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Using a Poincaré-covariant quarkþ diquark Faddeev equation, we provide structural information on the
four lightest ðI; JPÞ ¼ ð1

2
; 3
2
∓Þ baryon multiplets. These systems may contain five distinct types of diquarks;

but in order to obtain reliable results, it is sufficient to retain only isoscalar-scalar and isovector-axialvector
correlations, with the latter being especially important. Viewed with low resolution, the Faddeev equation
description of these states bears some resemblance to the associated quark model pictures; namely, they
form a set of states related via orbital angular momentum excitation: the negative parity states are primarily
P-wave in character, whereas the positive parity states are D wave. However, a closer look reveals far
greater structural complexity than is typical of quark model descriptions, with P, D, S, F waves and
interferences between them all playing a large role in forming observables. Large momentum transfer
resonance electroexcitation measurements can be used to test these predictions and may thereby provide
insights into the nature of emergent hadron mass.

DOI: 10.1103/PhysRevD.107.014002

I. INTRODUCTION

In working to understand the emergence of baryon mass
and structure from quantum chromodynamics (QCD), it is
crucial to employ a framework that ensures Poincaré
invariance of observables [1] and natural to study color-
singlet three-quark six-point Schwinger functions [2–4].
Baryons appear as poles in such Schwinger functions: the
pole location reveals the mass (and width) of a given
baryon; and the pole residue is that baryon’s Poincaré-
covariant bound-state wave function. The nucleon and its
excited states appear in the isospin I ¼ 1

2
channel. Focusing

on the proton because it is Nature’s only stable hadron, then
the lowest-mass spectral feature that can be associated with
the ðI; IzÞ ¼ ð1

2
;þ 1

2
Þ six-point Schwinger function is an

isolated pole on the real axis. Owing to confinement [5–7],
there is no three-quark continuum; but the related spectral
functions exhibit additional structures associated with
proton resonances that are attached to poles in the complex
plane [8–11].

Working with the appropriate Schwinger function and
using standard techniques, one can derive a Poincaré-
covariant Faddeev-like equation whose solution provides
the masses and wave functions of all baryons with the
Poincaré-invariant quantum numbers that characterise the
channel under consideration. For instance, the proton and
all its radial excitations appear as positive parity solutions
of a Faddeev equation derived from the J ¼ 1

2
Schwinger

function. The parity partners of these states arise as the
negative parity solutions. Today it is possible to develop a
tractable formulation of such problems using the leading-
order (rainbow-ladder, RL) truncation in a systematic
scheme developed for the continuum bound-state problem
[12–15]. The resulting equations have been solved for
many baryons [16–21]. Although RL truncation does not
produce widths for the states, sensible interpretations of the
results are available [22–24], viz. the solutions are under-
stood to represent the dressed-quark core of the considered
baryon, which is subsequently dressed via meson-baryon
final-state interactions [25–29].
An alternative approach to the Poincaré-covariant

Faddeev equation exploits the fact that any interaction
which provides a good description of ground-state color-
singlet mesons also generates strong color-antitriplet cor-
relations between any two dressed quarks contained within
a hadron [11]. This understanding leads to the quark–plus–
dynamical-diquark picture of baryon structure, formulated
elsewhere [30–33] and illustrated in Fig. 1. Here, the kernel
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is built using dressed-quark and nonpointlike diquark
degrees-of-freedom, with binding energy stored within
the diquark correlation and additionally generated by the
exchange of a dressed-quark, which emerges as one
diquark breaks up and is absorbed into formation of
another. In general, many diquark correlations are possible:
isoscalar-scalar, ðI; JP ¼ 0; 0þÞ; isovector-axialvector; iso-
scalar-pseudoscalar; isoscalar-vector; and isovector-vector.
Within a given system, channel dynamics determines the
relative strengths of these correlations.
The Faddeev equation in Fig. 1 has been used to study

the structure of the proton and its lightest JP ¼ 1
2
�

excitations [34]. The results indicate that scalar and
axialvector diquarks are dominant in the proton and
Roper resonance; the associated rest-frame wave functions
are primarily S-wave in character; and the Roper resonance
is, at heart, the proton’s lightest radial excitation [35–37].
The predicted presence of axialvector diquarks within the
nucleon has far-reaching implications for, inter alia, form
factors and structure functions [38–44].
Regarding JP ¼ 1

2
− states, accurate estimates of their

masses are obtained by keeping only axialvector diquarks;
odd-parity diquarks appear with material strength in the
bound-state amplitudes, affecting electroproduction form
factors [45]; the rest-frame wave functions are dominated
by P-waves, but contain noticeable S-wave components;
and the first excited state, Nð1650Þ1

2
−, has little of the

appearance of a radial excitation of the Nð1535Þ1
2
−.

So long as rest-frame orbital angular momentum is
identified with that existing between dressed-quarks and -
diquarks, there are some similarities here with quark model
descriptions of JP ¼ 1

2
� systems. Notwithstanding that, it

should be stressed that in contrast to quark model expect-
ations [46], the negative parity states are not simply angular-
momentum excitations of the JP ¼ 1

2
þ ground-states. It is

worth highlighting here that, inter alia, any separation of a
system’s total angular momentum into a sum of constituent
orbital angular momentum and spin, J ¼ Lþ S, is frame
dependent; hence, in quantum field theory, there is no direct

connection between parity—a Poincaré invariant quantity—
and orbital angular momentum.
The Fig. 1 Faddeev equation approach was adapted to

the analogous low-lying Δ-baryons in Ref. [47], revealing
that although these states may contain isovector-axialvector
and isovector-vector diquarks, the latter contribute little.
The JP ¼ 3

2
þ systems are the simpler, with some features

being similar to quark model pictures, e.g., their dominant
rest-frame orbital angular momentum component is S-
wave and theΔð1600Þ3

2
þ looks much like a radial excitation

of the Δð1232Þ3
2
þ. The JP ¼ 3

2
− states are more compli-

cated. In fact, the Δð1940Þ3
2
− expresses little of the

character of a radial excitation of the Δð1700Þ3
2
−; and

although the rest-frame wave function of the latter is largely
P-wave, matching quark model expectations, this is not
true of the Δð1940Þ3

2
−, whose rest-frame wave function is

mostly S-wave.
An entirely new landscape opens to view when one

considers ðI; JPÞ ¼ ð1
2
; 3
2
∓Þ baryons. Drawn using the quark

model, employing standard notation for SU(6) assign-
ments, these states are interpreted as follows ([48], Sec. 15):

(i) Nð1520Þ3
2
− … ð70; 1−1 Þ, with constituent-quark

orbital angular momentum being L ¼ 1 and the
sum of the three constituent-quark spins being
S ¼ 1

2
;

(ii) Nð1700Þ3
2
− … ð70; 1−1 Þ, L ¼ 1, S ¼ 3

2
;

(iii) Nð1720Þ3
2
þ … ð56; 2þ2 Þ, L ¼ 2, S ¼ 1

2
;

(iv) Nð1900Þ3
2
þ … ð70; 2þ2 Þ, L ¼ 2, S ¼ 3

2
;

One sees the parity-partner relationships (i), (iii) and (ii),
(iv); but no state is related to another as radial excitation.
Different structural pictures can emerge, e.g., in relativistic
potential models [49,50] and light-front holographic
descriptions of hadrons [51].
In quantum field theory, parity partners are special

because all differences between them can be attributed
to chiral symmetry breaking; and in the light-quark sector,
such symmetry breaking is almost entirely dynamical.
Dynamical chiral symmetry breaking is a corollary of
emergent hadron mass (EHM) [52–58]; so, linked with
confinement in ways that are not yet fully elucidated.
Consequently, experiments that can test predictions made
for structural differences between parity partners in the
hadron spectrum are valuable [59–61]. Herein, therefore,
we present the first predictions for the structure of low-
lying ð1

2
; 3
2
∓Þ baryons based on the Poincaré-covariant

Faddeev equation in Fig. 1, the interpretation and validation
of which have the potential to shed new light on expres-
sions of EHM in hadron observables.
Our treatment of ð1

2
; 3
2
∓Þ-baryon bound-state problems is

outlined in Sec. II. This sketch is sufficient because details
are provided elsewhere, e.g., Refs. [24,34,47,62].
Section III reports predictions for the masses and diquark
content of ð1

2
; 3
2
∓Þ baryons. A detailed picture of ð1

2
; 3
2
∓Þ

wave functions and interrelationships is drawn in Sec. IV,

FIG. 1. Quark þ diquark Faddeev equation, a linear integral
equation for the Poincaré-covariant matrix-valued function ψ ,
the Faddeev amplitude for a baryon with total momentum
Q ¼ lq þ ld ¼ kq þ kd. ψ describes the relative momentum
correlation between the dressed-quarks and -diquarks. Legend.
Shaded rectangle: Faddeev kernel; single line: dressed-quark
propagator, Sðq ¼ ld − kqÞ; Γdðk;KÞ: diquark (d) correlation
amplitude; and double line: diquark propagator, ΔdðKÞ.
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with particular attention paid to a rest-frame decomposition
of their orbital angular momentum. Section V presents a
summary and perspective.

II. BOUND STATE EQUATIONS

In solving for the masses and structure of ð1
2
; 3
2
∓Þ

baryons, we aim for unification with existing analyses of
ð1
2
; 1
2
�Þ, ð3

2
; 3
2
∓Þ states [34,47]. Hence, insofar as possible,

the formulations therein are preserved, e.g.: we assume
isospin symmetry throughout; the diquark correlation
amplitudes, Γd, are similar; the light-quark and diquark
propagators, S, Δd, are unchanged—see Ref. [47]
(Appendix); and the effective masses of the relevant
diquark correlations are (in GeV)

m½ud�0þ mfuug1þ m½ud�0− m½ud�1−
0.8 0.9 1.3 1.4

: ð1Þ

The mass splitting between diquarks of opposite parity is
commensurate with that in the ρ-a1 complex [48].
Moreover, following Ref. [47], we emulate Ref. [63]
(Sec. 4.1.4) in electing not to include the gDB channel-
coupling suppression-factor discussed in Ref. [34] (Sec. II.
E) because, as will become apparent, negative parity
diquarks play a minor role in ð1

2
; 3
2
∓Þ baryons. Finally,

we omit isovector-vector diquark correlations because,
calculated as explained elsewhere [[34] Sec. II C], using
the masses in Eq. (1), their coupling into all systems is
negligible, e.g., it is just 24% of the isoscalar-vector
strength and 1% of that associated with the isoscalar-scalar
correlation.
For ð1

2
; 3
2
PÞ baryons represented as quarkþ diquark

bound states, the full Faddeev amplitude has the form

ψ ¼ ψ1 þ ψ2 þ ψ3; ð2Þ

where the subscript identifies that quark which is not
participating in a diquark correlation and ψ1;2 are obtained
from ψ3≕ψ by a cyclic permutation of all quark labels
[30]. Now explicating Fig. 1, using a compact notation, the
Faddeev equation takes the following form:

ψd
ðμÞρðk;QÞ

¼
Z

d4l
ð2πÞ4

X
d0

Kd;d0
ðμνÞ ðk;l;QÞψd0

ðνÞρðl;QÞ; ð3Þ

where Q ¼ ðk1 þ k2Þ þ k3 ¼ kd þ kq is the total momen-
tum of the baryon, Q2 ¼ Q̂2M2 ¼ −M2, M is the baryon’s
mass; k ¼ ð−kd þ 2k3Þ=3; d runs over the five types of
diquark correlations described above; ψd

ðμÞρðk;QÞ are the

associated components of the amplitude (the indices μ, ν
are only present for pseudovector and vector diquarks); and

the index ρ expresses the Rarita-Schwinger character of the
solution.
The kernel in Eq. (3) realizes the processes in the shaded

part of Fig. 1, viz. diquark breakup, quark propagation, and
diquark reformation. It forges links between all diquark
correlations in the complete amplitude and has the follow-
ing structure:

Kd;d0
ðμνÞ ðk;l;QÞ¼Γd0

ðαÞðkq−ld=2;ldÞ
×STðqÞΓ̄d

ðμÞðlq−kd=2;−kdÞSðlqÞΔd0
ανðldÞ;

ð4Þ

where kq ¼ kþQ=3, lq ¼ lþQ=3, ld ¼ −lq þQ; and
“T” denotes matrix transpose.
Expanding further and becoming more specific, focusing

on the positive charge state of a given ð1
2
; 3
2
PÞ baryon,

without loss of generality, the left-hand side of Eq. (3) is

ψPðki; αi; σiÞ ¼ ½Γ0þðk̄; kdÞ�α1α2σ1σ2
Δ0þðkdÞ½SP

ρ ðk;QÞuρðQÞ�α3σ3
þ ½tjΓ1þ

μ �Δ1þ
μν ½AjP

νρ ðk;QÞuρðQÞ�
þ ½Γ0− �Δ0− ½PP

ρ ðk;QÞuρðQÞ�
þ ½Γ1−

μ �Δ1−
μν ½VP

νρðk;QÞuρðQÞ�; ð5Þ

where ðki; σi; αiÞ are the momentum, spin and isospin
labels of the quarks constituting the bound state; k̄ ¼
ðk1 − k2Þ=2; tj, j ¼ fþ; 0g, are axialvector diquark isospin
matrices, with j summed in Eq. (5); and uρðQÞ is a Rarita-
Schwinger spinor, in which we have here suppressed the
spin-projection label.
The matrix-valued functions that are contracted with the

Rarita-Schwinger spinor in Eq. (5) can be expanded as
follows:

SP
ρ ðk;QÞ ¼

X2
i¼1

vi
0þðk;QÞGPX i

ρðk;QÞ; ð6aÞ

AjP
νρ ðk;QÞ ¼

X8
i¼1

vji
1þðk;QÞGPYi

νρðk;QÞ; ð6bÞ

PP
ρ ðk;QÞ ¼

X2
i¼1

vi
0−ðk;QÞG−PX i

ρðk;QÞ; ð6cÞ

VP
νρðk;QÞ ¼

X8
i¼1

vi
1−ðk;QÞG−PYi

νρðk;QÞ; ð6dÞ

where fvðjÞi
JP ðk;QÞg are scalar functions, Gþð−Þ ¼ IDðiγ5Þ

and, with Tμν ¼ δμν þ Q̂μQ̂ν, γ⊥μ ¼ Tμνγν, k⊥μ ¼ Tμνkν,
k̂⊥μ k̂⊥μ ¼ 1, the Dirac-matrix basis is
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X1
ρðk;QÞ ¼ i

p
3k̂⊥ρ γ5; ð7aÞ

X2
ρðk;QÞ ¼ iγ · k̂⊥X1

ρðk;QÞ; ð7bÞ

Y1
νρðk;QÞ ¼ δνρID; ð7cÞ

Y2
νρðk;QÞ ¼ ip

5
½2γ⊥ν k̂⊥ρ − 3δνργ · k̂

⊥�; ð7dÞ

Y3
νρðk;QÞ ¼ −iγ⊥ν k̂⊥ρ ; ð7eÞ

Y4
νρðk;QÞ ¼ p

3Q̂νk̂
⊥
ρ ; ð7fÞ

Y5
νρðk;QÞ ¼ 3k̂⊥ν k̂⊥ρ − δνρ − γ⊥ν k̂⊥ρ γ · k̂⊥; ð7gÞ

Y6
νρðk;QÞ ¼ γ⊥ν k̂⊥ρ γ · k̂⊥; ð7hÞ

Y7
νρðk;QÞ ¼ −iγ · k̂⊥Y4

νρðk;QÞ; ð7iÞ

Y8
νρðk;QÞ ¼ ip

5
½δνργ · k̂⊥ þ γ⊥ν k̂⊥ρ − 5k̂⊥ν k̂⊥ρ γ · k̂⊥�: ð7jÞ

Moreover, with ΛþðQÞ ¼ ðM − iγ ·QÞ=ð2MÞ,

1

2M

X3=2
r¼−3=2

uρðQ; rÞūμðQ; rÞ ¼ ΛþðQÞRρμ; ð8aÞ

Rρμ ¼ δρμID−
1

3
γργμþ

2

3
Q̂ρQ̂μID−

i
3
½Q̂ργμ− Q̂μγρ�: ð8bÞ

Details of our Euclidean metric conventions are pre-
sented elsewhere ([64], Appendix B).
Working with the amplitude in Eq. (5), straightforward

algebra now translates the Fig. 1–Eq. (3) Faddeev equation
into a linear, homogeneous matrix equation for the coef-
ficient functions that may figuratively be written as follows:

2
666664

SP
ρ ðk;QÞ

AjP
μρðk;QÞ

PP
ρ ðk;QÞ

VP
μρðk;QÞ

3
777775
uρ

¼ 2

Z
d4l
ð2πÞ4 ½K

ðjmÞ
ðμνÞ ðk;l;QÞ�

2
666664

SP
ρ ðk;QÞ

AmP
νρ ðk;QÞ

PP
ρ ðk;QÞ

VP
νρðk;QÞ

3
777775
uρ; ð9Þ

in which, e.g., working from Eq. (4), the Aj
μρ–Am

νρ entry in
the kernel matrix is

Kjm
μν ðk;l;QÞ¼ tjΓ1þ

α ðkq−ld=2;ldÞSTðld−kqÞ
× tmΓ̄1þ

μ ðlq−kd=2;−kdÞSðlqÞΔ1þ
αν ðldÞ; ð10Þ

where the isospin matrices are

tþ ¼ 1p
2
ðτ0 þ τ3Þ; t0 ¼ τ1; ð11Þ

τ0 ¼ diag½1; 1�, fτiji ¼ 1; 2; 3g are the usual Pauli matri-
ces. As highlighted above, the kernel matrix draws con-
nections between all diquark correlations in the complete
amplitude, Eq. (5), e.g., S → S;A;P;V; and when written

explicitly for all scalar functions in Eq. (6), ½KðjmÞ
ðμνÞ � is a

28 × 28 matrix. This is reduced to 20 × 20 if one exploits
isospin symmetry for the axialvector diquarks.
The diquark correlation amplitudes are explained in

Ref. [34] [Eq. (1)], but it is worth repeating some of the
information here:

Γ0þðk;KÞ ¼ g0þiγ5Ciτ2H⃗F ðk2=ω2
0þÞ; ð12aÞ

tjΓ1þ
μ ðk;KÞ ¼ ig1þγμCtjH⃗F ðk2=ω2

1þÞ; ð12bÞ

Γ0−ðk;KÞ ¼ g0−Ciτ2H⃗F ðk2=ω2
0−Þ; ð12cÞ

Γ1−
μ ðk;KÞ ¼ g1−γμγ5Ciτ2H⃗F ðk2=ω2

1−Þ; ð12dÞ

where C ¼ γ2γ4 is the charge conjugation matrix; H⃗ ¼
fiλ7c;−iλ5c; iλ2cg, with fλkc; k ¼ 1;…; 8g denoting Gell-
Mann matrices in color space, expresses the diquarks’
color antitriplet character; and F ðzÞ ¼ ½1 − expð−zÞ�=z.
The correlation widths in Eq. (12) are defined by the related
masses ([34], Eq. (5)): ω2

JP ¼ m2
JP=2. The amplitudes are

canonically normalized ([34], Eq. (3)), which entails:

g0þ ¼ 14.8; g1þ ¼ 12.7; g0− ¼ 6.59;

gI¼0
1− ¼ 3.27; gI¼1

1− ¼ 1.59: ð13Þ

It is the coupling-squared which appears in the Faddeev
kernel, so one should expect negative-parity diquarks to
play a limited role in the Faddeev amplitudes.
Using the information above, and standard diquark and

quark dressed-propagators—Ref. [34] [Eq. (4) and
Appendix A], the masses and Faddeev amplitudes of the
ground- and first-excited state in both the positive- and
negative-parity ðI; JÞ ¼ ð1

2
; 3
2
Þ channels can be obtained

straightforwardly by solving the Faddeev equation—Fig. 1,
Eq. (9)—using readily available software [65,66].
Given the importance of orbital angular momentum in

the discussion of ð1
2
; 3
2
PÞ baryons and since it is only when

working with the wave function that meaningful angular
momentum decompositions become available, we record
here that the (unamputated) Faddeev wave function is
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recovered from the amplitude by reattaching the quark and
diquark propagator legs independently and appropriately to
each term in Eq. (5). Namely, one multiplies Eq. (9) from
the left by

SðkqÞ

2
666664

Δ0þðkdÞ 0 0 0

0 Δ1þ
μ0μðkdÞ 0 0

0 0 Δ0−ðkdÞ 0

0 0 0 Δ1−

μ0μðkdÞ

3
777775

ð14Þ

to obtain a modified equation for the following wave
function:

ΨPðki; αi; σiÞ ¼ ½Γ0þðk̄;KÞ�α1α2σ1σ2
½SP

ρ ðk;QÞuρðQÞ�α3σ3
þ ½Γ1þj

μ �½AjP
μρðk;QÞuρðQÞ�

þ ½Γ0− �½PP
ρ ðk;QÞuρðQÞ�

þ ½Γ1−
μ �½VP

μρðk;QÞuρðQÞ�; ð15Þ

where, e.g., AjP
μρðk;QÞ ¼ SðkqÞΔ1þ

μν ðkdÞAjP
νρ ðk;QÞ. Each of

the functions here has an expansion analogous to that in
Eq. (6):

SP
ρ ðk;QÞ ¼

X2
i¼1

wi
0þðk;QÞGPX i

ρðk;QÞ; ð16aÞ

AjP
νρ ðk;QÞ ¼

X8
i¼1

wji
1þðk;QÞGPYi

νρðk;QÞ; ð16bÞ

PP
ρ ðk;QÞ ¼

X2
i¼1

wi
0−ðk;QÞG−PX i

ρðk;QÞ; ð16cÞ

VP
νρðk;QÞ ¼

X8
i¼1

wi
1−ðk;QÞG−PYi

νρðk;QÞ: ð16dÞ

At this point, one may make the rest-frame angular
momentum associations listed in Table I.

III. FADDEEV EQUATION SOLUTIONS

Solving the Faddeev equation with the full amplitude in
Eq. (5), one obtains the following masses (in GeV):

Nð1520Þ3
2
− Nð1700Þ3

2
− Nð1720Þ3

2
þ Nð1900Þ3

2
þ

1.68ð8Þ 1.82ð9Þ 1.78ð8Þ 2.05ð7Þ ; ð17Þ

where the indicated uncertainties express the result of a�5%
change in the diquark masses, Eq. (1). As explained else-
where [34,35,47,67,68], the kernel in Fig. 1 omits all con-
tributions that may be linked with meson-baryon final-state
interactions, i.e., the terms which transform a bare-baryon
into the observed state after their inclusion, e.g., via dynami-
cal coupled channels calculations [25–29]. The Faddeev
amplitudes andmasses we obtain should therefore be viewed
as describing the dressed-quark core of the bound-state, not
the completely dressed, observable object [22–24]. That
explains why the masses are uniformly too large.
Herein, for comparison with experiment, following

Refs. [34,47,63], we subtract the mean value of the
difference between our calculated masses and the real part
of the related empirical pole-positions: δ

N3=2

MB ¼ 0.13 GeV.
The resulting comparison is displayed in Fig. 2. The
calculated level orderings and splittings match well with
experiment, just as they do in analogous comparisons
drawn from the results in Refs. [34,47], which are also
shown. These predictions might be used to assist in refining
dynamical coupled channels models by providing con-
straints on the size of meson-baryon final-state interactions
in distinct JP channels.
In Table II we list the mass obtained for each ð1

2
; 3
2
∓Þ

system when the Faddeev equation is solved by keeping
only one type of diquark correlation, then two, then three,
and then all. Evidently, in each case, once the axialvector
and scalar diquarks are included, the mass is practically
unchanged by including the other correlations. This is
highlighted by Table II, which lists the change in a baryon’s
mass generated by the progressive inclusion of additional
diquark correlations, in the order 1þ → 1þ; 0þ → 1þ;
0þ; 0− → 1þ; 0þ; 0−1−. A pictorial representation of these
results is provided in Fig. 3.
A broadly consistent yet slightly different picture

appears when one considers baryon Faddeev amplitudes.
Defining

nA ¼
X
j¼þ;0

X8
i¼1

Z
d4k
ð2πÞ4 jv

ji
1þðk2; k ·QÞj2; ð18Þ

with analogous expressions for nS, nP , nV , then the ratios

FC ¼ nC=nT ; ð19Þ

where C ¼ S, A, P, V and nT ¼ nS þnA þnP þnV ,
provide an indication of the relative strength of each

TABLE I. Working with the wave function defined in Eq. (15),
decomposed as in Eq. (16), and projected into the rest frame, one
has the tabulated J ¼ 3

2
¼ Lþ S angular momentum decompo-

sition. The last row lists the associated spectroscopic label, with
the J ¼ 3

2
subscript suppressed.

L 0 1 1 2 2 3
S 3

2
3
2

1
2

3
2

1
2

3
2

ΨP w1
1� w2

1� w1
0� , w

3;4
1�

w5
1� w2

0� , w
6;7
� w8

1�
4S 4P 2P 4D 2D 4F
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diquark correlation in the baryon Faddeev amplitude. The
calculated results are listed in Table II and drawn in Fig. 3.
Axialvector diquarks dominate the Faddeev amplitude in
all cases. This is partly because each baryon contains two
axialvector isospin projections, whereas all other diquarks
are isoscalar, and axialvector diquarks have eight distinct

contributing spinor structures. Nevertheless, channel
dynamics is playing a role because the same statements
are true for the proton and yet the proton amplitude is
dominated by the scalar diquark ([47], Fig. 2). The scalar

FIG. 2. Real part of empirical pole position for each identified baryon [48] (red circle) compared with: calculated masses in Eq. (17)
(gold asterisks) after subtracting δ

N3=2

MB ¼ 0.13 GeV from each; calculated masses in Ref. [34] [Eq. (15)] (teal diamonds) after subtracting

δ
N1=2

MB ¼ 0.30 GeV; and calculated masses in Ref. [47] (Table II) (green five-pointed stars) after subtracting δ
Δ3=2

MB ¼ 0.17 GeV. All theory
values are drawn with an uncertainty that reflects a �5% change in diquark masses, Eq. (1).

TABLE II. (A) Baryon masses (in GeV) calculated using the
indicated diquark correlations: all ¼ 1þ; 0þ; 0−; 1−. (B) Change
in a baryon’s mass generated by the progressive inclusion of
additional diquark correlations, in the order listed. (C) Fraction of
a given baryon’s Faddeev amplitude (FA) contributed by the
different diquark correlations, defined in connection with
Eq. (19). (In (B) and (C), the sum of entries in each column
is unity.).

A. mass Nð1520Þ3
2
− Nð1700Þ3

2
− Nð1720Þ3

2
þ Nð1900Þ3

2
þ

1þ 1.84 2.06 1.90 1.98
0þ 1.99 2.22 1.98 2.15
0− 2.34 2.59 2.49 2.61
1− 2.49 2.72 2.44 2.62
1þ; 0þ 1.68 1.88 1.78 2.04
1þ; 0þ; 0− 1.68 1.88 1.78 2.05
All 1.68 1.82 1.78 2.05

B. mass % Nð1520Þ3
2
− Nð1700Þ3

2
− Nð1720Þ3

2
þ Nð1900Þ3

2
þ

1þ 91.6 89.0 94.1 96.9
& 0þ 8.3 8.0 5.8 2.8
& 0− 0.1 0.2 0.1 0.3
& 1− 0.0 2.8 0.0 0.0

C. FA % Nð1520Þ3
2
− Nð1700Þ3

2
− Nð1720Þ3

2
þ Nð1900Þ3

2
þ

1þ 70.1 58.7 50.0 71.7
0þ 20.3 7.4 44.4 0.0
0− 6.2 3.4 3.6 0.0
1− 3.4 30.5 2.0 28.3

(a)

(b)

FIG. 3. (a) Fractional contribution to mass of ð1
2
; 3
2
PÞ baryons as

additional diquark correlations are progressively included.
(b) Fraction of a given ð1

2
; 3
2
PÞ baryon’s Faddeev amplitude

contributed by distinct diquark correlations, defined in connec-
tion with Eq. (19).
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diquark is also prominent in Nð1720Þ3
2
þ, which is the parity

partner of the Nð1520Þ3
2
−; so, the differences between their

amplitude fractions owe to EHM. It is interesting that the
amplitudes of the other two parity partners, viz. Nð1700Þ3

2
−,

Nð1900Þ3
2
þ, both contain visible vector diquark fractions,

when defined according to Eq. (19), and especially notable
that the latter contains practically no scalar or pseudoscalar
diquarks.
Such structural features can be tested in measurements

of resonance electroexcitation at large momentum trans-
fers [10,59,69,70]. In this connection, Nð1520Þ3

2
− electro-

couplings are already available on the momentum transfer
domain Q2

γ ≲ 5.5m2
p [59,69–73], where mp is the proton

mass. Regarding the other states mentioned here, extraction
of electrocouplings on Q2

γ ≲ 5.5m2
p is underway and

results are expected within two years [73]. Future experi-
ments will collect data that can be used to determine
the electrocouplings of most nucleon resonances out to
Q2

γ ≈ 10m2
p [10,70]. This information should greatly assist

in revealing measurable expressions of EHM [52–56].

IV. ORBITAL ANGULAR MOMENTUM

Given quark model expectations for ð1
2
; 3
2
∓Þ baryons,

sketched in Sec. I notes (i)–(iv), it is especially interesting
to consider the quarkþ diquark baryon rest frame orbital
angular momentum, Lqd, decomposition obtained from
their Poincaré-covariant wave functions.
One means by which to measure the strength of the

various Lqd components is to solve the Faddeev equation
for the wave function in the rest frame with first only one
orbital angular momentum component and then steadily
increase the Lqd complexity: (i) P-wave only; (ii) S-wave
only; (iii) D-wave only; (iv) F-wave only; (v) Pþ S-wave
only; etc. The results are presented in Table III and depicted
in Fig. 4.
It is worth highlighting some insights revealed by

Table III.
(i) For each state, a solution is obtained using only one

partial wave—P, D, S, or F, and with any subset of
the complete array of partial waves. Evidently, the
quark-exchange kernel in Fig. 1 is very effective at
binding ð1

2
; 3
2
∓Þ baryons, just as it is in every other

channel considered hitherto [34,47].
(ii) Considering only single partial waves, then that

which produces the lowest mass should serve as a
good indicator of the dominant orbital angular
momentum component in the state. This gross
measure leads to the following assignments.
Nð1520Þ3

2
− and Nð1700Þ3

2
− are largely P wave in

character; and Nð1720Þ3
2
þ and Nð1900Þ3

2
þ are

largely D wave states. Consequently, drawn with
this broad-brush, the orbital angular momentum
structure of each ð1

2
; 3
2
þÞ baryon matches that which

is typical of quark models, so long as the orbital
angular momentum is identified with that of a
quarkþ diquark system.

Notwithstanding these remarks, a more compli-
cated structural picture will be revealed below.

The link with quark models may be augmented by
considering the zeroth Chebyshev projection of the

TABLE III. (A) Calculated masses of the low-lying ð1
2
; 3
2
∓Þ

baryons as obtained by stepwise including different orbital
angular momentum components in the rest-frame Faddeev wave
function. The italicized entries indicate the lowest mass obtained
for the given state when solving with a single partial wave.
(B) Change in the baryon’s mass generated by progressive
inclusion of additional orbital angular momentum components
in its rest-frame Faddeev wave function. This information is also
depicted in Fig. 4. Naturally, the sum of entries in each column is
unity. (All masses in GeV.).

(A) mass Nð1520Þ3
2
− Nð1700Þ3

2
− Nð1720Þ3

2
þ Nð1900Þ3

2
þ

P 1.70 1.81 1.97 2.11
S 2.02 2.20 1.88 2.15
D 2.04 2.14 1.77 2.05
F 2.05 2.28 2.36 2.50
PS 1.70 1.81 2.12 2.13
PD 1.67 1.81 1.80 1.97
SD 2.14 2.18 1.77 1.89
PSD 1.68 1.81 1.80 2.05
PSDF 1.68 1.82 1.78 2.05

(B) mass % Nð1520Þ3
2
− Nð1700Þ3

2
− Nð1720Þ3

2
þ Nð1900Þ3

2
þ

P 98.4 99.5 1.8 3.7
S 0.1 0.4 0.2 3.6
D 1.5 0.1 97.2 92.7
F 0.0 0.0 0.8 0.0

FIG. 4. Pictorial representation of Table III. Mass fraction
contribution from each rest frame partial wave in the baryon
wave function, calculated as follows: Nð1520Þ3

2
−, Nð1700Þ3

2
−—

begin with P, then add D, S, F; and Nð1900Þ3
2
þ, Nð1900Þ3

2
þ—

begin with D, then add P, S, F.
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dominant component of a baryon’s Faddeev wave func-
tion,1 as measured by the italicized entries in Table III, viz.

wjðk2Þ ¼ 2

π

Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
wjðk2; x

ffiffiffiffiffiffiffiffiffiffi
k2Q2

p
Þ; ð20Þ

with the terms identified using Eq. (16) and Table I of
the Appendix. The results, drawn in Fig. 5, highlight
that these amplitudes do not exhibit an obvious zero.
Looking at the same projection of the subdominant partial
waves, one finds that only a few possess such a zero.
Consequently, it may reasonably be concluded that no state
should be considered a radial excitation of another; hence,
the collection of ð1

2
; 3
2
∓Þ baryons form a set of states

related via Lqd excitation. Such structural predictions,
too, can be tested via comparisons with data obtained on
theQ2

γ -dependence of nucleon-to-resonance transition form
factors [10,59,69,70].
It has often been highlighted that masses are long-

wavelength observables, whose values are not very sensi-
tive to the finer structural details expressed in a baryon’s

wave function [47,53]. The apparent simplicity of the
results in Fig. 4 is thus somewhat misleading. This is
exposed, e.g., by performing an Lqd breakdown of each
baryon’s canonical normalization, a quantity that is related
to the zero momentum transfer value of the electric form
factor of the valence quarks within the state; hence,
observable.2 Those decompositions are depicted in
Fig. 6, according to the assignments identified in Fig. 7,
and drawn from the tables collected in the Appendix. Since
negative-parity diquarks make negligible contributions to a
baryon’s mass—Fig. 3(a), only the scalar and axialvector
contributions are recorded.
Consider first Fig. 6(a), which displays the rest-frame

Lqd-breakdown of the Nð1520Þ3
2
− canonical normalization

constant. Evidently, the most prominent positive contribu-
tions are provided by constructive P ⊗ D-wave interfer-
ence terms; contributions from purely P-wave components

FIG. 5. Zeroth Chebyshev moments—Eq. (20). Upper panels: rest-frame P-wave components in wave functions of the negative parity
baryons: (a), Nð1520Þ3

2
−; and (b), Nð1700Þ3

2
−. Lower panels: rest-frame D-wave components in wave functions of the positive parity

baryons: (c), Nð1720Þ3
2
þ; and (d), Nð1900Þ3

2
þ.

1Chebyshev polynomials of the second kind provide the
natural expansion basis for a hyperspherical expansion of
functions occupying a four-dimensional Euclidean space.

2Expressed using the wave function, the canonical normali-
zation integrand is a sum of terms, each of which involves an
inverse diquark propagator. Such functions exhibit singularities
that are cancelled during integration by zeros in the wave
functions. Evaluating the integrals numerically, one must use
an algorithm that ensures such cancellations are perfect. No such
issues arise when evaluating the normalization using the Faddeev
amplitude.
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are visible, but interfere destructively; and pure D-wave
terms are responsible for largely destructive interference.
Whilst these observations are consistent with the results in
Fig. 4, they also reveal the structural complexity of a
Poincaré covariant wave function. This detailed picture is
very different from that obtained from quark models built
upon (weakly broken) SU(6) spin-flavour symmetry, as
listed, e.g., in Sec. I note (i). Given that resonance
electroexcitation data on this state are available out to
momentum transfersQ2

γ ≈ 5.5m2
p ([59], Table IV), then our

Faddeev equation structural predictions can be tested once
the wave functions are used to calculate the associated
transition form factors. Where such comparisons have
already been made, the Faddeev equation predictions have
been validated [35,36,74,75].

Turning to Fig. 6(b), the Nð1700Þ3
2
− wave function is

seen to be less complex than that of the Nð1520Þ3
2
−. True to

Fig. 4, pure P-wave contributions to the canonical nor-
malization are dominant; there is some destructive P ⊗ D-
wave interference; simple D-wave contributions largely
cancel among themselves; and D ⊗ F-wave constructive
interference offsets a destructive F-wave contribution. In
this case, resonance electroexcitation data is available for
Q2

γ ≲ 1.7m2
p [76]. However, data at larger Q2

γ would be
needed to test our structural predictions.
Drawn in Fig. 6(c), the Nð1720Þ3

2
þ wave function is

simpler still. This state is the parity partner of the
Nð1520Þ3

2
−, so differences between their wave functions

are driven by EHM. Consistent with Fig. 4, normalization
contributions related to D-waves are most prominent: the

FIG. 6. Rest frame quarkþ diquark orbital angular momentum content of ð1
2
; 3
2
∓Þ states considered herein, as measured by the

contribution of the various components to the associated canonical normalization constant: (a), Nð1520Þ3
2
−; (b), Nð1700Þ3

2
−; (c),

Nð1720Þ3
2
þ; and (d), Nð1900Þ3

2
þ. The images are drawn according to the legend in Fig. 7 and with reference to Table I, the basis in

Eq. (7), and the expansion in Eq. (16). Only scalar and axialvector components are retained because they contribute most to each
baryon’s mass. There are both positive (above plane) and negative (below plane) contributions to the overall normalizations, which are
all positive.
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largest positive terms are generated by constructive D ⊗ F-
wave interference. As in the Nð1700Þ3

2
−, pure D-wave

contributions largely cancel among themselves; and there is
a sizeable destructive F-wave contribution. Here, too,
resonance electroexcitation data is only available for Q2

γ ≲
1.7m2

p [76]. Our quarkþ diquark Faddeev equation does
not generate the N0ð1720Þ3

2
þ state discussed in Ref. [76]. It

may conceivably appear if the diquark correlations were to
possess a richer structure than described by the simplified
forms in Eq. (12).
The Nð1900Þ3

2
þ normalization strengths are displayed in

Fig. 6(d). This state is the parity partner of the Nð1700Þ3
2
−.

Here, EHM is seen to drive very strong pure P- and D-wave
contributions. There is also a prominent constructive
F-wave contribution; and P ⊗ D-wave and D ⊗ F-wave
interference are strongly destructive. While consistent with
the results drawn for this state in Fig. 4, the detailed picture is
again farmore complex. It isworth comparing themagnitude
scale in Fig. 6(d) with that of the other panels. Owing to
strong interference between partial waves, the Nð1900Þ3

2
þ

normalization constant is roughly twice that found in the
other cases. This further emphasizes the complexity of its
Poincaré-covariant wave function. There is currently no
Nð1900Þ3

2
þ resonance electroexcitation data ([59], Table IV).

V. SUMMARY AND PERSPECTIVE

Extending Refs. [34,47], we employed a Poincaré-
covariant Faddeev equation [Fig. 1] to deliver predictions
for the masses and wave functions of the four lowest lying

ðI; JPÞ ¼ ð1
2
; 3
2
∓Þ baryons. The Faddeev kernel is con-

structed using dressed-quark and nonpointlike diquark
degrees-of-freedom and expresses two binding mecha-
nisms: one is that within the diquark correlations them-
selves; and the other is generated by exchange of a dressed-
quark, which emerges as one fully interacting diquark
splits up and is subsequently absorbed into formation
of another. This quarkþ diquark picture was introduced
more than thirty years ago [30–33] and has since evolved
into an efficacious tool for the prediction and explanation
of baryon properties, including the large-Q2

γ behavior of
elastic and transition form factors [39,77], axial form
factors [40,43,78], and parton distribution functions [42,79],
General considerations reveal that ð1

2
; 3
2
∓Þ baryons may

contain five distinct types of diquark correlation: ð0; 0þÞ,
ð1; 1þÞ, ð0; 0−Þ, ð0; 1−Þ, ð1; 1−Þ; but our calculations
showed that a good approximation is obtained by keeping
only ð0; 0þÞ, ð1; 1þÞ correlations [Sec. III]. This is not true
for ð1

2
; 1
2
−Þ states, in which ð0; 0−Þ, ð0; 1−Þ diquarks are

important [34,45].
Exploiting our Poincaré-covariant Faddeev wave func-

tions for ð1
2
; 3
2
∓Þ baryons, we drew connections and contrasts

with structural expectations deriving from quark models
built upon (weakly broken) SU(6) spin-flavor symmetry
[Sec. IV]. In this context, the orbital angular momentum
composition was of particular interest. However, since the
J ¼ Lþ S separation of total angularmomentum into a sum
of orbital angular momentum and spin is frame dependent
and many quark models express only Galilean covariance,
we worked with rest-frame projections of our Poincaré-
covariant Faddeev wave functions. Viewed with low reso-
lution and identifying orbital angular momentum as that
which exists between dressed-quarks and -diquarks,Lqd, we
found broad agreement. Namely, the collection of ð1

2
; 3
2
∓Þ

baryons form a set of states related via Lqd excitation: the
negative parity states are primarily P-wave in nature
whereas the positive parity states are D wave.
On the other hand, we also probed the structure of ð1

2
; 3
2
∓Þ

baryons with finer resolution, using maps of the contribu-
tions to the canonical normalization constants from the
various Lqd components of the Poincaré-covariant wave
functions. This revealed far greater complexity than typical
of quark model descriptions [Fig. 6], with significant
interference between Lqd components. These structural
predictions can be tested in comparisons between measure-
ments of resonance electroexcitation at large momentum
transfers andpredictions for the associated resonance electro-
production form factors based on our wave functions.
Concerning the Nð1520Þ3

2
−, data already exists that could

be used for this purpose and the calculations are underway.
No such data exists for the other states and so our predictions
are likely to encourage new experimental efforts in this area.
It is worth reiterating that the interpolating fields for

negative and positive baryons are related by chiral rotation

FIG. 7. Legend for interpretation of Figs. 6(a)–6(d), indicating
both direct terms and interference overlaps between the various
identified orbital angular momentum basis components in the
baryon rest frame.
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of the quark spinors used in their construction. This
entails that all differences between parity partner states
owe fundamentally to chiral symmetry breaking, which is
overwhelminglydynamical in the light-quark sector [80–84].
Parity partner channels are identical when chiral symmetry
is restored [85,86]. Regarding the baryons considered
herein, parity connects Nð1520Þ3

2
−–Nð1720Þ3

2
þ and

Nð1700Þ3
2
−–Nð1900Þ3

2
þ; and we have seen that, again like

the ð1
2
; 1
2
�Þ and ð3

2
; 3
2
�Þ sectors, dynamical chiral symmetry

breaking (DCSB) introducesmarked differences between the
internal structures of parity partners. This has a marked
influence on themass splitting between the partner states and
explains why it does not exhibit a simple pattern, viz.
empirically [48]:

states mass splitting=GeV

Nð1535Þ1
2
− − Nð940Þ1

2
þ 0.57;

Nð1650Þ1
2
− − Nð1440Þ1

2
þ 0.29;

Δð1700Þ3
2
− − Δð1232Þ3

2
þ 0.46;

Δð1940Þ3
2
− − Δð1600Þ3

2
þ 0.44;

Nð1720Þ3
2
þ − Nð1520Þ3

2
− 0.17;

Nð1900Þ3
2
þ − Nð1700Þ3

2
− 0.22:

ð21Þ

DCSB is a corollary of emergent hadron mass (EHM);
and confinement, too, may be argued to derive from
EHM [54]. Thus, validating our predictions of marked
structural differences between parity partners throughout
the hadron spectrum has the potential to reveal much of
importance about the Standard Model. As already noted,
resonance electroexcitation experiments on Q2

γ ≳ 2m2
p are

one way of achieving this goal.
Havingcompleted this analysis, itwouldbenatural to close

the cycle and use the Poincaré-covariant quarkþ diquark
Faddeev equation to develop structural insights into ð3

2
; 1
2
�Þ

baryons. Further, in aiming to validate the pictures provided,

it is essential to calculate the electromagnetic transition form
factors for all states mentioned above. Baryons containing
heavier valence quarksmay present additional opportunities,
particularly because many models of such systems give
special treatment to the heavier degrees-of-freedom, e.g.,
Refs. [87–92], whereas our dynamical diquark picture
indicates that all valence quarks should be treated equally
[63,93]. Furthermore, having highlighted the complexity of
the Poincaré-covariant wave functions that describe quark-
plus-dynamical-diquark systems, then our results may also
have implications for studies of the tetra- and penta-quark
problems, which are typically treated using very simple
pictures of diquark correlations and their interactions with
other bound-state constituents ([11], Sec 3.6).

ACKNOWLEDGMENTS

We are grateful for constructive comments from Z.-F.
Cui, Y. Lu, L. Meng, V. I. Mokeev and J. Segovia. This
work used the computer clusters at the Nanjing University
Institute for Nonperturbative Physics. Work supported
by: National Natural Science Foundation of China
(Grant Nos. 12135007, 12047502); and Jiangsu Province
Fund for Postdoctoral Research (Grant No. 2021Z009).

APPENDIX: QUARK+DIQUARK
ANGULAR MOMENTUM

Using our Faddeev equation solutions for the Poincaré-
covariant baryon wave functions, evaluated in the
rest frame, we computed the contributions of various
quarkþ diquark orbital angular momentum components
to each baryon’s canonical normalization constant.
The results are recorded in this appendix: Nð1520Þ3

2
−:

Table IV; Nð1700Þ3
2
−: Table V; Nð1720Þ3

2
þ: Table VI; and

Nð1900Þ3
2
þ: Table VII. The images in Fig. 6 are drawn from

these tables.

TABLE IV. Nð1520Þ3
2
−: quarkþ diquark orbital angular momentum breakdown of the canonical normalization constant, drawn in

Fig. 6(a). The subarrays are composed according to the legend in Fig. 7 and the sum of all entries is unity.

Y1 Y2 X1 Y3 Y4 Y5 X2 Y6 Y7 Y8

Y1 −0.01 −0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
Y2 −0.01 −0.01 0.00 0.01 0.00 0.13 0.00 0.06 0.00 0.00
X1 0.00 0.00 −0.15 0.09 0.00 0.00 0.44 0.00 0.00 0.00
Y3 0.02 0.01 0.09 −0.15 0.00 0.27 0.00 0.03 0.00 0.01
Y4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y5 0.00 0.13 0.00 0.27 0.00 −0.36 0.00 0.03 0.00 −0.03
X2 0.00 0.00 0.44 0.00 0.00 0.00 −0.35 0.00 0.00 0.00
Y6 0.00 0.06 0.00 0.03 0.00 0.03 0.00 −0.13 0.00 0.03
Y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y8 0.00 0.00 0.00 0.01 0.00 −0.03 0.00 0.03 0.00 −0.01
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TABLE V. Nð1700Þ3
2
−: quarkþ diquark orbital angular momentum breakdown of the canonical normalization constant, drawn in

Fig. 6(b). The subarrays are composed according to the legend in Fig. 7 and the sum of all entries is unity.

Y1 Y2 X1 Y3 Y4 Y5 X2 Y6 Y7 Y8

Y1 −0.04 −0.06 −0.04 0.08 0.00 0.02 0.00 0.01 0.00 −0.03
Y2 −0.06 0.87 0.00 0.00 0.00 0.05 −0.01 −0.02 0.00 0.01
X1 −0.04 0.00 0.21 0.08 0.00 0.00 −0.23 0.00 0.00 0.00
Y3 0.08 0.00 0.08 0.08 0.00 −0.02 0.00 −0.01 0.00 0.00
Y4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y5 0.02 0.05 0.00 −0.02 0.00 −0.04 0.00 −0.01 0.00 0.09
X2 0.00 −0.01 −0.23 0.00 0.00 0.00 0.17 −0.01 0.00 0.00
Y6 0.01 −0.02 0.00 −0.01 0.00 −0.01 −0.01 −0.08 0.00 0.11
Y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y8 −0.03 0.01 0.00 0.00 0.00 0.09 0.00 0.11 0.00 −0.19

TABLE VI. Nð1720Þ3
2
þ: quarkþ diquark orbital angular momentum breakdown of the canonical normalization constant, drawn in

Fig. 6(c). The subarrays are composed according to the legend in Fig. 7 and the sum of all entries is unity.

Y1 Y2 X1 Y3 Y4 Y5 X2 Y6 Y7 Y8

Y1 −0.11 −0.01 0.01 0.00 0.00 0.00 0.00 −0.01 0.00 0.02
Y2 −0.01 0.00 0.00 0.00 0.00 −0.02 0.00 0.04 0.00 −0.01
X1 0.01 0.00 0.10 0.00 0.00 0.00 0.04 0.00 0.00 0.00
Y3 0.00 0.00 0.00 −0.01 0.00 0.00 0.00 0.01 0.00 0.00
Y4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y5 0.00 −0.02 0.00 0.00 0.00 −0.04 0.00 −0.02 0.00 0.12
X2 0.00 0.00 0.04 0.00 0.00 0.00 0.37 0.06 0.00 0.00
Y6 −0.01 0.04 0.00 0.01 0.00 −0.02 0.06 −0.27 0.00 0.60
Y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y8 0.02 −0.01 0.00 0.00 0.00 0.12 0.00 0.60 0.00 −0.66

TABLE VII. Nð1900Þ3
2
þ: quarkþ diquark orbital angular momentum breakdown of the canonical normalization constant, drawn in

Fig. 6(d). The subarrays are composed according to the legend in Fig. 7 and the sum of all entries is unity.

Y1 Y2 X1 Y3 Y4 Y5 X2 Y6 Y7 Y8

Y1 −0.32 0.05 −0.04 0.35 0.00 −0.02 0.00 −0.01 0.00 0.03
Y2 0.05 0.27 0.00 0.00 0.00 −0.01 0.02 −0.07 0.00 0.02
X1 −0.04 0.00 3.95 0.34 0.00 −0.02 −3.62 −0.01 0.00 0.00
Y3 0.35 0.00 0.34 −0.19 0.00 0.29 −0.04 −0.09 0.00 −0.08
Y4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y5 −0.02 −0.01 −0.02 0.29 0.00 −0.18 0.00 0.01 0.00 −0.10
X2 0.00 0.02 −3.62 −0.04 0.00 0.00 3.71 0.05 0.00 0.02
Y6 −0.01 −0.07 −0.01 −0.09 0.00 0.01 0.05 0.60 0.00 −1.18
Y7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y8 0.03 0.02 0.00 −0.08 0.00 −0.10 0.02 −1.18 0.00 1.40
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