im

with i ¼ 0, 1, 2, 3 and j ¼ 1, 2, 3 to investigate the
corresponding line shapes, with

Mre ∈ fðmT2
− 1Þ; ðmT3

− 1Þ;
ðmT3

þ 1Þ; ðmT3
þ 5Þg MeV;

j2Mimj ¼ Γ ∈ f2; 7; 20g MeV: ð12Þ

These “synthetic” poles are presented in Fig. 5. One can see
that these poles are below the two thresholds, between the
two thresholds, slightly above the higher threshold, and
significantly above the higher thresholds. The imaginary
values include the experimental one (treating BW mass

FIG. 4. The corresponding relations between the pole position
and jTj2 peak position in the physical region under the assumption
in Eqs. (8) and (9). For each subfigure, the regions marked with
different colors [or ðAÞ; ðBÞ;…] imply that the distance from the
poles in these regions to the physical regions [ðaÞ; ðbÞ;…] is the
shortest. Consequently, the pole at the regions ðAÞ; ðBÞ;… will
give rise to a peak at the physical regions ðaÞ; ðbÞ;…, respectively.
The left and right subfigures are for the one- and two-channel
system, respectively.
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as the pole mass), a much smaller one, and much larger one.
In the calculation, we will consider the 12 poles on different
Riemann sheets. In principle, we have taken all the
qualitatively different cases into consideration. We plot
the line shape of jTj2 in Fig. 6 using parametrization in
Eq. (11) with c0 ¼ c�0.
One can see that the pole appearing in ðþ;−Þ and ð−;þÞ

sheets will give an enhancement to the region between two
thresholds, which agrees with Fig. 4. The peaks move from
the lower threshold to the higher threshold, with increasing
mass for the ð−;þÞ sheet poles. However, the peaks only
appear on the second threshold for the ðþ;−Þ sheet poles.
For the poles on the ð−;−Þ sheet, the peaks appear in the
regions above the higher thresholds. When the pole mass is
below the higher threshold, the peak appears on the second
threshold. When the pole mass is increasing above the
higher threshold, the peak tends to move with the pole
mass. Only for the poles on the ðþ;þÞ sheet with a small
imaginary part, the peak will move with the pole mass all
the time. Therefore, in most cases, the BW mass could not
reflect the real pole position. We will see the results from
two dynamical models are qualitatively consistent with the
analysis with the simple parametrization in the uniformiza-
tion scheme.

III. DYNAMICAL MODELS

In order to verify the qualitative analysis in Sec. II, we
adopt two models to calculate the line shapes explicitly.
In model I, we introduce the contact interactions for three
channels in Eq. (2) with the isospin symmetry,

VI ¼
1

2

2
64

0 −c̃ c̃

−c̃ c1 þ c0 c1 − c0
c̃ c1 − c0 c1 þ c0

3
75; ð13Þ

where c1, c0, and c̃ are defined as follows:

hΞcD; I ¼ ijV̂jΞcD; I ¼ ji≡ ciδij; ð14Þ

hΞcD; I ¼ 0jV̂jJψΛ; I ¼ 0i≡ c̃: ð15Þ

We omit the interaction between J=ψ and Λ. The
above interaction is a natural extension of our previous
works [42–44,49,50].
In model II, the ΞcD̄ interactions are introduced through

a bare isospin singlet resonance that couples to these ΞcD̄
channels,

VII ¼
1

2

2
664

0 −c̃ c̃

−c̃ g2

E2−m2
0

− g2

E2−m2
0

c̃ − g2

E2−m2
0

g2

E2−m2
0

3
775; ð16Þ

where m0 is the bare mass of the resonance and g is the
coupling constant. The coupling of J=ψΛ and ΞcD̄ is the
same as that in model I.
With the interactions, the coupled-channel T matrix can

be obtained by solving the Lippmann-Schwinger equations
(LSEs),

T ¼ V þ VGT; G ¼ diagfG1; G2; G3g: ð17Þ

The Gi is

GiðEÞ¼ i
Z

d4l
ð2πÞ4

1

l2−m2
i1þ iϵ

1

ðP− lÞ2−m2
i2þ iϵ

ð18Þ

¼
Z

Λ

0

l2dl
ð2πÞ2

ωi1 þ ωi2

ωi1ωi2½E2 − ðωi1 þ ωi2Þ2 þ iϵ� ; ð19Þ

FIG. 5. The synthetic pole positions, the ΞcD̄ thresholds, and experimental mass and width. Left: the gray dashed lines represent two
ΞcD̄ thresholds. The orange pentagon with error bars stands for the experimental measurement of the mass and width of PΛ

ψsð4338Þ0
within relativistic BW parametrization. The other markers are the synthetic poles used to investigate the line shapes. Middle/Right: the
distribution of these poles on the z plane.
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with ωia ¼ ðl2 þm2
iaÞ1=2. We use the mia to denote the

mass of the ath particle of the ith channel. The total
momentum of the two particles reads P ¼ ðE; 0Þ at the
center of the mass frame. The analytical results of the above
integral can be found in Ref. [51]. In order to continue the T
matrix to the unphysical sheets, one can use the following

replacement to the channels with a negative imaginary part
of the momentum:

Gi → Gi þ i
ki
4πE

; ð20Þ

where the ki is defined as

4332.5 4335.0 4337.5 4340.0 4342.5 4332.5 4335.0 4337.5 4340.0 4342.5 4332.5 4335.0 4337.5 4340.0 4342.5 4332.5 4335.0 4337.5 4340.0 4342.5

FIG. 6. The line shape of jTj2 using the parametrization in Eq. (11) with c0 ¼ c�0.
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ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2 − ðmi1 þmi2Þ2�½E2 − ðmi1 −mi2Þ2�

p
2E

: ð21Þ

The physical meaning is the momentum of the final
states mi1 or mi2 in the two-body decay of a mother
particle with mass E. In the calculation, we keep the
slight mass differences of the charged and neutral ΞcðD̄Þ
to embed the possible isospin violation effect. In our
calculation, the reflection principle in Eq. (10) is
satisfied.
In order to show the relations of the above models with

other similar ones in literature, we give the reduced
nonrelativistic interaction of the ΞcD̄ two-channel sys-
tems in Appendix A. One can see the clear corresponding
relations between the LSE formalism and the K-matrix
parametrization [52]. Meanwhile, one can see that model
I is the zero-range model in Refs. [53,54]. Model II is the
Flatté parametrization in Refs. [33,34], which was also
called the Flatté model in Ref. [54]. The renormalization
of the two models has been discussed in Refs. [53,54],
which shows that the cutoff dependence of the T matrix
can be eliminated. Therefore, we only take Λ ¼ 500 MeV
in the following calculation. In principle, one can adopt
the general models combining model I and model II [54].
In this work, in order to reduce the unknown parameters,
we adopt the two models separately.
We can calculate the amplitude of B− → J=ψΛp̄ accord-

ing to Fig. 7,

PΛ
1 þ PΛ

1G
Λ
1 T11 þ

X
i¼2;3

PΛ
i G

Λ
i Ti1

¼ PΛ
1 ðVΛ

11Þ−1T11 þ
X
i¼2;3

ðPΛ
i − PΛ

1 ðVΛ
11Þ−1VΛ

1iÞGΛ
i Ti1

¼ P1T11 þ
X
i¼2;3

PiTi1; ð22Þ

where we use T11 ¼ VΛ
11ð1þGΛ

1 T11Þ þ
P

i¼2;3 V
Λ
1iG

Λ
i Ti1

to obtain the first equation. The direct production vertices
PΛ
i are cutoff dependent. We can eliminate the cutoff

dependence by renormalizing the Pi and get the final
results following Ref. [55].
The three direct production vertices PΛ

i from Eq. (22) are
presented at the quark level in Fig. 8. For PΛ

2 and PΛ
3 , their

relative sign is very important. In the isospin limit, there
are relations T21 ¼ −T31 and GΛ

2 ¼ GΛ
3 . Therefore, if there

is the relation PΛ
2 ¼ PΛ

3 , the contribution from the third
diagram in Fig. 7 will be canceled out for i ¼ 2 and 3. In
order to evaluate the ratio of PΛ

2 =P
Λ
3 , we first define the

initial state of the strong interaction,

jinitiali ¼ jf½cðsc̄Þ1s1c �
1=2s
3c

ūg0s
1c
ðqq̄Þ0s;0I1c

ðqq̄Þ0s;0I1c
i; ð23Þ

where the superscripts represent the spin and isospin, and
the subscripts represent the color representation. The initial
state is the spin-flavor-color wave functions of the csc̄ ū
after weak vertices and two quark pairs generated from
QCD vacuum. We estimate the PΛ

2 =P
Λ
3 by evaluating the

overlap of the initial state and jΞcD̄ p̄i,

PΛ
2

PΛ
3

¼ hinitialjΞ0
cD̄ p̄i

hinitialjΞþ
c D−p̄i ¼ −1: ð24Þ

The above result indicates that there is no cancellation in
the third diagram of Fig. 7.
We can use P1T11 þ P2ðT21 − T31Þ to evaluate the line

shape of J=ψΛ. However, P1 and P2 are unknown param-
eters. In the following analysis, we will assume B− →
J=ψΛp̄ is either the J=ψΛ driving or the ΞcD̄ driving.

FIG. 7. The Feynman diagrams for B− → J=ψΛp̄. The dashed
lines represent the antiproton. The solid lines represent the
three channels in Eq. (2). The PΛ

i are the vertices of the direct
production. The solid squares are the scattering T matrix in
Eq. (17). The superscripts Λ label the quantities with the cutoff
dependence.

(a) (b) (c)

FIG. 8. The Feynman diagrams (a) (b) (c) for B− → J=ψΛp̄, B− → J=ψΞ0
cD̄0, and B− → J=ψΞþ

c D−, respectively. The wiggle lines
represent the W bosons. The three diagrams correspond to the PΛ

i vertices in Fig. 7. The rescattering effects of the hadrons are not
included.
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Thus, we can only focus on jT11j2 and jT21 − T31j2,
respectively, to draw the line shapes.

IV. LINE SHAPES

In our calculation, the reflection principle in Eq. (10) is
satisfied. The poles appear in pairs as Eq. (11). There are
three unknown parameters in each model, c0, c1, and c̃ for
model I and m0, g, and c̃ for model II. In order to fix the
three parameters, we take a two-step procedure. First, we
solve a two-channel problem (j2i and j3i) to find poles
at Mre � iMim × 0.8. We assume the main properties of
the resonance (central mass and 80% of the width) are
determined by the ΞcD̄ interaction, as we explained in
Sec. II. In this step, we can determine c0 and c1 for model I
and g and m0 for model II. In the second step, we will
include the channel j1i and tune the c̃ to add the extra 20%
width. The partition of the contribution to the width can be
slightly different, but the ΞcD̄ ones should be dominant.
The two-step procedure can help us fix all the model
parameters except the poles below the Ξ0

cD̄0 threshold
in sheet ð−;þ;þÞ, which correspond to the ΞcD̄
bound states. For the ΞcD̄ bound states, we take the
vanishing widths in the first step and introduce the width
by coupling with the J=ψΛ channel in the second step.
For the bound state solution, we have to eliminate one
parameter manually in the first step. We take c1 ¼ 0 to
ignore the effect of the isospin triplet channel in model I
and take the BWmass as the bare massm0 ¼ 4338.3 MeV
in model II.
In determining the unknown parameters, we also use

some criteria to delete the solutions that are inconsistent
with the present understandings.

(i) For model I, we only keep the solutions with c0 < 0
and c1 > 0, because the calculations in Refs. [17–19]
imply that the interactions for the isospin singlet
and triplet of the ΞcD̄ are attractive and repulsive,
respectively.

(ii) For model II, we only keep the solution with m0

close to the present PΛ
ψsð4338Þ0 mass, see 4238 <

m0 < 4438 MeV.
(iii) For the two-channel Flatté model, there are, in

general, four pole solutions belonging to two pairs
considering the reflection principle as shown in
Appendix A. We have checked that only one pair
of them could appear in our region of interest. The
other pair of solutions are about 2 GeV away from
the PΛ

ψsð4338Þ0 mass or even further.
(iv) We neglect all the solutions at sheet ð−;þ;−Þ. The

numeral calculations show that the T matrix with
poles on this sheet is suppressed by two orders as
compared to others.

In Table I, we list the poles allowed by the above
criteria. For the ð−;þ;þÞ sheet, the poles are only allowed
below the thresholds. For the ð−;−;þÞ sheet, all the poles

are admitted except poles with Γ ¼ 2 MeV in model I.

The poles on the sheet ð−;−;−Þ are only allowed by

model II.
We will focus on the line shape of J=ψΛ in a narrow

region near the ΞcD̄ threshold in the decay B− → J=ψΛp̄.
Apart from the dynamical part, the phase space part reads

dΓ
dMJ=ψΛ

∝ kp̄k�J=ψ ; ð25Þ

where kp̄ is the momentum of p̄ in the frame of the static
B−, and k�J=ψ is the momentum of J=ψ or Λ in their center
of mass frame. One can get their relations to MJ=ψΛ from
Eq. (21). The shape is shown in Fig. 9. Because the mass of
B− is very close to the three-body threshold of ΞcD̄ p̄, the
kinetic-allowed phase space will fall dramatically in the
region of interest. However, the descending behavior has
been included in experimental fitting. To investigate the

TABLE I. The allowed poles on different Riemann sheets for
the pole masses in Eq. (12). We use the “o” to label the poles that
are permitted by tuning the parameters in a reasonable range. The
results for models I and II are separated by “=.”

Model I/II ð−;þ;þÞ ð−;−;þÞ ð−;−;−Þ ð−;þ;−Þ
M0;1 o=o =o =o
M0;2 o=o o=o =o
M0;3 o=o o=o =o

M1;1 =o =o
M1;2 o=o =o
M1;3 o=o =o

M2;1 =o =o
M2;2 o=o =o
M2;3 o=o =o

M3;1 =o =o
M3;2 o=o =o
M3;3 o=o =o

4332 4334 4336 4338 4340 4342

0

10 000

20 000

30 000

40 000

50 000

FIG. 9. The line shape of phase space of dΓ=dMJ=ψΛ, which is
proportional to kp̄k�J=ψ . The dashed gray lines represent the Ξ

0
cD̄0

and Ξþ
c D̄− thresholds.
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possible bias of the experimental analysis, we will first
show the line shapes of the dynamical parts, i.e., jT11j2 and
jT12 − T13j2 in the J=ψΛ- and ΞcD̄-driving mechanisms,
respectively. The sole dynamical part could help show its
differences with the BW parametrization. After that, we
will take the phase space into consideration.

A. Poles on the sheet ð− ;+ ;+ Þ
In Fig. 10, we plot the jTj2 with the poles on the

ð−;þ;þÞ sheet. The poles correspond to the bound states
of ΞcD̄. The widths come from the allowed decay
PΛ
ψs → J=ψΛ. One can see that, for the poles with a small

Γ (2 MeV), the peaks almost appear at the central mass,

4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342

(a) (b) (c) (d)

FIG. 10. The jTj2 with the poles on the ð−;þ;þÞ sheet. The dashed gray line represents the central mass of the pole. The solid vertical
lines represent two ΞcD̄ thresholds. The specific quantities and models corresponding to (a)–(d) are given in the subfigures.

4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 11. The jTj2 with the poles on the ð−;−;þÞ sheet assuming the ΞcD̄-driving production mechanism. The dashed gray line
represents the central mass of the pole. The solid vertical lines represent two ΞcD̄ thresholds. The specific quantities and models
corresponding to (a)–(h) are given in the subfigures.
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which agrees with that in Fig. 6. For the poles with a larger
Γ, the peaks will deviate from the central mass. One can
see that model II gives larger deviations than model I.
Qualitatively, the two models with two production mech-
anisms still give the consistent line shape. In all cases, the
peaks appear below the lower threshold, which is different
from the experimental pattern of the PΛ

ψsð4338Þ0 peak that
is close to the higher threshold, e.g., see Fig. 1. Therefore,
the present experimental results seem to disfavor the
PΛ
ψsð4338Þ0 as the ΞcD̄ bound state.

B. Poles on the sheet ð− ;− ;+ Þ
In Figs. 11 and 12, the jTj2 with poles on the ð−;−;þÞ

sheet through the ΞcD̄- and J=ψΛ-driving mechanisms are
presented, respectively. One can see that the line shapes
of resonances with the same pole mass in two models
with different driving mechanisms are very similar. The
only difference is that there do not exist solutions with
Γ ¼ 2 MeV for model I. In other words, it is hard to discern
the dynamical model I and model II from the line shapes in
such a narrow energy range.
When the poles move from the positions below the lower

threshold to the positions above the higher threshold,

the peaks of jTj2 will move from the lower threshold to
the higher one as expected in Fig. 6. For the poles below the
lower threshold (above the higher threshold), the peaks will
not go further with the poles but appear at the lower
(higher) threshold. Most peaks appear as the cusps with
unsmooth maximum points on the thresholds, which is
obviously different from the smooth BW distribution.
In addition to the fact that the peak position does not

reflect the Mre, the nominal half-widths of the enhance-
ments could not correspond to the Mim. The shapes of the
enhancement in the subfigures (c), (d), (g), (h) of Figs. 11
and 12 with Γ ¼ 7 and 20 MeV are constrained by the two
thresholds in the energy extension rather than the Mim.
From Figs. 4 and 3(b), one can see the closest physical
regions of poles on the ð−;þÞ sheet are ðbÞ; ðcÞ; ðdÞ, i.e.,
the two thresholds and intermediate regions.
We use the interactions permitting a pole at M2;2 and

giving the jTj2 with Γ ¼ 7 MeV in Fig. 11 as an example
to investigate the effect of the double thresholds.We keep the
same interaction and shrink the differences of two thresholds
by three equal steps. We compare the jTj2 with different
thresholds in Fig. 13. One can see that the energy extension
will be narrowed with the change of the thresholds. Finally,
the enhancement becomes a very sharp peak when the two

4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 12. The jTj2 with the poles on the ð−;−;þÞ sheet assuming the J=ψΛ-driving production mechanism. The dashed gray line
represents the central mass of the pole. The solid vertical lines represent two ΞcD̄ thresholds. The specific quantities and models
corresponding to (a)–(h) are given in the subfigures.
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thresholds become the same in the isospin symmetry limit.
For the sharp peak, the channels with different isospins are
decoupled. We find the peak corresponds to a near-threshold
virtual state of jΞcD̄; I ¼ 0i. Therefore, the shapes in the
subfigures (c), (d), (g), (h) of Figs. 11 and 12 are the virtual
states broadened by the splitting of the thresholds. The states
coupling to two thresholds lead to a different pattern from
those with a single threshold effect.
The peaks of the line shapes could truly reflect the pole

position only when the poles on the ð−;−;þÞ sheet lie
between the two thresholds, and its Γ is small, such as the
lines coinciding to Γ ¼ 2 MeV in Figs. 11(f) and 12(f).
Otherwise, the BW parametrization could introduce a large
discrepancy. In principle, the experimental PΛ

ψsð4338Þ0
could arise from a pole higher than the peak position with
the line shape distorted by the double threshold effect.

C. Poles on the sheet ð− ;− ;− Þ
In Fig. 14, we show the jTj2 with poles on the sheet

ð−;−;−Þ. One can see that, for the poles below the higher
threshold, the peaks tend to appear at the higher thresholds.
For the poles above the higher threshold, peaks tend to move
with the pole position. The picture is in good agreement with
that in Fig. 6. In other words, the experimental enhancement

4335 4336 4337 4338 4339 4340

4336.2 4336.3 4336.4

FIG. 13. The jTj2 changing with the ΞcD̄ thresholds. The
interaction permits a pole in M2;2 on the ð−;−;þÞ sheet. The
difference of the two thresholds is shrunk to zero by three equal
steps. The blue line is the enlarged version of the green dashed
line in Fig. 11(c). The line shapes and their corresponding
thresholds are represented by the same types of lines. The red
line is the one in the isospin symmetry limit, of which the full
view is displayed in the inset.

4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 14. The jTj2 with the poles on the ð−;−;−Þ sheet. The dashed gray line represents the central mass of the pole. The solid vertical
lines represent two ΞcD̄ thresholds. The specific quantities and models corresponding to (a)–(h) are given in the subfigures.

DOUBLE THRESHOLDS DISTORT THE LINE SHAPES OF THE … PHYS. REV. D 107, 014005 (2023)

014005-11



of PΛ
ψsð4338Þ0 could arise from a pole on the sheet ð−;−;−Þ

below the higher threshold, even below the first threshold.
Considering the resolution of the detector, the cusp at the
higher threshold amplified by the pole in other places would
be identified as a BW peak and give a misleading resonance
mass and lifetime. Only when the poles on the sheet
ð−;−;−Þ are above the higher threshold and with the small
Γ=2 compared with the jMre −MT2

j, the effects from the
thresholds could be less important. In this way, the line
shapes could suit the BW parametrization, such as the ones
in Figs. 14(c) and 14(g) with Γ ¼ 2 MeV, and the ones in
Figs. 14(d) and 14(f) with Γ ¼ 2 and 7 MeV.

D. Line shapes considering the phase space

In this part, we take the phase space in Fig. 9 into
consideration. Since the two models and two driving
mechanisms give similar shapes in the dynamical part, we
only show the line shape using model II in the ΞcD̄-driving
mechanism as an example. In the present models, the poles
on the ð−;þ;þÞ sheet cannot give a peak above the second
threshold. Therefore, we only draw the line shapes corre-
sponding to the poles on the ð−;−;þÞ and ð−;þ;þÞ sheets
as shown in Fig. 15. Apparently, the descending phase space

will distort the line shapes. We still see the enhancements or
cusps in the vicinity of the ΞcD̄ thresholds.

V. SUMMARY

In this work, we explore the possible effect of the Ξþ
c D−

and Ξ0
cD̄0 thresholds on the line shapes of the PΛ

ψsð4338Þ0
in the J=ψΛ invariant mass spectrum of the B− → J=ψΛp̄.
We assume the properties of PΛ

ψsð4338Þ0 are mainly
determined by the ΞcD̄ effect with the coupling to
J=ψΛ as a small correction. With the knowledge of
the topological structure of the two-channel system
(Ξþ

c D− and Ξ0
cD̄0 channels), we use a qualitative picture

of the uniformization to understand the positions of the
peaks. We use two dynamical models to calculate the J=ψΛ
line shapes in the LSE formalism to verify the picture. In
the calculation, the unitarity and the analyticity associated
with the two-channel system are considered carefully. The
formalism is equivalent to the K-matrix parametrization in
review of particle physics (RPP) [52]. Model I is the zero-
range model and model II is equivalent to the Flatté model.
We consider two different production mechanisms in
B− → J=ψΛp̄, the J=ψΛ-driving one and the ΞcD̄ one.
We adopt the 12 pole masses on ð−;þ;þÞ, ð−;−;þÞ,

4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342 4332 4334 4336 4338 4340 4342

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 15. The J=ψΛ invariant mass spectrum in the decay B− → J=ψΛp̄ with the poles on the ð−;−;−Þ sheet and ð−;−;þÞ sheet. The
dashed gray line represents the central mass of the pole. The solid vertical lines represent two ΞcD̄ thresholds. The specific quantities
and models corresponding to (a)–(h) are given in the subfigures.
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and ð−;−;−Þ sheets to investigate the specific line shapes.
As a by-product, we calculate the ratio of the isospin
violation decays of PΛ

ψsð4338Þ0.
From the numerical results, we can obtain the following

conclusions:
(i) The two models and two production mechanisms

permit the similar line shapes. The line shapes near
the ΞcD̄ thresholds cannot be used to discern the
underling dynamics, because the line shapes are
roughly fixed by the analyticity and unitarity, in
particular, the positions of the poles and branch cuts.

(ii) For the poles near the thresholds, the conventional
BW parametrization cannot uncover the real pole
mass. Instead, the parametrization in Eq. (11) with
variable z after uniformization gives consistent line
shapes with the two dynamical models. The peaks
of poles tend to appear in the closest point in the
physical region of the pole in the uniformized z
plane as shown in Fig. 4 rather than the central mass
position predicted by the BW parametrization.

(iii) For the poles on the ð−;−;þÞ sheet, one could
observe that the enhancements with widths are
determined by the threshold differences rather than
the imaginary parts of the pole masses. The line
shapes are the virtual state peaks in the isospin limits
that are broadened by the isospin splitting of the two
thresholds. The phenomena are consequences of the
double thresholds appearing near the resonance poles.

(iv) The enhancement of PΛ
ψsð4338Þ0 could potentially

arise from the pole on the ð−;−;þÞ sheet well above
the Ξþ

c D− threshold and the pole on the ð−;−;−Þ
plane well below the Ξþ

c D− threshold, where the
BW parametrization may be misleading.

(v) As a by-product, the isospin violating decay ratio
ΓPΛ

ψs→J=ψΣ=ΓPΛ
ψs→J=ψΛ could be at most 10%.

Considering the potential discrepancy of BW parametriza-
tion, we urge the LHCb Collaboration to perform the
analysis with the K-matrix parametrization or the “Flatté”
parametrization when the amount of data becomes large
enough. The present analysis using uniformization is very
general, which can be used to understand the other near-
threshold structures.
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APPENDIX A: ZERO-RANGE MODEL AND
FLATTÉ MODEL

In order to show the relations of models I and II with
other similar ones in literature, we give the reduced
nonrelativistic ΞcD̄ two-channel scattering formalism.
Ignoring the effect of J=ψΛ, we can solve the LSEs
T̃ ¼ Ṽ þ Ṽ G̃ T̃, with

Ṽ ¼
�
V22 V23

V32 V33

�
; G̃ ¼ diagfG2; G3g: ðA1Þ

With the nonrelativistic approximation, the Gi reads

GiðEÞ ≈
1

2mi1mi2

Z
Λ

0

l2dl
ð2πÞ2

1

E −mi1 −mi2 − l2
2μi

þ iϵ

≈ Ni

�
2

π
Λþ iki

�
; ðA2Þ

where the constant Ni is Ni ¼ − 1
2mi1mi2

μi
4π ≡ N. We have

neglected the mass difference from the isospin violation in
Ni. ki is defined as ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μiðE −mi1 −mi2Þ þ iϵ

p
. The

mass splittings of the two channels in the expression of ki
are kept. Solving the LSEs, we can obtain the inverse of
the amplitude Ã−1,

Ã−1 ¼ N−1T̃−1 ¼ N−1ðṼ−1 − G̃Þ ¼ K̃−1 − ikiδij; ðA3Þ
where K̃−1 ¼ N−1Ṽ−1 − 2

π δijΛ. Equation (A3) is the
K-matrix parametrization in RPP [52].
For model I, one can define the cutoff-independent K̃−1,

K̃−1
I ¼

"
1
a22

1
a23

1
a23

1
a22

#
: ðA4Þ

For one channel case, the aii is the scattering length. There-
fore, the above model is just the zero-range model [53,54].
For model II, one can get the amplitude,

Ã22 ¼ −Ã23 ¼ Ã33

¼ −
g2=2

4ðs −m2
0Þðm1 þm2Þπ þ g2 2

πΛþ iðg2k2
2

þ g2k3
2
Þ
:

ðA5Þ
The above expression is the Flatté formalism [33]. If one
takes the approximation Eþm0 ≈m1 þm2 and the fol-
lowing replacement,

g2

2
→

g02

2
8ðm1 þm2Þ2; ðA6Þ
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one can get

Ã22 ¼ −Ã23 ¼ Ã33 ðA7Þ

≈
g02=2

E −m0 þ g02 2
πΛþ iðg02k2

2
þ g02k3

2
Þ
; ðA8Þ

which is the Flatté-like formalism used in Ref. [34].
If one replaces the E, k2, k3 in the Flatté model with z

in the uniformization scheme, one can obtain the
denominator,

Denominator ¼ A

�
zþ 1

z

�
2

þ iB

�
zþ 1

z

�

þ iC

�
z −

1

z

�
þD; ðA9Þ

where A, B, C, and D are real parameters. Therefore, there
are four pole solutions in the two-channel Flatté model.
Meanwhile, the four solutions satisfy the reflection rules in
Eq. (10) and can be classified into two groups.

APPENDIX B: ISOSPIN VIOLATING DECAY
PΛ
ψsð4338Þ0 → J=ψΣ

The peak of the PΛ
ψsð4338Þ0 resonance is very close to

the Ξþ
c D− threshold, which could make the PΛ

ψsð4338Þ0
prefer to couple with the Ξþ

c D− rather than equally couple
to two thresholds, Ξþ

c D− and Ξ0
cD̄0. A natural consequence

of the above picture is the potentially large isospin violating
decay PΛ

ψsð4338Þ0 → J=ψΣ, as in the dipion decays of
the Xð3872Þ [43,56,57]. The isospin violating decays of
the Xð3872Þ and PN

ψ ð4457Þ were also investigated in
Refs. [58,59]. We can evaluate the isospin violating decay
ratio within a two-channel coupling scenario.
We solve the LSEs in Eq. (A1) in the first step of our

two-step procedure. One can extract the couplings g2 and g3
from the residues of the T̃ matrix,

lim
E→Mpole

ðE −MpoleÞT̃ij ∝ gigj; ðB1Þ

where i and j are the indices of the channels in Eq. (2).
The Feynman diagram for the PΛ

ψsð4338Þ0 → J=ψΛðΣÞ
decay is presented in Fig. 16. We assume the vertices
ΞcD̄ − J=ψΛðΣÞ satisfy the isospin symmetry. The isospin

symmetry is violated in the gi couplings and GΛ
i due to the

mass splitting and the phase space differences. Therefore,
the isospin violating decay ratio reads

R ¼ ΓPΛ
ψs→J=ψΣ

ΓPΛ
ψs→J=ψΛ

¼
���� g3G3ðMreÞ þ g2G2ðMreÞ
g3G3ðMreÞ − g2G2ðMreÞ

����2 × kðMre; mJ=ψ ; mΣÞ
kðMre; mJ=ψ ; mΛÞ

:

ðB2Þ
In Table II, we present the isospin violating decay ratios

for the different pole masses in two models. For all the
model-II and model-I results with poles on the ðþ;þÞ
sheet, we set the interaction in the isospin triplet channel to
be vanishing and only keep the isospin singlet interaction.
This strategy will lead the difference of jg2j and jg3j to
be negligible. The isospin violating decays mainly stem
from GΛ

i due to the mass splittings and the phase space
differences. Thus, one can see the ratios only depend on the
central mass and are insensitive to the Γ of the pole mass.
Without the contribution of the difference of jg2j and jg3j,
the ratios are smaller than others by almost one order.
In the calculation, the largest isospin violating ratio is

on the order of 10%. The ratio is small as compared to that
of Xð3872Þ, since the PΛ

ψsð4338Þ0 is not as close to the
threshold as the Xð3872Þ and is not as narrow as Xð3872Þ.
However, the 10% isospin violating effect could still be
detected in experiments.
Apart from the above formalism, one can choose to use

a four-channel coupling method to estimate the isospin
violating effect. The interactions can be introduced as

VI ¼
1

2

2
6664

0 0 −c̃ c̃

0 0 c̃ c̃

−c̃ c̃ c1 þ c0 c1 − c0
c̃ c̃ c1 − c0 c1 þ c0

3
7775; ðB3Þ

FIG. 16. The decay diagram for PΛ
ψsð4338Þ0 → J=ψΛðΣÞ.

TABLE II. The isospin violating decay ratios for the different
pole masses in the two models.

R I: ðþ;þÞ I: ð−;þÞ II: ðþ;þÞ II: ð−;þÞ II: ð−;−Þ
M0;1 0.002 0.002 0.002 0.002
M0;2 0.002 0.014 0.002 0.002 0.002
M0;3 0.002 0.019 0.002 0.002 0.002

M1;1 0.007 0.007
M1;2 0.043 0.007 0.007
M1;3 0.038 0.007 0.007

M2;1 0.002 0.002
M2;2 0.069 0.002 0.002
M2;3 0.048 0.002 0.002

M3;1 0.001 0.001
M3;2 0.092 0.001 0.001
M3;3 0.052 0.001 0.001
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or alternatively,

VII ¼
1

2

2
666664

0 0 −c̃ c̃

0 0 c̃ c̃

−c̃ c̃ g2

E2−m2
0

− g2

E2−m2
0

c̃ c̃ − g2

E2−m2
0

g2

E2−m2
0

3
777775; ðB4Þ

where we insert the J=ψΣ channel based on Eqs. (13)
and (16). One can use the two-step procedure to
determine the three unknown parameters in each model.
The couplings of PΛ

ψs − J=ψΛ and PΛ
ψs − J=ψΣ can be

extracted from the residues of the four-channel T matrix.
The final results have no qualitative difference with
those in Table II.
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