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We study the drag and diffusion coefficients of the charm quark in the deconfined matter produced in the
ultrarelativistic collisions by taking the color string percolation model (CSPM) approach. CSPM, being a
QCD-inspired model, can give us essential information about the hot and dense system produced in
ultrarelativistic collisions. With information on the initial percolation temperature and percolation density,
we estimate the relaxation time (τc), drag coefficient (γ), transverse momentum diffusion coefficient (B0),
and spatial diffusion coefficient (Ds) of a charm quark inside a deconfined medium. Finally, we compare
the obtained results with lattice QCD and with various other theoretical models. Good agreement can be
observed between the results obtained from CSPM and lattice QCD.
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I. INTRODUCTION

Heavy quarks, such as the charm and bottom quarks, can
be used as essential probes to study the initial phase of the
system’s evolution in an ultrarelativistic collision [1–4]. As
the charm and bottom quarks have very high masses
compared to the lighter quarks, they are produced relatively
early in the evolution of the system. The masses of the
heavy quarks are significantly larger than that of the
temperature of quark-gluon plasma (QGP), which means
that the probability of the charm and bottom quarks getting
created or annihilated during the deconfined phase is much
less than that of the lighter quarks and gluons. As a result,
the heavy quarks witness the entire space-time evolution of
the system. These heavy quarks interact with the hot and
dense medium formed in the ultrarelativistic collisions,
because of which their momentum spectra get modified.
However, these interactions do not completely thermalize
heavy quarks with intermediate and high transverse momen-
tum (pT). Thus, they can carry important information about
the initial stages of the expanding fireball.
The energy loss mechanism of the heavy quarks in the

medium is very distinct from that of the lighter quarks. For
light quark jets, the leading mechanism for energy loss is
due to the gluon radiation [5]. On the contrary, the gluon
radiation mechanism will be suppressed for heavy quarks

[6], and their energy loss will be due mainly to the elastic
collisions with the lighter quarks in the medium [7].
Moreover, the energy of a heavy quark is not changed
too much from collisions with a light quark; thus, the
thermalization time of the heavy quark will be substantially
larger than that of the lighter quarks. It is worth mentioning
that the QGP lifetime is estimated to be on the order of 4 to
5 fm=c [8] at the Relativistic Heavy Ion Collider (RHIC).
Similarly, at the Large Hadron Collider (LHC), it is around
10–12 fm=c [9]. On the other hand, the thermalization time
for a charm quark is calculated to be on the order of
10–15 fm=c, and for bottom quarks 25–30 fm=c [7,10,11].
The charm quark interaction with the thermalized lighter
quarks and gluons in the medium will lead to a Brownian
motion, which can be explained by the Fokker-Planck
transport equation. Hence, information about the interaction
of a heavy quark in the deconfined medium is preserved
within its drag and diffusion coefficients, which can be
estimated by solving the Fokker-Planck equation. While
traversing through the medium, the average momentum of
heavy quarks gets modified, which is incorporated into their
drag coefficient. Their momentum distribution is also
broadened and is embedded in their momentum diffusion
coefficient. These coefficients vary with the temperature of
the expanding matter, and, in principle, they can give
essential information about the systems formed in high-
energy collisions.
Apart from the drag and momentum diffusion

coefficients, the spatial diffusion coefficient (Ds) is also
of enormous interest to the scientific community.
Theoretically, the heavy quark spatial diffusion coefficient
has been calculated from perturbative QCD (pQCD) [12]
and also from anti–de Sitter/conformal field theory
(AdS=CFT) correspondence [13]. AdS=CFT calculations
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give the value of 2πTDs ¼ 1 in the strong coupling limit
[14]. As observed in several works in the literature, there
is a minimum for this parameter approaching the AdS=
CFT value near the critical temperature. In Ref. [15],
Scardina et al. estimated the charm quark spatial diffusion
coefficient from D meson spectra at energies available at
RHIC and LHC. The heavy quark momentum and spatial
diffusion coefficient have also been obtained from lattice
QCD by investigating a color electric field correlation
function using Monte Carlo techniques [16]. Recently,
Brambilla et al. reported some progress toward the
computation of a heavy quark momentum diffusion
coefficient from two chromoelectric fields correlator
attached to a Polyakov loop in SUð3Þ gauge theory
[17]. By studying the diffusion coefficient as a function
of temperature, they show that the results from lattice
QCD agree quite well with that of the next-to-leading-
order perturbative results. The effect of viscosity on the
diffusion coefficient has also been studied by taking a
semi-QGP matrix model [18], where the spatial diffusion
coefficient is observed to be decreasing with the increase
in shear and bulk viscosities. In addition, the diffusion of a
D meson in hot and dense hadronic matter has been
studied for both zero and finite baryochemical potential
cases [19]. A strong baryochemical potential dependency
has been observed in the estimation of relaxation time for
a D meson; for higher μB, the relaxation time is observed
to be reduced by a factor of 2 to 3.
It has been observed that the color string percolation

model (CSPM) can qualitatively explain the observed
increase in the relative J=ψ yield with respect to relative
charged-particle multiplicity in pp collisions at

ffiffiffi
s

p ¼
7 TeV [20]. This motivates us to look into heavy flavor
dynamics in the deconfined medium by using the CSPM.
In this work, we study the relaxation time, drag, and
momentum diffusion coefficient of the charm quark, along
with Ds as functions of the initial percolation temperature
by taking the CSPM approach. The paper is organized as
follows. Section II encompasses the CSPM framework
along with the formalism of the drag and diffusion
coefficients of the charm quark. In Sec. III, the results
obtained using the formulation are discussed. Finally,
Sec. IV concludes the findings of this study.

II. FORMULATION

A. Color string percolation model

The color string percolation model is a QCD-inspired,
well-established model to explain the multiparticle produc-
tion in an ultrarelativistic collision [21]. The model has been
used to estimatevarious thermodynamic and transport proper-
ties of the matter formed in ultrarelativistic collisions, and the
results have been found to be consistent with other existing
models, such as lattice QCD [22–24]. In this model, the
production of particles can be understood as a consequence

of color strings stretching between the partons of the target
and the projectile. In transverse space, these strings occupy
some finite area. With an increase in collision energy and the
number of colliding partons, the number of strings grows, and
they start to overlap, forming colored clusters in the transverse
space. A macroscopic cluster appears after a certain critical
string density (ξc), where 50% of the transverse space is
occupied by the clusters. This marks the percolation phase
transition [21], which is shown schematically in Fig. 1.
According to Schwinger’s string breaking mechanism, these
strings stretch and break to produce color-neutral quark and
antiquark pairs. These particles finally hadronize to produce
the final state hadrons [21].
In a 2D percolation theory, the total multiplicity due to an

Ns number of overlapping strings is given as [25]

μNs
=μ1 ¼

XNs

n¼1

ffiffiffi
n

p ðSn=S1Þ; ð1Þ

where n is any integer from 1 toNs, S1 is the transverse area
of a single string given by S1 ¼ πr20, with r0 being the
single string radius ≃0.2 fm, and Sn is the transverse area
occupied by the overlapping strings.
Similarly, for the mean transverse momentum squared,

hp2
Ti, we can write

hp2
Ti=hp2

Ti1 ¼
NsPNs

n¼1

ffiffiffi
n

p ðSn=S1Þ
: ð2Þ

When the strings in the transverse plane are just
touching each other such that Sn ¼ nS1, the total multi-
plicity and the mean transverse momentum squared
changes as μn ¼ nμ1 and hp2

Tin ¼ hp2
Ti1, respectively.

Another possible scenario is that all the strings overlap
perfectly with each other such that Sn ¼ S1. In this case,
we get μn ¼

ffiffiffi
n

p
μ1 and hp2

Tin ¼
ffiffiffi
n

p hp2
Ti1. This gives us

the case where the multiplicity is maximally suppressed
and the mean transverse momentum squared is maximally
enhanced. From this, we can write a relation between
multiplicity and mean transverse momentum squared,
μnhp2

Tin ¼ nμ1hp2
Ti1, which implies conservation of the

total transverse momentum.
Now, assuming the transverse nuclear overlap area to be

S and density ρ, we introduce a dimensionless percolation
density parameter ξ given by [21]

FIG. 1. Percolation of colored strings in the transverse space.
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ξ ¼ ρS1 ¼
NsS1
S

: ð3Þ

In the thermodynamic limit, the number of strings
Ns → ∞ when ξ is fixed, and the distribution of the
overlaps of n strings is Poissonian with a mean of value ξ,

pn ¼
ξn

n!
e−ξ: ð4Þ

From the above expression, the fraction of the total area
occupied by the strings can be given by,X

n¼1

pn ¼ 1 − e−ξ: ð5Þ

Dividing the above equation by ξ, we get the compres-
sion factor. Furthermore, according to the CSPM approach,
the multiplicity becomes damped as a result of overlapping
by the square root of the compression factor, which can be
written as

μn=μ1 ¼ Ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ξ

ξ

s
: ð6Þ

Hence, the damping factor or the color suppression
factor is finally given as [21]

FðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ξ

ξ

s
: ð7Þ

In ultrarelativistic heavy-ion collisions, thermalization
can occur through the Hawking-Unruh effect [26,27],
where fast thermalization happens with the existence of
an event horizon caused by the rapid deceleration of the
colliding nuclei [28]. In the CSPM, the intense color field
inside the large cluster causes deceleration of the qq̄ pair,
which can be perceived as a thermal temperature due to
the Hawking-Unruh effect. This suggests that the radiation
temperature can be determined by the transverse extension
of the color flux tube in terms of the string tension.
The initial temperature of the percolation cluster is

expressed in terms of FðξÞ. The Schwinger distribution
for massless particles can be expressed in terms of p2

T as
[21,29–31]

dn=dp2
T ∼ expð−πp2

T=x
2Þ; ð8Þ

where hx2i is the average value of string tension. As the
chromoelectric field is not constant, the tension of the
macroscopic cluster fluctuates around its mean value.
Owing to these fluctuations, we get a Gaussian distribution
of the string tension that is given as

dn
dp2

T
∼

ffiffiffiffiffiffiffiffi
2

hx2i

s Z
∞

0

dx exp

�
−

x2

2hx2i
�
exp

�
−π

p2
T

x2

�
; ð9Þ

which in turn gives rise to a thermal distribution,

dn
dp2

T
∼ exp

�
−p2

T

ffiffiffiffiffiffiffiffi
2π

hx2i

s �
: ð10Þ

From Eqs. (8) and (10), the initial temperature in terms of
FðξÞ can be expressed as [31–33]

TðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hp2

Ti1
2FðξÞ

s
; ð11Þ

where hx2i ¼ πhp2
Ti1=FðξÞ. By using Tc ¼ 167.7�

2.8 MeV [34,35] and ξc ∼ 1.2 [21], we can get the single
string squared average transverse momentum,

ffiffiffiffiffiffiffiffiffiffiffi
hp2

Ti1
p

¼
207.2� 3.3 MeV. Using this value in Eq. (7), we can get
the initial temperature for different FðξÞ values. With this
information, let us estimate the drag and diffusion coef-
ficients within the CSPM formalism.

B. Drag and diffusion coefficients

To study the interaction of a charm quark with the
thermal quarks inside the deconfined medium, we take
advantage of the Fokker-Planck transport equation, which
can be written as

∂fðt; pÞ
∂t

¼ ∂

∂pi

�
ðAifðt; pÞÞ þ ∂

∂pj ðBijfðt; pÞÞ
�
: ð12Þ

Here, fðt; pÞ is the time evolution phase-space distribution
of charm quarks. The kernels Ai and Bij are given by [19]

Ai ¼
Z

dkωðp; kÞki; ð13Þ

Bij ¼ 1

2

Z
dkωðp; kÞkikj; ð14Þ

where ωðp; kÞ is the collision rate of the charm quark, with
initial momenta p and final momenta (p − k), with the
transferred momenta k. i; j ¼ 1, 2, 3 are the spatial indices.
In the low transverse momentum limit (p → 0), the kernels
reduce to [19]

Ai ¼ γpi; ð15Þ

Bij ¼ B0P⊥
ij þ B1P

k
ij; ð16Þ

where γ is the drag coefficient, B0 is the transverse
momentum diffusion coefficient, and B1 is the longitudinal

momentum diffusion coefficient. Pk
ij and P⊥

ij are the
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longitudinal and transverse projection operators, respec-
tively. This drag and diffusion coefficient definition is valid
only when the transferred energy is small. This is possible in
the case of a charm quark being nonrelativistic. The
NRQCD model assumes the heavy particles to be non-
relativistic, and it describes the inclusive production and
decay of quarkonia along with the S-wave charmonium
production at high transverse momentum [36]. In line with
this, we can assume the charm quark inside the deconfined
medium to be nonrelativistic. Thus, the assumptions of
Eqs. (15) and (16) hold true in this case.
The average momentum of a particle at a given time is

given by [37]

hpi ¼
R∞
−∞ dppfðt; pÞR∞
−∞ dpfðt; pÞ ¼ p0e−

t
τ; ð17Þ

where τ is the relaxation time and p0 is the initial
momentum of the particle. Relaxation time of a quark in
the hot QCD medium is defined as the time accounting for
the exponential decay of the average momentum. In other
words, the average time interval between two successive
collisions can be termed as the relaxation time of the
system. Assuming the velocity of the thermal quarks to be
nearly the speed of light, in natural units we can take the
relaxation time to be equal to the mean free path of the
system. The mean free path (λ) is inversely proportional to
the number density (n) of the system and the scattering
cross section (σ) between the particles [21,33],

λ ¼ 1

nσ
: ð18Þ

In CSPM formalism, the number density is expressed as the
effective number of color sources per unit volume,

n ¼ Nsources

SL
; ð19Þ

where S is the nuclear overlap area and L is the longitudinal
extension of a string ∼1 fm. This string length is chosen
because no new quark-antiquark pairs can form if the
separation between the gluons is less than 1 fm. In addition,
the colliding nuclei are Lorentz contracted, making their
longitudinal dimensions almost negligible. Thus, we take
the lower limit of the string length, which is standard in
CSPM studies.
The number of color sources can be defined as the

transverse area occupied by the strings divided by the area
of an effective string,

Nsources ¼
ð1 − e−ξÞSN
S1FðξÞ

: ð20Þ

Thus, the number density becomes

n ¼ ð1 − e−ξÞ
S1FðξÞL

: ð21Þ

The cross section (σ) can also be expressed as the transverse
area of the effective strings S1FðξÞ. Finally, using Eqs. (18)
and (21) we can write

λ ¼ L
ð1 − e−ξÞ : ð22Þ

Equation (22) can be used to define the relaxation time of
the deconfined medium, τ ¼ λ [38].
Now, for heavier quarks like charm quarks, the particle

dependent relaxation time can be expressed as [39]

τc ¼
mc

T
τ ð23Þ

⇒ τc ¼
mc

T
L

ð1 − e−ξÞ ; ð24Þ

wheremc is the mass of the charm quark,mc ≃ 1.275 GeV.
Owing to the dependency of the relaxation time on the mass
of the particle, at any temperature, we expect the relaxation
time of the charm quark to be significantly higher than
that of the lighter quarks. This in turn affects the elliptic
flow of a charm quark to be smaller than that of the light
hadrons [12,15].
The drag coefficient or drag force (γ), which incorporates

the average momentum change, is inversely related to the
thermal relaxation time of the particle, γ ¼ 1

τc
. From the

Einstein’s relation, the transverse momentum diffusion
coefficient for charm quarks, which accounts for broad-
ening of the final momentum distribution, is related to the
drag coefficient as [40]

B0 ¼ γTmc ð25Þ

⇒ B0 ¼
ð1 − e−ξÞT2

L
: ð26Þ

The diffusion coefficient ðDsÞ in position space can also
be introduced. It can be estimated by starting a particle at
position and time x ¼ 0 and t ¼ 0 and finding the mean
squared position at a later time [37],

hðxðtÞ − xð0ÞÞ2i ¼ 2Dst: ð27Þ

Here, we can see that Ds is the measure of speed of
diffusion in space and is called the “Einstein relation.” In
static limit, the spatial diffusion coefficient is given by the
expression [37,41]

Ds ¼
T
mcγ

ð28Þ
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⇒ Ds ¼
L

ð1 − e−ξÞ : ð29Þ

By taking inputs from the CSPM formalism and using the
above formulation, we have estimated the relaxation time,
drag, and diffusion coefficients of the charm quarks inside
the deconfined medium, which are discussed in Sec. III.

III. RESULTS AND DISCUSSION

To better understand the systems produced in the ultra-
relativistic collisions at RHIC and LHC, we have studied
the relaxation time, drag, and diffusion coefficients of such
matter using the CSPM. The results are contrasted with the
results obtained from various other models. First, the charm
quark relaxation time is plotted as a function of the initial
temperature in Fig. 2. τc signifies the amount of time it
takes for the charm particle to lose its total momentum by
interaction with other quarks and gluons while traversing
through the QGP medium. We observe that the relaxation
time decreases with an increase in initial temperature. At
temperatures nearing the critical value, the relaxation time
of the charm quark is around 10 fm=c. With the rise in
initial temperature the charm quark relaxation time
decreases, and at 300 MeV it becomes about 4 fm=c.
This is comparable with the result obtained in Ref. [12],
where a pQCD approach has been taken considering
resonant particles’ inclusion inside the medium. The charm
quark relaxation time is lower for a denser system, such as
the one formed in most central heavy-ion collisions. In
comparison, τc is relatively higher for a less dense medium,
such as the one formed in high multiplicity pp collisions or
peripheral heavy-ion collisions. This is because the charm
quark will thermalize faster in a denser medium than in a

less dense one due to substantially more interactions in the
medium.
By taking input from the charm quark relaxation time,

we estimate the drag force of the charm quark inside the
medium, which is the inverse of the relaxation time.
Figure 3 shows the drag force or drag coefficient of charm
quark in the deconfined medium as a function of temper-
ature. We observe an increasing trend with an increase in
temperature. This suggests that the drag on the charm quark
in denser systems, such as those produced in most central
heavy-ion collisions, will be more than that in the periph-
eral collisions. For comparison, we have also plotted the
drag force of charm quark estimated from the quasiparticle
model [15] and pQCD [12]. The drag coefficient calculated
from the quasiparticle model is a little higher than the
CSPM estimation, whereas γ obtained from pQCD lies
below the CSPM results. But there is a considerable
agreement between the CSPM and the pQCD results with
the inclusion of resonant particles inside the medium [12].
From Einstein’s relation, the drag and momentum

diffusion coefficients are related by Eq. (25). Figure 4
shows the transverse momentum diffusion coefficient as a
function of temperature. We observe that B0 increases
linearly with an increase in temperature, suggesting that, at
high temperatures, the momentum broadening of the charm
quarks will be higher. We have also plotted the transverse
momentum diffusion coefficient from pQCD to compare
our results. The charm quark momentum diffusion from
CSPM estimation is substantially larger than that of the
pQCD calculation. This momentum diffusion of charm
quarks, in principle, can affect the elliptic flow of the final
state charmed hadrons. It is worth noting that, in the
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FIG. 2. Relaxation time of charm quarks as a function of the
initial percolation temperature. The dotted violet line is from
pQCD estimations with resonant particles [12].
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FIG. 3. Drag coefficient of charm quarks as a function of
temperature. The dashed green line is from the quasiparticle
model [15] and the dotted black and violet lines are from pQCD
estimations without and with the inclusion of resonant particles,
respectively [12].

UNDERSTANDING THE QCD MEDIUM BY THE DIFFUSION OF … PHYS. REV. D 107, 014003 (2023)

014003-5



hadronic medium, D0 meson will diffuse considerably
larger than J=ψ [42]. This essentially results in a sup-
pressed v2 of D0. But, because J=ψ remains largely
undiffused in the hadronic phase, the elliptic flow of
J=ψ will give unfiltered information about the deconfined
phase, making J=ψ a cleaner probe for studying QGP.
Finally, in Fig. 5 we have plotted the spatial diffusion

coefficient as a function of temperature scaled with the

critical temperature. Expressing the transport coefficients in
units of thermal wavelength is very convenient; thus, we
have multiplied a factor of ð2πTÞ, making the diffusion
coefficient dimensionless. This dimensionless quantity can
characterize the coupling strength of the charm quark to the
thermal medium. We have compared our results with
various other results that already exist in the literature,
such as estimations from T-matrix [43], pQCD [12], and
lattice QCD [16,44] calculations. Interesting results have
also been observed from the D meson diffusion in the
hadron gas [19,45]. As the temperature approaches Tc, the
D meson diffusion decreases rapidly and is almost com-
parable with that of the charm quark diffusion values at the
critical temperature, showing almost a smooth transition
from hadronic to partonic phase. From AdS=CFT calcu-
lations, the shear viscosity-to-entropy density ratio gives
the minimum value of 1=4π [46]. When we study the
change of η=s with temperature [22], we observe that η=s
decreases with an increase in temperature and becomes
minimum at T ¼ Tc, and then again starts increasing with
temperature. In addition, from the study of ζ=s as a function
of temperature [22], we observe that at T ¼ Tc the bulk
viscosity-to-entropy density becomes minimum and almost
close to zero. Similarly, AdS=CFT calculation gives a
minimum of Dsð2πTÞ ∼ 1 [14] at the critical temperature.
In Fig. 5 we can see that the value of Dsð2πTÞ approaches
this minima near Tc. Furthermore, we observe good agree-
ment between the CSPM and other model estimations.
This behavior of the spatial diffusion coefficient can be

understood in terms of the interaction strength in the
system. In the hadronic phase, at a lower temperature,
the interaction will be less; thus, the spatial diffusion
coefficient is higher. As the temperature increases and
we go toward the critical temperature, the interaction also
increases, resulting in lower values ofDsð2πTÞ. At T ¼ Tc,
the interaction will be maximum due to the onset of the
QGP medium, which corresponds to the minimum of
Dsð2πTÞ. After this, the spatial diffusion coefficient
increases again with an increase in temperature. This is
because, at a higher temperature, the patrons will be
asymptotically free, resulting in a lower interaction
strength.

IV. CONCLUSION

In this work, for the first time, we study the relaxation
time, drag, and diffusion coefficients of charm quark in the
deconfined medium by taking the color string percolation
approach. Our result is comparable with the pQCD
approach, where the resonant heavy-light quark inter-
actions are introduced. The observations from the spatial
diffusion coefficient state that there is a minimum at the
phase transition. We observe that our findings from the
CSPM agree with the results obtained from lattice QCD for
the spatial diffusion coefficient.
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FIG. 4. Transverse momentum diffusion coefficient of charm
quark as a function of temperature. The dotted black and violet
lines are from pQCD estimations without and with the inclusion
of resonant particles, respectively [12].
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FIG. 5. The spatial diffusion coefficient as a function of
temperature scaled with critical temperature. The red and green
bands are the results obtained from T-matrix calculations for a U
pot and an F pot, respectively [43]. The black dotted line is from
pQCD calculations [12], the triangle [16], and rectangle [44]
markers are from lattice QCD estimations. The violet dashed line
[45] and the dash-dotted green line [19] are the results from D
meson diffusion in a hadron gas.
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In view of ALICE Run 3 going toward high luminosity,
the heavy flavor sector will be of particular interest. With
higher statistics, the study of hadron production containing
charm and bottom quarks can be done with high precision
for a broad multiplicity range. Our work, along with other
theoretical works, will hopefully help us to understand
heavy flavor dynamics in ultrarelativistic collisions as case
studies.
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