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The time evolution of a neutrino is dependent on its initial properties at creation including flavor, energy,
and wave packet size. There exists no solid theoretical prediction for the latter property in the context of
nuclear beta decay, despite the importance of this process for the past, present, and future of neutrino
experimentation. In this paper, we provide a quantitative prediction for the size of a beta-decay-induced
electron antineutrino wave packet by treating the parent nucleus decaying to an entangled antineutrino-
recoil system using the formalism of open quantum systems. Of central importance is the delocalization
scale of the parent particle. We construct a systematic description of the hierarchy of localizing
entanglements that provides an unambiguous statement of the relevant localization scale, found to be
closely related to the diameter of the parent nucleus (e.g., ∼5–6 fm for beta-decaying fission daughters) and
as low as the typical nucleon-nucleon correlation distance (∼1 fm). Inside a nuclear reactor, for example,
this translates to initial electron antineutrino wave packet widths in the σν;x ∼ 10–400 pm range for
Eν̄e > 1.8 MeV, with dependencies on decaying nucleus size, the emitted antineutrino energy, and the
kinematics of the recoiling system. Wave packet sizes in this envelope do not produce an observable effect
on oscillation probability in foreseeable reactor experiments in the standard three-neutrino model,
including JUNO which is expected to be sensitive to σν;x ≲ 3 pm.
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I. INTRODUCTION

Neutrinos are created as wave packets with a width
dependent on the production process, kinematics of the
decay, and environment of the parent. That the finite width
of the wave packet has implications for neutrino oscillation
phenomenology has been long recognized and widely
studied theoretically [1–12]. Interestingly, however, the
width has so far eluded experimental measurement, and
there are a number of neutrino production cases that lack a
solid theoretical prediction for this characteristic size. In
particular, no prediction exists for the earliest-known (anti)
neutrino production process, nuclear beta decay. The
naively relevant distance scales that may contribute to
the width cover a wide range. In the case of antineutrinos
coming from beta-decaying actinide fission daughters
inside of a nuclear reactor, for example, relevant distances
might include the inverse of the antineutrino energy
∼0.1–0.7 pm, the inter-atomic spacing inside a uranium-
based nuclear reactor fuel rod ∼0.1–1 nm, the diameter of
the parent nucleus ∼5–6 fm, the distance between

correlated nucleon pairs ∼1 fm, the size of a fuel rod
∼10–100 cm, and the size of a reactor core ∼1–10 m.
Despite the lack of measurement so far, experimental

sensitivity to a realistic neutrino creation wave packet width
may be achieved in the future through its effect on neutrino
oscillations. Considering a propagating neutrino as an
evolving wave packet, rather than as a single-momentum
plane wave, results in the mass eigenstates separating in
space due to their different group velocities. This process
acts to suppress the nominally expected oscillation behav-
ior in e.g., the three-neutrino mixing framework, and is
dependent on distance traveled, energy, the mass splittings
involved, and the initial wave packet size.
The upcoming reactor-based JUNO experiment [13,14]

has been shown to be highly sensitive to the wave packet
effect on oscillation observables, at the level of over an
order of magnitude than has previously been achieved
[15–17]. Considering a simplified model where each
antineutrino has the same wave packet width σν;x, JUNO
is expected to be able to produce a two-sided constraint for
σν;x values as high as 3 × 10−12 m after 6 years of running
[17], which can be compared to existing results from a
phenomenological combination of Daya Bay, KamLAND,
and RENO data of σν;x > 2.1 × 10−13 m at 90% CL [18]
and σν;x > 1 × 10−13 m at 95% CL from a dedicated mea-
surement with Daya Bay individually [19]. Accelerator-
based and atmospheric-based experiments are wholly
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insensitive to the effect, and there is little hope for future
realistic measurements [3]. Notably, JUNO likely repre-
sents the only reasonable hope of measuring the wave
packet effect in the foreseeable future, across all mixing
experiments, unless a higher mass splitting (e.g., at
Δm2 ∼ 1 eV2, as possibly indicated by Refs. [20–23])
contributes to oscillations [24], in which case the effect
may be seen in experiments sensitive to this high-frequency
mixing. The prospect of a wave packet measurement is
particularly exciting because it would not just represent an
important new measurement in neutrino physics, it would
also offer a fundamental test of quantum mechanics,
validating predictions of the theory of measurement in
open quantum systems where the generation of environ-
mental entanglement leads to the emergence of classicality
in quantum mechanics [25]. Therefore, before JUNO
comes online in 2023, we consider it imperative to provide
a grounded theoretical prediction for the characteristic
range of widths of a beta-decay-induced antineutrino wave
packet, which immediately sets the expected oscillation
spectrum observable.
In this paper,weproduce anunambiguous and quantitative

prediction for the range of wave packet widths of an
antineutrino resulting from nuclear beta decay using the
density matrix formalism. This formalism provides a math-
ematical framework for handling the hierarchy of compli-
cated entanglements that contribute to the width of the
antineutrino at creation, including decoherence effects aris-
ing from the coupling of the decaying neutron to other
nucleons in the nucleus, the confinement and momentum
distribution of the decaying neutron, the nuclear interaction
with its atomic electrons, interactions of the parent atomwith
other nearby atoms, etc. Robust treatment of all the relevant
particles asmembers of an open quantum system allows us to
make a prediction for the wave packet width without
ultimately relying on some assumed scale of localization
for the system, as is required inmany other treatments to date.
We predict that the range of the typical parent localization
scales that sets the antineutrino wave packet width is related
to the nucleon-nucleon correlation distance and the nuclear
diameter, and that the antineutrinos from a nuclear reactor
emerge with a range of wave packet sizes, with each one
depending on the energy of the antineutrino, identity of the
decaying nucleus, and kinematics of the entangled recoiling
system. An approximation is used for the nuclear wave
function of the decaying parent that includes representative
scales for the nuclear size and distance of nucleon-nucleon
correlations, thoughour formalism inprinciple allows theuse
of anab initiowave function, a potentially viable prospect for
ultralight nuclei where these can be calculated using existing
techniques. Unfortunately, based on this prediction, we
expect JUNO to be insensitive to the effect of wave packet
width on oscillations.
We begin Sec. II with a general introduction to

decoherence in quantum systems and the implementation

of density matrix theory towards making predictions about
the probabilistic properties of such systems coupled to an
environment. In Sec. III, we begin the neutrino-specific
discussion by showing how a neutrino wave packet affects
oscillation probability and then derive the relationship
between parent localization scale and neutrino coherence
distance in Sec. IV. With that relationship in hand, we
predict the relevant range of localization scales of the parent
particle in Sec. V and present the experimental implica-
tions of these results and outlook/conclusions in Secs. VI
and VII.

II. COHERENCE PROPERTIES OF OPEN
QUANTUM SYSTEMS

The basic principle of decoherence theory is that the
interaction between an open quantum system and its
environment generates entanglement, which suppresses
coherence [25–27]. The encoding of quantum information
about the system into the environment in this way serves as
a “measurement,” regardless of whether the information is
ultimately accessed by an experimenter. In the Young’s two
slit experiment, for example, if any degree of freedom in the
environment encodes sufficient information to determine
which slit was traversed then the interference pattern will
vanish—it is not necessary to access this information
experimentally. This principle has been convincingly dem-
onstrated in the laboratory using Talbot Lau interferometry
[28]. The emergence of stable effective wave packet widths
of systems in different environments where the entangle-
ment is generated by scattering processes has been
described in Ref. [29]. This principle was used to calculate
the width of neutrino wave packets in pion decay-in-flight
beams [3]. It will allow us to obtain the width of the
neutrino wave packet in a nuclear decay system without
ambiguity.
Because treatments using wave functions rather than

density matrices are more common in the neutrino physics
literature, we will first briefly review the use of reduced
density matrices for treating entangled bipartite systems,
and their connection to the wave-function description.
Readers familiar with density matrices may wish to skip
this section and proceed directly to Sec. III.
A density matrix provides the most general description

of a quantum system [30]. A system with a known quantum
state jΨi is called a pure state and has a density matrix ρPure
defined by

ρPure ¼ jΨihΨj; ð1Þ

whereas a probabilistic distribution of pure states jΨii with
probabilities Pi is represented by a mixed state density
matrix ρMixed,

ρMixed ¼
X
i

PijΨiihΨij: ð2Þ
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The decomposition of ρMixed into jΨii with associated Pi is
always possible, but not unique. Measurements are made
on ρ projectively. For example, if we measure some
observable A the probability of finding outcome a from
among the eigenvalues of A is given by

Pa ¼ hajρjai: ð3Þ

The probabilities for any measurement that can be made
on a quantum system can be calculated using Eq. (3). A
particular class of measurements that are of interest to us
are those that probe a subsystem s entangled with an
environment ϵ, but without reference to any information
that is held in the environment. In this case, the state
can be written as a sum of products on the two Hilbert
spaces, as

jΨi ¼
X
ij

cijjsii ⊗ jϵji: ð4Þ

When constructing measurements on s we must account
for the fact that some information about s is encoded in ϵ
via entanglement. Consider that an external party makes a
measurement M on the environment ϵ that finds result λk,
for Mjλki ¼ λkjλki. This would collapse the state of s to
jψki with probability Pk, leaving the density matrix of
system s alone in a mixed state:

ρs ¼
X
k

Pkjψkihψkj ¼
X
k

hλkjρjλki≡ Trϵ½ρ�; ð5Þ

where the final equality serves to define the partial trace
over ϵ. This object is called the reduced density matrix ρs.
While it is clear that ρs represents the density matrix of
system s after the measurementM has been made on ϵ, its
true power becomes apparent when we imagine some
other measurement M0 were made on ϵ, since as students
of only system s we do not know which measurement was
made or what its outcomes were. There are now a different
set of possible outcomes jλ0ki related to the original jλki by
a unitary transformation, jλ0ki ¼ Ukijλii. The new reduced
density matrix is ρ0s,

ρ0s ¼
X
k

hλkjU†jψihψ jUjλki: ð6Þ

Inserting two complete sets of states into this expression
we find

ρ0s ¼
X
kab

hλkjU†jλaihλajψihψ jλbihλbjUjλki ð7Þ

¼
X
kab

UbkU
†
kahλajψihψ jλbi ¼ ρs: ð8Þ

The reduced density matrix ρs is thus independent
of the actual measurement performed on ϵ. Since any
measurement made on s alone can be treated using only
ρs, we conclude that it does not matter which observable
in ϵ was measured, or even whether one was measured at
all, for predicting probabilities at s. The probabilities of
measurements made on s, when summed over possible
outcomes from ϵ, are independent of what was measured
at ϵ. This is the principle that protects causality in the
presence of spooky action-at-a-distance in the original
EPR thought experiment, while at the same time allowing
for nontrivial quantum correlations between the two
subsystems [31].
While the measurements made on ϵ do not influence the

probabilities found at s so long as the experimenter at s
ignores their outcomes, the entanglement between the two
subsystems does have important implications since it serves
to limit coherence within s. To see how this occurs in
practice, let us construct an illustrative toy example. We
will consider two possible quantum states, about which we
will ask two specific questions. First, we will obtain the
probability distribution for measuring the position of a
particle in s and finding it at 1D position x,

PðxÞ ¼ hxjρsjxi: ð9Þ

Second, we will consider the result of feeding this state into
a two slit interferometer with slits at xA and xB in the x
plane. The probability of finding a particle L at the
detection plane (which is not in the x plane) can be written
at QðLÞ,

QðLÞ ¼ hI jρsjIi jIi ¼ ðjxAieiθAðLÞ þ jxBieiθBðLÞÞ;
ð10Þ

with θAðLÞ and θBðLÞ representing the phases accumulated
at position L by particles passing through slit A or B.
The first state we will consider is an isolated system that

is unentangled with any external degrees of freedom. In this
case the state vector and reduced density matrix are defined
by a single width parameter Σ,

jψi ¼ N
Z

dx exp

�
−
ðx − x0Þ2

4Σ2

�
jxi; ð11Þ

ρs ¼N
Z

dx1dx2 exp

�
−
ðx1 − x0Þ2þðx2− x0Þ2

4Σ2

�
jx1ihx2j:

ð12Þ

The reduced density matrix and state vector are shown
in Fig. 1, left. Here and throughout this paper we will
collect normalization constants into a generic N , which
we can restore at the end of the calculation should we
so choose. We now ask our two prescribed questions.
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The probability for finding the system at x is what we
would expect it to be:

PðxÞ ¼ 1

ð2πΣ2Þ1=2 exp
�
−
ðx − x0Þ2

2Σ2

�
; ð13Þ

and the result of the two slit experiment is

QðLÞ ¼ QxAðLÞ þQxBðLÞ

þ 1

ð2πΣ2Þ1=2 exp
�
−
ðxA − x0Þ2 þ ðxB − x0Þ2

4Σ2

�
× cos ½θAðLÞ − θBðLÞ�: ð14Þ

Here QðLÞ is the probability of detecting a particle at
coordinate L on the detection plane, and QxAðLÞ and
QxBðLÞ represent the probabilities that would be obtained
if only one slit were open and the other were closed. The
interference experiment shows non-negligible interference
effects so long as both xA and xB are within the region
of space where the wave function is non-negligible,
i.e., ðxA − x0Þ2 ≲ Σ2; ðxB − x0Þ2 ≲ Σ2.
Next we consider a scenario where we have a system

entangled into an environment. A degree of freedom in the
environment yϵ is entangled with the system and encodes
the system position to precision δ, but the range of allowed
values of both yϵ and x is broad. A representative state
vector and resultant reduced density matrix is

jΨi ¼ N
Z

dxdyϵ exp

�
−
ðyϵ − xÞ2

4δ2

�

× exp

�
−
ðx − x0Þ2

4Σ2

�
jxi ⊗ jyϵi; δ ≪ Σ: ð15Þ

ρs ¼ N
Z

dx1dx2 exp

�
−
ðx1 − x2Þ2
8Δ2

OD

�

× exp

�
−
ðx1 − x0Þ2 þ ðx2 − x0Þ2

4Δ2
D

�
jx1ihx2j; ð16Þ

where we have identified two important length parameters
ΔD and ΔOD characterizing the on- and off-diagonal
distance scales,

Δ2
D ¼ Σ2; ΔOD ¼ δ2: ð17Þ

The reduced density matrix and a schematic decomposition
into system wave functions accompanying distinct envi-
ronmental basis states is shown in Fig. 1, right. We again
ask our two prescribed questions. The position distribution,
governed by the on-diagonal scale ΔD ¼ Σ, is found to be
exactly the same as for the previous case,

PðxÞ ¼ 1

ð2πΔ2
DÞ1=2

exp

�
−
ðx − x0Þ2
2Δ2

D

�
: ð18Þ

On the other hand, the degree of interference in the
interferometry experiment is now limited by a further

FIG. 1. The reduced density matrix (colored panels) and wave functions (plots) for the unentangled (left) and environmentally
entangled (right) system states. While the uncertainty on the position of the system is always σD ∼ Σ, the scale over which coherent
quantum interference effects can be observed is limited by the precision with which the environment encodes the system
position, σOD ∼ δ.
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requirement, that xA and xB not be separated further than
the entanglement scale ΔOD ¼ δ.

QðLÞ ¼ QxAðLÞ þQxBðLÞ þN exp

�
−
ðxA − xBÞ2
8Δ2

OD

�

× exp

�
−
ðxA − x0Þ2 þ ðxB − x0Þ2

4Δ2
D

�
× cos ½θAðLÞ − θBðLÞ�: ð19Þ

If the slit separation is too large, information about which
slit the particle traversed is encoded through entanglement
with the environment—or speaking more loosely, the
environment measures the system too precisely to allow
interference, and so entanglement suppresses coherence. It
is notable that this particular kind of “measurement” takes
place regardless of whether a human experimenter in fact
chooses to extract that information from the environment.
One way to interpret the two effective widths of the

density matrix is that ΔOD represents the scale of quantum
delocalization whereas ΔD represents an uncertainty due to
classical ignorance. Under this perspective, classicality has
emerged from entanglement, a basic tenet of the theory of
decoherence [26]. To bolster this interpretation we are free
to decompose the reduced and mixed density matrix ρs as a
probabilistic sum over state vectors, each of which is
quantum mechanically localized to precision ΔOD. While
we know the width of the wave function, we are classically
ignorant about where its center X is with a precision of ΔD.
In the limit ΔOD ≪ ΔD we may decompose ρs as

ρs ¼
Z

dXPðXÞjψXihψXj; ð20Þ

jψXi ¼ N
Z

dx exp

�
−
ðx − XÞ2
4Δ2

OD

�
jxi;

PðXÞ ¼ N exp

�
−
ðX − x0Þ2

2Δ2
D

�
: ð21Þ

This further supports the interpretation that the limits of
quantum coherence are determined by the off-diagonal
widthΔOD which is itself encoded in jψXi; and at the end of
the calculation we can take a classical probabilistic sum
over X with width ΔD. Because the degree of classical
ignorance is an emergent concept deriving from entangle-
ment with an unobserved subsystem, such calculations are
not burdened by any arbitrariness as to the location of the
quantum/classical divide. Quantum mechanics is abso-
lutely prescriptive about the predictions of probabilities
in such entangled systems, as well as about the conditions
in which the results of experiments appear classical vs
quantum mechanical.

III. CALCULATING THE NEUTRINO
OSCILLATION PROBABILITY

The principles of Sec. II will now be applied to the
neutrino oscillation system. We must take care to distin-
guish between two kinds of uncertainty—the classical-like
uncertainty reflecting where in space we might expect to
find a neutrino, were we to make a position measurement;
vs its off-diagonal uncertainty which reflects the distance
scale over which the wave packet can exhibit coherent
interference, determined by the degree of entanglement
with external degrees of freedom. It is the latter that will
limit coherence by the effects of wave packet separation.
The reduced density matrix of the neutrino system

contains both mass state and configuration space informa-
tion. We define

ρν ¼
Z

dx1dx2
X
ij

ρijðx1; x2; tÞjx1;miihx2;mjj: ð22Þ

At different points in the calculation it will be convenient to
use either the momentum or position bases; these choices
will be distinguished by the arguments provided for the
function ρij.
A neutrino oscillation experiment is a projective meas-

urement of flavor β at some position L. The oscillation
probability can be evaluated as

Pðβ; LÞ ¼ hβ; LjρνðtÞjβ; Li; jβ; Li ¼
X
βi

Uβ;ijmi; Li:

ð23Þ
This has a notably similar form to the two-slit interferom-
eter example considered in Sec. II, where the role of the two
slit positions is now played by the three distinct values for
mi within the three neutrino mixing paradigm. Because of
environmental entanglement the neutrino reduced density
matrix will be a mixed state, and we are always free to
make the decomposition of Eq. (20) in terms of pure states
when it is helpful to do so. Writing the neutrino reduced
density matrix as

ρν ¼
Z

dx0Pðx0Þjψν;x0ihψν;x0 j; ð24Þ

and substituting this into Eq. (23) shows that the proba-
bilities for each x0 add incoherently,

Pðα; LÞ ¼
Z

dx0Pðx0ÞPx0ðα; LÞ;

Px0ðβ; LÞ ¼ hβ; Ljψν;x0ihψν;x0 jβ; Li: ð25Þ
Thus, all questions of coherence loss through wave
packet separation are encoded in jψν;x0i which has width
σν;x¼ΔOD. In order to understand neutrino coherence loss
through wave packet separation, we must obtain ρν and
hence σν;x.

WIDTH OF A BETA-DECAY-INDUCED ANTINEUTRINO WAVE … PHYS. REV. D 107, 013008 (2023)

013008-5



The neutrinos in our system of interest are produced in
the decay of radioactive nuclei. These nuclei are already
localized within their environments, and the neutrino
inherits these entanglements. The reduced density matrix
for the parent ρA thus determines the reduced density
matrix for the neutrino, with entanglement against the
recoil system accounted for through the partial trace
operation applied to the final state. This calculation is
performed in Sec. IV. In terms of the neutrino width σν;x we
will find the following neutrino oscillation probability,

Pðβ;LÞ¼N
X
ij

UβiU�
βjUαiU�

αj exp

�
i
Δm2

2Eν
L

�

×exp

�
−

1

32E4
ν
ðΔm2Þ2 L

2

σ2ν;x

�
exp

�
−
�
Δm2

2E

�
2

σ2ν;x

�
;

ð26Þ

where σ2ν;x will be shown to be related to the parent particle
localization scale by

σν;x ¼
2m2

A

M2

0
B@1þ pA;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
A þ p2

A;0

q
1
CA

−1

σA;x; ð27Þ

where mA is the parent mass and M2 ¼ m2
A −m2

X, with mX
as the invariant mass of the recoiling system. As is required
by causality, any subsequent interactions or detection of the
entangled recoil after emission will not influence the total
oscillation probability. For more discussion on this point,
see Refs. [3,32].
The actual distance scale of the off-diagonal width of ρA is

obtained in Sec. V by consideration of the hierarchy of
entanglements experienced by the immediate precursor to
the neutrino, and is determined to have a width to be of order
the nuclear size.The implications of this are calculated for the
reactor antineutrino case in Sec. VI.

IV. FROM PARENT LOCALIZATION SCALE TO
NEUTRINO COHERENCE DISTANCE

Let us first evaluate the neutrinowave packetwidth σν;xwe
would expect if a parent particlewithwave function localized
to σA;x decays to make a neutrino and some entangled
recoiling system that has definite invariant massmX. We can
make the decomposition of Eq. (20) and consider the parent
density matrix as a probabilistic sum over such state vectors,
where σA;x ¼ ΔA;OD. The initial state vector of the parent
then is

jψA;x0i ¼
1

ð2πσ2A;xÞ1=4
Z

dx exp
�
−
ðx − x0Þ2
4σ2A;x

�
eipA;0xjxi:

ð28Þ

We Fourier transform this to find the momentum represen-
tation, and allow the parent to decay to a recoil system and a
neutrino of flavorα, conservingmomentum in the planewave
basis,

jψAi → jΨi ¼
X
i

Uαi

ð2πσ2A;pÞ1=4
Z

dpA

× exp

�
−
ðpA − pA;0Þ2

4σ2A;p

�
eipAx0 jpνðpAÞ; mii

⊗ jpXðpAÞi: ð29Þ

Here pνðpAÞ and pXðpAÞ are the neutrino and recoil system
emitted against a parent with initial momentum pA and
mass mA, and σA;x ¼ 1=2σA;p, with natural units assumed
throughout. Wewould like to express this as an integral over
neutrino momenta, which are related to the parent momen-
tum by

pA ¼ 4m2
Ap

2
ν −M4

4M2pν
: ð30Þ

We can change the variables in the integral by employing a
suitable Jacobean for the transformation J½pA�, and since it is
a function that varies slowly where the integral has support
we can evaluate it at pA;0 and remove it from the integrand.
We also take x0 ¼ 0, keeping in mind we can always restore
it later by spatially translating the final state by an amount x0
after intermediate manipulations. This leads us to the final
state vector expressed in terms of an integral over neutrino
momenta,

jΨi ¼ J−1½pA;0�
ð2πσ2A;pÞ1=4

X
i

Z
dpν

× exp

 
−

�
pν − M4

4m2
Apν

− M2

m2
A
pA;0

�
2

4M4

m4
A
σ2A;p

!
jpν; mii

⊗ jpXðpνÞi: ð31Þ

This distribution is not Gaussian. But it does have a peak
at pν

0 and �1σ points at positions approximately pν
0 � σν;p

given by

pν
0 ¼

M2

2m2
A

�
pA;0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þ p2
A;0

q �
;

σν;p ¼ M2

2m2
A

0
B@1þ pA;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
A þ p2

A;0

q
1
CAσA;p: ð32Þ

The position-space widths are related by the inverse
condition Eq. (27), and the expression is valid when
σp ≪ m, M. As a good approximation to Eq. (31) we can
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consider a Gaussian wave function with mean pν
0 and width

σν;p ¼ ðp1σ;ν − pν
0Þ, as

jΨi ¼ 1

ð2πσ2ν;pÞ1=4
X
i

Z
dpν exp

�
−
ðpi − pν

0Þ2
4σ2ν;p

�
jpν; mii

⊗ jpXðpνÞi: ð33Þ

Direct comparison of plots of Eqs. (31)–(33) using
relevant parameters to our problems of interest are shown
in Fig. 2. The dependence of σ2ν;p onmi is weak, and we can
neglect it without significant consequences for the calcu-
lation. We now form the total system density matrix, and
obtain the neutrino reduced density matrix by performing
the partial trace over the recoil,

ρν ¼ TrX½ρ� ¼
Z

dpXhpXjρjpXi: ð34Þ

This is the correct treatment when the recoiling system has
a definite invariant mass, and hence there is a strict
relationship between parent momentum and final state
momenta for two body kinematics. If we consider a
multi-particle recoiling system, for example the recoiling
nucleus and electron in beta decay, then there is no definite
invariant mass. Nevertheless, since final states with differ-
ent invariant masses necessarily have orthogonal wave

functions, we can form the neutrino reduced density matrix
by a probabilistic sum over final state invariant masses. The
effective two-body treatment developed thus far remains
valid for each component in the sum over mX,

ρν ¼ TrX½ρ� ¼
Z

dmXPðmXÞ
Z

dpXhpX;mXjρjpX;mXi:

ð35Þ

The probability distribution PðmXÞ is determined from
well-understood beta decay kinematics. For clarity we will
omit this integral in the following discussion, but it is
understood that the derived expressions should be inte-
grated over the mX distribution for the decay in the
final step.
With the initial state neutrino reduced density matrix in

hand, we can apply time evolution in the typical way to find
ρνðtÞ

ρνðtÞ ¼ e−iHtρνð0ÞeiHt: ð36Þ

This gives us the time dependent form of the density
matrix ρν

ρν ¼ UαiU�
αj

Z
dp1dp2ρ

ij
ν ðp1; p2Þjp1; miihp2; mjj; ð37Þ

FIG. 2. Comparison of exact position-space wave function (dashed line) with Gaussian approximation (solid line) of the antineutrino
emitted alongside a fixed recoil invariant mass of recoil system from the beta decay of 96Y to 96Zrg:s. (Q ¼ 7.1 MeV). The two panels
show the cases where the width is limited by the typical nucleon short-range correlation scale (left) and nuclear size (right).
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ρijν ðp1; p2Þ ∝ exp

�
−
ðp1 − pν

0;iÞ2
4σ2ν;p

− iEi
1t

�

× exp

�ðp2 − pν
0;jÞ2

4σ2ν;p
þ iEj

2t

�

× δ½pXðp1; miÞ − pXðp2; mjÞ�: ð38Þ

To obtain an oscillation probability we project onto a flavor
state β at distance L,

Pðβ; LÞ ¼ UβiU�
βj

Z
dq1dq2eiðq2−q1ÞLhq1; mijρνjq2; mji

ð39Þ

¼N
Z

dp1dp2δ½pXðp1;miÞ

−pXðp2;mjÞ�e
−
ðp1−pν0;iÞ

2

4σ2ν;p
−iðEi

1
tþp1LÞ−

ðp2−pν0;jÞ
2

4σ2ν;p
þiðEj

2
t−p2LÞ

:

ð40Þ

Wewill now deal with the delta function on the left. First
we make the substitution,

δ½pXðp1; miÞ − pXðp2; mjÞ� ∝ δðp1 − p2 þ 2δÞ; ð41Þ

where we have introduced the parameter

δ ¼ 1

2

dpν

dm2
ν

				
pX

Δm2 ¼ 1

2

dpA

dm2
ν

				
pX

Δm2; ð42Þ

which is evaluated from two-body kinematics. We will next
use the integral representation of the delta function, with an
important modification. The effect of this delta function is
to enforce ideal energy and momentum conservation in the
decay. But for a decaying particle of finite lifetime, energy
and momentum are only conserved approximately. Thus
we use a slightly broadened function, with Ξ ∝ 1=Γ given
by the particle decay width,

δðp1 − p2 þ 2δÞ ¼
Z

∞

−∞
dx exp ½iðp1 − p2 þ 2δÞx�

→
Z

∞

−∞
dx exp

�
iðp1 − p1 þ 2δÞxþ x2

Ξ2

�
:

ð43Þ

For a long-lived particle as we consider here, we expect
Ξ ≫ σν;x. Evaluating both integrals over p1, p2 and then x,
we ultimately obtain

Pðβ; LÞ ¼ N
X
ij

UβiU�
βjUαiU�

αj exp

�
iðLþ v̄tÞΔm

2

4Eν

�

× exp

�
−
ðL − v̄tÞ2

2Ξ2

�
exp

�
−
Δv2t2

8σ2ν;x

�

× exp

�
−
�
Δm2

2E

�
2

σ2ν;x

�
: ð44Þ

We have introduced the mean velocity v̄ ¼ ðv1 þ v2Þ=2
and Δv ¼ v1 − v2 is the velocity difference. We have also
written this expression in terms of σν;x ¼ 1=2σν;p. From left
to right we see
(1) The oscillation phase, which has the usual form.
(2) A term that restricts detectability to around L ∼ v̄t

with precision Ξ dictated by the parent decay width.
This accounts for the mean expected arrival time of
the wave packet.

(3) A term that suppresses coherence through wave
packet separation, dictated by the neutrino localiza-
tion scale σν;x. A careful evaluation of this term is the
main target of this work.

(4) A term that smears oscillations if the parent particle
is more delocalized than an oscillation wavelength.
This term will not be relevant in most oscillation
experiments, and any residual smearing from it
would typically be accounted for in Monte Carlo
simulations of neutrino emission across a finite
source.

To see the effect of wave packet separation explicitly, it
makes sense to evaluate the whole expression near L ∼ v̄t
where the detection probability for finding any neutrino is
large. We can also use the fact that Δv ¼ Δm2

2E2
ν
to find,

Pðβ;LÞ ¼N
X
ij

UβiU�
βjUαiU�

αj exp

�
i
Δm2

2Eν
L

�

×exp

�
−

1

32E4
ν
ðΔm2Þ2 L2

σ2ν;x

�
exp

�
−
�
Δm2

2E

�
2

σ2ν;x

�
:

ð45Þ

It is notable that the wave packet separation term obtained
in this limit corresponds precisely to the one obtained
through a treatment that ignores the entangled recoil
altogether, for example Ref. [8].

V. THE LOCALIZATION SCALE OF THE PARENT
PARTICLE IN RADIOACTIVE DECAY

Generally speaking we cannot expect perfectly Gaussian
density matrices. We can, however, characterize the diago-
nal and off-diagonal widths of whatever density matrix we
have with the following two metrics,
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Δ̄2
ODðxÞ ¼

R
dyy2ρ1ðy;−yÞR
dyρ1ðy; yÞ

; Δ̄2
DðxÞ ¼

R
dyy2ρ1ðy; yÞR
dyρ1ðy; yÞ

:

ð46Þ
For a properly normalized density matrix,

R
dyρðy; yÞ ¼

Tr½ρ� ¼ 1, but we include a superfluous factor in the
denominator to absorb the arbitrary N factors that are
attached to some of our expressions. It is straightforward to
verify that, given a Gaussian density matrix the expected
widths are recovered, Δ̄OD ¼ ΔOD and Δ̄D ¼ ΔD.
Many treatments of neutrino oscillations require a degree

of hand-waving to determine the scale of Δ̄OD. Here we
carefully consider the hierarchy of localizing effects in
nuclear beta decay and show that this scale can in fact be
determined in a manner that is free from ambiguity, and it is
found to be of nuclear dimensions.
In a nuclear beta decay, electron antineutrinos are

emitted by neutrons decaying inside a nucleus through
n → pþ e− þ ν̄e. There are several effects that may be
intuitively argued to localize a decaying nucleon in
space. A subset of these include: (1) Localizing effect of
the decaying nucleon inside the nucleus, through inter-
action with other nucleons; (2) Localization of a nucleus
within an atom, through interaction with the atomic
electrons; (3) Localization of an atom within a material,
through electromagnetic fields or scattering interactions;
(4) Localizing effect of the recoiling nucleus interacting
with surrounding material, through scattering; (5) Quantum
delocalization of the entire piece of material that the
nucleus/atom is in. We may also discuss, for example,
(6) Delocalization of the planet Earth within the solar
system; and (7) Delocalization of the solar system within
the galaxy, and an in principle infinite number of additional
abstractions. In order to convincingly assess which of these
distance scales matter for the problem, we must construct a
schematic description of this hierarchy of localizations and
establish which of them determine the off-diagonal width
of the reduced density matrix ρA.
First we may consider the nuclear state vector, which we

assume has been properly antisymmetrized,

jψi ¼
Z

dxNψðxa; xb; xc…Þjxai ⊗ jxbi ⊗ jxci…: ð47Þ

This state accounts for the distribution of nucleons inside
the nucleus, including the details of their correlation and
entanglement with one another. While it is very difficult to
calculate such wave functions exactly, it is fair to say that
they exist in principle and can be expressed on the Hilbert
space of N nucleons, as in Eq. (47). Our convention here is
chosen such that ψðxa; xb; xc…Þ represents a state with
c.m. at the origin.
Another degree of quantum uncertainty is the delocal-

ization of the nucleus itself, which can be encoded in the
c.m. wave function ϕðXÞ. The overall state of the system is
then generated via convolution

jΨi ¼
Z

dXϕðXÞeiXP̂jψi; ð48Þ

where P̂ is the generator of translations P̂ ¼ iℏ
P

α
∂

∂xα
such

that

jΨi ¼
Z

dxNΨðxa; xb…Þjxai ⊗ jxbi…; ð49Þ

Ψðxa; xb…Þ ¼
Z

dXϕðXÞψðxa − X; xb − X…Þ: ð50Þ

To examine the key features of this problem without
resorting to a complete ab initio nuclear wave function,
we will consider the following illustrative example wave
function for the nucleus,

ψðxa; xb; xc…Þ ¼ ½ψNðxaÞψNðxbÞψNðxcÞ…×�
· ½ψcðxa − xbÞψcðxc − xbÞ…×�

· δ

�X
α

xα

�
: ð51Þ

This expression has three essential components; first, the
single particle wave function ψN which accounts for the
distribution of a given nucleon within the nucleus and is
approximately of nuclear size; second, a correlation func-
tion ψc that establishes how each nucleon is correlated to
each other one; and third, a delta function that ensures that
this state has c.m. at the origin. In principle this wave
function can be appropriately antisymmetrized if we ensure
that the correlator is chosen such that ψcðxa − xbÞ ¼
−ψcðxb − xaÞ, though the demonstration that follows will
not achieve this in practice. A real nuclear wave function
must also account for the spin degrees of freedom that we
have neglected. Finally, in a real nucleus there is a
distribution of correlation scales with the lower limit fixed
by the subset of nucleons in short-range pairs; the relevant
distance can be assumed to be about 1 fm, with ∼20% of
nucleons in specific neutron-proton correlated states [33].
While acknowledging these deficiencies, we can develop a
useful degree of intuition for this system by considering a
simplified toy nuclearwave functiondictated by twodistance
scales: the nuclear size σN , and the scale of nucleon-nucleon
correlations σc, with Gaussian distributions for both cases.
Naturally we expect σc < σN , though at any time we may
take σc → ∞ to examine the behavior of a system with
uncorrelated nucleons. We therefore choose

ψNðxÞ ¼
1

ð2πσ2NÞ1=4
exp

�
−

x2

4σ2N

�
;

ψcðx − yÞ ¼ 1

ð2πσ2cÞ1=4
exp

�
−
ðx − yÞ2
4σ2c

�
; ð52Þ
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such that

ψðxa; xb; xc…Þ ¼ N exp

�
−
X
α

x2α
4σ2N

−
X
α;β<α

ðxα − xβÞ2
4σ2c

�

× δ

�X
α

xα − NX

�
: ð53Þ

A third distance scale σM is introduced to represent delo-
calization of the nucleus itself in the material, such that
σM > σN > σc. Again choosing a Gaussian function for
illustrative purposes, we find

ϕðXÞ ¼ 1

ð2πσ2MÞ1=4
exp

�
−

X2

4σ2M

�
: ð54Þ

The full wave function of the decaying system takes the form

Ψðxa; xb…Þ ¼ N
Z

dX exp

�
−

X2

4σ2M
−
X
α

ðxα − XÞ2
4σ2N

−
X
α;β<α

ðxα − xβÞ2
4σ2c

�
δ

�X
α

xα − NX

�
: ð55Þ

TheX integral can be performedusing the delta functionwith
the result that

Ψðxa; xb…Þ ¼ N exp

�
−A
X
α

x2α þ B
X
α≠β

xαxβ

�
ð56Þ

A ¼ 1

4N2σ2M
þ
�
N − 1

N

�
1

4σ2N
þ N − 1

4σ2c
;

B ¼ −
1

4N2σ2M
þ 1

4Nσ2N
þ 1

4σ2c
: ð57Þ

This recipe can also be applied recursively to build onto
the problem any number of subsequent stages of delocal-
ization—for example, of nucleus within atom; atom within
material; material within laboratory, and so on. Examining
the system at the present level of recursion, however, will
prove subsequent ones unnecessary. Constructing the
reduced density matrix for a single nucleon,

ρ1ðx0a; xaÞ ¼
Z

dN−1xΨðxa; xb; xc…ÞΨ�ðx0a; xb; xc…Þ:

ð58Þ
The effective off-diagonal width will be given by

Δ̄2
ODðxÞ ¼

1

4A
¼ 1

4

�
1

4N2σ2M
þ
�
N − 1

N

�
1

4σ2N
þ N − 1

4σ2c

�
−1
:

ð59Þ

This expression features contributions from all three
distance scales so far introduced into the problem and will

tend to be dominated by whichever is smallest. We can
examine its behavior in three illustrative regimes. First, we
note that if σM → 0, the localization distance will also tend
towards zero,

lim
σM→0

Δ̄OD ¼ σMN → 0: ð60Þ

In this limit, the wave function is simply Eq. (51). The delta
function forces the c.m. to zero, which means that if any
one nucleon decays, the location of that decay can in
principle be inferred by precisely measuring the positions
of all the remaining nucleons. This regime is not a
physically relevant one in our systems of interest since it
is very unlikely that the c.m. position of the nucleus will
ever be localized more precisely than the nuclear size.
Next we may consider a delocalized nucleus, though

with no appreciable nucleon-nucleon correlations. This
corresponds to the limit σM ≫ σN , while σc → ∞. Here
we find the relevant limit of Eq. (59) to be

lim
σM≫σN;σ→∞

Δ̄OD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N

N − 1

r
σN: ð61Þ

This result too has an intuitive interpretation. Given a
nucleus which is totally localized (σM ¼ 0), the RMS
distance λ between any given nucleon and the c.m. of
the remaining N − 1 nucleons is given by

λ2 ¼

�

x1 −
1

N − 1

X
α≠1

xα

�
2
�

¼ 1

ð2πσ2NÞN=2

Z
dNx

��
x1 −

1

N − 1

X
α≠1

xα

�
2
�

× exp

�
−
P

αx
2
α

σ2N

�
ð62Þ

¼ hx21i þ
�

1

N − 1

�
2X

α

hx2αi ð63Þ

¼ σ2N

�
N

N − 1

�
: ð64Þ

When a nucleon in a totally delocalized nucleus decays, it
leaves behind the remaining N − 1 nucleons; and these
each encode the position of the decayed nucleon through
entanglement to a distance scale of exactly what we have
predicted. This statement runs counter to some past dis-
cussions in the literature, which have imagined that if the
nucleus is very delocalized, for example if the nucleus is
inside an atom which is vibrating within a material lattice or
travelling through a gas, then the coherent width of the
neutrino could be much larger than the nuclear size. It is not
so, because the remaining nucleons entangle its position
with distance scale determined by the nuclear diameter.

B. J. P. JONES, E. MARZEC, and J. SPITZ PHYS. REV. D 107, 013008 (2023)

013008-10



We finally include nucleon-nucleon correlations within
the nuclear wave function with some correlation scale σc
such that σc < σN ≪ σM. In the limit where the scale of
these correlations is much smaller than the size of the
nucleus itself, we find

lim
σM≫σN≫σc

Δ̄OD ¼ σcffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p : ð65Þ

The interpretation of this result is that when nucleons are
correlated on scales much smaller than the size of the
nucleus, the nucleons may be considered to measure each
other’s positions to a precision smaller than the nuclear
diameter, determined instead by the correlation scale. Of
course, were all beta emitters to decay to the ground state,
no information could be encoded in the arrangement of
nucleons within the daughter nucleus about the antineutrino
emission position. However, among the beta decays creat-
ing antineutrinos in nuclear reactors (above the detection
threshold of 1.8 MeV), around 80% (70%) lead to excited
daughter nuclei in the final state, as provided by the OKLO

software [34], described in the next section. Thus, the
resulting final state of these nucleons can indeed be
considered to encode information about the decay position,
and the sub-nuclear distance scale σc corresponds to the
approximate resolution of this information. The simplified
wave function above presents only a single value for σc
resulting in a localization scale given by the cumulative
result of N − 1 independent measurements each with
precision σc, scaling as σc=

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
. In reality σc is

expected to follow a distribution of correlation scales,
ranging from typical short-range separation of ∼1 fm
between correlated pairs of neutrons and protons for about
20% of nucleons [33] and extending to larger values within
the nuclear diameter, with the limit σc → ∞ corresponding
to totally uncorrelated nucleons. We leave a rigorous study
of this distribution for future work, but conclude that the
typical distance between correlated pairs of nucleons sets
the lower limit of the relevant distance scales in the
problem, and the nuclear diameter sets the upper limit.
Since no protons or neutrons are left with internal excitation
following beta decay, degrees of freedom smaller than the
nucleon correlation scale cannot be considered to encode
localizing information about the antineutrino.
To summarize this section, we have shown that the

primary scale of localization that determines the emission
coherence of neutrinos from nuclear decay is at most the
nuclear size, with only an order-1 numerical prefactorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=N − 1

p
. This is because the position of each nucleon is

always entangled with the position of the remainder of the
nucleus, even if the nucleus is itself delocalized. The
primary scale of localization can be as small as that of
the characteristic distance between nucleon-nucleon corre-
lations within the decaying nucleus. Since in practice there
is a distribution of correlation lengths within the nucleus,

we expect the true scenario to be a range of localization
scales spanning from the shortest correlation distance to the
nuclear size. After accounting for the two effects above, the
delocalization of the nucleus itself, including higher scales,
is essentially irrelevant in determining the off-diagonal
reduced density matrix width and hence the width of the
antineutrino wave packet.
To obtain a truly precise form for ρA, a real nuclear wave

function should be used in Eq. (58). This can presently only
be calculated for very light nuclei [35,36] where convergent
calculations exist, and this is of only marginal relevance for
the problem of antineutrinos from nuclear reactors.
Nevertheless, the derivations in this section demonstrate
that the relevant scale for localization in the radioactive
decay scenario lies in a range between the shortest nucleon-
nucleon correlated distance to the nuclear diameter, already
a specific enough range to make interesting and testable
predictions for future reactor experiments. We use this
range of scales as input to calculations of reactor antineu-
trino decoherence in the following Sec. VI.

VI. COHERENCE LOSS FOR REACTOR
NEUTRINOS

As presented in the previous sections, we predict that
(1) the primary scale of localization that sets the coherence
of neutrinos from nuclear decays ranges from the typical
nucleon-nucleon correlation distance (∼1 fm) to the diam-
eter of the parent nucleus (σA;x ≈ 1.25 × A1=3 fm, or about
5–6 fm for the A ∼ 80–140 beta decaying nuclei inside of a
nuclear reactor); and (2) that the relationship between the
parent wave packet width and antineutrino wave packet
width is given by Eq. (27). In this section, we examine the
implications of these two predictions, in forming the
antineutrino wave packet width, on the experimental
observable oscillation probability.
As shown in Eq. (27), the mass of the parent fission

product and invariant mass of the recoil system, dependent
on the kinematics of each particular beta decay, set the
relationship between the parent wave packet width and the
antineutrino wave packet width. Towards finding this
relationship on a decay-by-decay basis, we use the OKLO

software toolkit [34] to simulate the hundreds of fission
product beta decay branch contributions to a typical
reactor-based electron antineutrino spectrum. OKLO uses
inputs from various nuclear databases, including ENDF-B-
VII.1 [37], JEFF-3.1.1, and JENDL-4.0 [38] for providing
the cumulative fission yields and ENSDF-6 data files for
the beta feedings and properties of parent and daughter
nuclei [39]. While the software and database inputs
have not been updated since 2015, we don’t expect this
fact to affect any results or conclusions presented here.
We use a commercial pressurized water reactor (PWR;
235U∶238U∶239Pu∶241Pu ¼ 0.584∶0.076∶0.290∶0.050, con-
sistent with the Daya Bay reactor complex), as a char-
acteristic example of what can be expected from a

WIDTH OF A BETA-DECAY-INDUCED ANTINEUTRINO WAVE … PHYS. REV. D 107, 013008 (2023)

013008-11



low-enriched-uranium-based reactor experiment, noting
that the fuel composition, including time evolution, will
only weakly affect the results.
The simulation uses the spectral data of 294 known

fission daughters, including beta branches, representing
about 35% of the total known daughters in the simulation
above the 1.8 MeV inverse beta decay (IBD; ν̄ep → eþn)
interaction threshold. Spectral data information is available
for an estimated ∼90% of the total known daughter nuclide
decay rate, per initial actinide fission, contributions above
the IBD interaction threshold. We expect the quantitative
conclusions of this article to be largely unaffected by the
missing spectral data. With the OKLO information in hand,
including relative normalizations amongst the parent
nuclides and branches, insofar as they contribute to the
antineutrino spectrum, parent/daughter masses, and
Q-values, we then simulate individual beta decays accord-
ing to the phase space available. Assuming that the parent
width is equal to the nuclear diameter, approximated with
σA;x ¼ 1.25 × A1=3 fm, and that the antineutrino width is

found using the parent width according to Eq. (27), we
arrive at the relationship between σν;x and Eν̄e shown in
Fig. 3 (top). The analogous plot but assuming that the
parent width is equal to the nucleon-nucleon correlation
length scale, approximated with σA;x ¼ 1 fm, is shown as
well. The main figures show the values most relevant for
reactor antineutrino experiments (Eν̄e > 1.8 MeV), while
the insets show lower energies. Figure 4 shows a projection
of these plots in terms of the σν;x values that contribute to
the electron antineutrino flux and unoscillated rate above
the IBD threshold. A projection of the plot(s) along the
antineutrino energy axis is also shown in Fig. 5 alongside
the Vogel and Engel prediction [40]. As can be seen, the
antineutrino flux associated with the beta decay spectral
data captures the overall flux well, despite the missing data.
The fission fragments that contribute to the flux are also
shown in the figure.
Figure 3 shows that reactor antineutrinos will have a

distribution of wave packet widths that varies with anti-
neutrino energy. Generalizing this prediction to cover both
the nucleonic correlations and nuclear diameter distance
scales discussed above in setting the parent width, we find
σν;x ∼ 10–400 pm for Eν̄e > 1.8 MeV, which captures the
full range of dependence on the parent properties, distance
scales, and kinematics of the decay, including our over-
simplified treatment of correlations among nucleons.
Notably, the approximation σν;x ≈ 20 000 × σA;x provides
accurate results for most oscillation calculations.
As discussed in detail in Refs. [15–17], the JUNO

experiment provides a sensitive testing ground for the
characteristic size of a reactor-induced antineutrino wave
packet based on its effect on observable electron antineu-
trino disappearance probability. The three-neutrino oscil-
lation probability equation is modified to include a finite
neutrino wave packet via an expansion of Eq. (45), Pee ¼
1 − P21 − P31 − P32 with

P21 ¼ cos4θ13sin22θ12 ·
1

2

�
1 − cos

1.27Δm2
21L

E

· exp

�
−
L2ðΔm2

21Þ2
32E4σ2ν;x

��

P31 ¼ cos2θ12sin22θ13 ·
1

2

�
1 − cos

1.27Δm2
31L

E

· exp

�
−
L2ðΔm2

31Þ2
32E4σ2ν;x

��

P32 ¼ sin2θ12sin22θ13 ·
1

2

�
1 − cos

1.27Δm2
32L

E

· exp

�
−
L2ðΔm2

32Þ2
32E4σ2ν;x

��
: ð66Þ

With this equation and the information in Fig. 3, we can
predict the impact on the observable electron antineutrino

FIG. 3. Antineutrino wave packet width vs energy for a beta-
decay-parent width of σA;x ¼ 1.25 × A1=3 fm (top) and σA;x ¼
1 fm (bottom). The visible bands correspond to individual beta
decay branch contributions to the electron antineutrino spectrum.
The main figures show energies relevant for ν̄e detection via IBD,
with a threshold of 1.8 MeV, while the insets show the lower
energy behavior.
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energy spectrum in JUNO. Figure 6 shows the event rate
expectation (105 events total, after oscillations) using the
JUNO experimental assumptions described in Refs. [14,17]
including, among others, 6 years of running, a 20 kton
liquid scintillator far detector ∼53 km from a set of
26.6 GWth PWR reactor complexes, energy resolution
effects, as well as oscillation parameters given by NuFIT 5.0

[41]. As can be seen, JUNO is insensitive to even the
lower end of our predicted range, σν;x ∼ 10–80 pm (cor-
responding to σA;x ¼ 1 fm), which is consistent with no

decoherence. Notably, however, the lowest end of this
prediction is only about a factor of 3 higher than JUNO’s
expected sensitivity (see Fig. 6 for the observable oscil-
lation effect of σν;x ¼ 2 pm, as an example)–but, there is no
realistic way to bridge the gap without invoking a longer
baseline and bigger detector option. Beyond JUNO, there
may be a possibility to observe the wave packet effect with
a future experiment in the case that a high-Δm2 mass
splitting (Δm2 ≳ 10 eV2) is participating in oscillations,
but we leave this study for future work.
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FIG. 5. (Left) The reactor electron antineutrino flux corresponding to the spectral data in OKLO alongside the Vogel and Engel flux
prediction [40]. (Right) The distribution of beta-decaying fission fragment masses that produce the electron antineutrino flux above the
IBD threshold (Eν̄e ¼ 1.8 MeV).

FIG. 4. The distributions of σν;x values contributing to the electron antineutrino flux above the IBD threshold (black) and the IBD cross
section weighted flux (or, rate with no oscillations; red), assuming σA;x ¼ 1.25 × A1=3 fm (left) and σA;x ¼ 1 fm (right).

WIDTH OF A BETA-DECAY-INDUCED ANTINEUTRINO WAVE … PHYS. REV. D 107, 013008 (2023)

013008-13



VII. CONCLUSIONS

In this paper we have used the basic principles of
quantum mechanics of entangled systems to predict the
wave packet widths for antineutrinos created via beta-
decaying fission fragments that produce the antineutrino
flux from nuclear reactors. Accounting for the hierarchy of
entanglement scales of the decaying parent we find that the
antineutrino width is dictated by the scale with which
nucleons inside the nucleus encode each others’ location,
even if the nucleus in question is quantum mechanically
delocalized. This scale is determined by both the size of the
nucleus and the distribution of nucleon-nucleon correlation
ranges within it. Using the resulting density matrix as input
to an oscillation calculation that properly accounts for the
emission of the entangled recoil, we predict the distance
and energy scales of nontrivial coherence loss effects from
wave packet separation with nontrivial dependencies on
antineutrino energy, decay parent, and recoil system kin-
ematics. It is notable that because each neutrino in three-
body decays is entangled with a different recoiling final
state, the coherent quantum mechanical width of the
neutrino that determines oscillation coherence (the off-
diagonal width of the density matrix) is in general far
narrower than the total width of the energy spectrum (the
diagonal width of the neutrino density matrix).
While our conclusion is similar, our prediction of the

wave packet widths is not in quantitative agreement with
some others that have been given in recent literature. For
example, Ref. [42] posits that the distance scale between
scatters of the recoil system provides the limiting distance
scale for neutrino coherence. We have shown in Sec. V that
even with a highly delocalized nucleus, the subnuclear
distance scale effects remain limiting when all factors are
properly accounted for in the final state. We also consider

definitive the argument that the final state entangled recoil
cannot influence the coherence behavior of the neutrino, for
reasons previously outlined in the Appendix of Ref. [3] and
elaborated on in Ref. [32]. The treatment used in this paper
derives the coherence loss effect directly from the princi-
ples of entangled-system quantummechanics, resulting in a
clear statement about the expected coherence distances
with little room for arbitrariness. One notable deficiency in
our treatment, however, is that we have used only a
representative example for the nuclear wave function, since
a direct calculation remains elusive for the large fission
fragments that emit antineutrinos in nuclear reactors.
Incorporation of an ab initio wave function for a small
nucleus will be the subject of a forthcoming study.
Unfortunately, the coherence loss effects that we predict

are outside of current and foreseeable experimental sensi-
tivity, including at the JUNO reactor antineutrino experi-
ment. Still, observation of the coherence loss effect on
oscillations is something to strive for, as it would both
provide the first observation of a novel and to-date
unmeasured neutrino property; the quantum mechanical
localization scale of an antineutrino from beta decay at
emission. Such an observation would also represent a
fundamental test of the validity of quantum mechanics.
The wave packet width is dictated by the scale to which the
environment around the open quantum system of parent-
neutrino-recoil system encodes information about it
through entanglement. This principle, when combined with
a quantum measurement process yielding definite out-
comes given a probabilistically mixed state, is responsible
for the emergence of classical behavior in quantum systems
in general. Its accurate prediction and subsequent meas-
urement thus represents a test of the theory of the
emergence of classicality. That such a principle can be
tested, even in the far future, through accurate antineutrino
interferomery would represent another entry in the list of
opportunities neutrinos have afforded us as experimenters,
to better understand the Universe and our role within it.
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