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We construct a factorization theorem that allows one to systematically include QCD corrections to the
contribution of the electromagnetic dipole operator in the effective weak Hamiltonian to the B̄s → μþμ−

decay amplitude. We first rederive the known result for the leading-order QED box diagram, which features
a double-logarithmic enhancement associated with the different rapidities of the light quark in the B̄s meson
and the energetic muons in the final state. We provide a detailed analysis of the cancellation of the related
endpoint divergences appearing in individual momentum regions, and show how the rapidity logarithms
can be isolated by suitable subtractions applied to the corresponding bare factorization theorem. This
allows us to include in a straightforward manner the QCD corrections arising from the renormalization-
group running of the hard matching coefficient of the electromagnetic dipole operator in soft-collinear
effective theory, the hard-collinear scattering kernel, and the Bs-meson distribution amplitude. Focusing on
the contribution from the double endpoint logarithms, we derive a compact formula that resums the
leading-logarithmic QCD corrections.
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I. INTRODUCTION

The rare decay B̄s → μþμ− mediated by flavor-changing
neutral current b → s transitions represents one of the
golden channels to test the flavor sector of the Standard
Model (SM). Precision measurements of its decay rate are
performed at current flavor experiments [1–12]. Precise
theoretical predictions include higher-order QCD and
electroweak corrections (see e.g. Refs. [13–16], for reviews
see e.g. Refs. [17,18] and references therein). Comparing
experimental precision measurements and theoretical pre-
dictions thus allows us to search for indirect effects of
physics beyond the SM. As it has been pointed out in
Refs. [19,20], at the level of the intended precision,
theoretical calculations also have to take into account
corrections from nonlocal QED effects. In particular, the
exchange of an additional photon between the light degrees
of freedom in the B̄s-meson and the final-state muons
leads to a power enhancement compared to the leading

contribution from the local semileptonic operator O10.
Besides the phenomenological importance, these effects
are of particular theoretical relevance for two reasons. First,
QED corrections to exclusive decays of heavy quarks at
large recoil are conceptually interesting, and the corre-
sponding generalization of the QCD factorization approach
is nontrivial [21–24]. Second, the contribution of the
electromagnetic dipole operator O7 features a double-
logarithmic enhancement that results from endpoint con-
figurations of the light-cone momentum fractions of the
intermediate muon propagator with respect to the external
muons. Analyzing the relevant QED box diagram with
the method of momentum regions then leads to end-
point-divergent convolution integrals, which makes the
formulation of factorization theorems and the renormaliza-
tion-group improvement for this contribution difficult and
nonstandard [25]. The systematic understanding of end-
point logarithms in the context of factorization theorems
and effective-field-theory methods is currently a very active
field of research. While the analysis of endpoint dynamics
and rapidity logarithms for nonperturbative setups, like
exclusive charmless b-quark decays [26], is notoriously
difficult [27], progress has recently been made for a number
of perturbative examples, including bottom-induced h →
γγ decay [30,31], off-diagonal gluon thrust [32], or muon-
electron backward scattering [33]. In this context, the O7

contribution to the B̄s → μþμ− decay amplitude offers
another example to study rapidity logarithms in hard
exclusive transitions. In this case the origin of the endpoint
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double logarithms resides on the muon side and can thus be
understood in QED perturbation theory, while the dynam-
ics of the strange quark is embedded in the exclusive
hadronic B → vacuum transition.
The aim of this work is to provide a QCD factorization

theorem for the O7 contribution to the B̄s → μþμ− decay
amplitude. To this end, in the following Sec. II, we first
rederive the result from Ref. [19] by adding up the relevant
momentum regions [34,35] of the QED box diagram.
Depending on the choice for the additional regulator that is
needed to render the convolution integrals finite, we find
different relevant momentum regions. In particular, we
show that the double-logarithmic term in the final result
can be isolated from a certain momentum configuration,
where the photon propagators become eikonal and the
intermediate muon propagator goes on shell (see e.g.
Ref. [36] and references therein). The results from the
analysis of the leading QED box diagram can be gener-
alized to obtain a bare factorization theorem that takes into
account additional QCD corrections, depending on the
applied regulators. By means of suitable subtractions on
the basis of refactorization conditions, we construct a
factorization theorem with endpoint-convergent convolu-
tions where the additional analytic regulator can be
dropped and the 1=ϵ divergences from dimensional regu-
larization are manifest.
On the basis of this result, it is a rather straightforward

task to implement the leading-logarithmic QCD corrections
to the b → sγ vertex, the jet function describing the
exchange of a hard-collinear strange quark and the light-
cone distribution amplitude (LCDA) of the Bs-meson. This
is worked out in detail in Sec. III. On the basis of an explicit
and systematic parametrization for the LCDA we also
provide a relatively compact formula that resums the
leading-logarithmic QCD effects in renormalization-group
(RG) improved perturbation theory. A brief numerical
analysis shows that the effect of the leading-logarithmic
QCD corrections can be of the order of 10%–30% relative
to the O7 contribution at fixed-order Oðα0sÞ, depending on
the shape of the Bs-meson LCDA. It should, however, be
noted that the overall effect of the electromagnetic dipole
operator is small because of the associated small Wilson
coefficient C7, such that our result only has a marginal
phenomenological impact on the B̄s → μþμ− decay rate.
We conclude this paper with a short summary. A detailed
description of the subtractions that are required to get rid of
endpoint-divergent convolution integrals in the bare fac-
torization theorem is provided in the Appendix.

II. THE LEADING-ORDER QED BOX DIAGRAM

Our starting point is the nonlocal matrix element

h0j
Z

d4xTfjμemðxÞ;Heffð0ÞgjB̄si ð1Þ

of the time-ordered product of the quark electromagnetic
current jμemðxÞ ¼

P
q Qqq̄ðxÞγμqðxÞ and the effective weak

Hamiltonian Heff , of which we adopt the convention of
Ref. [37] and of which the operator

O7 ¼
e

16π2
mbðs̄LσμνbRÞFμν

is our focus in this article. The leading-order contribution
of O7 to the B̄s → μþμ− decay amplitude via the nonlocal
matrix element (1) is diagrammatically shown in Fig. 1,
where an additional virtual photon connects the spectator
quark of the B̄s meson to one of the final-state leptons. The
contribution of this diagram (and the corresponding
crossed one with the role of the two muons interchanged,
which turns out to give the identical contribution) to the
B̄s → μþμ− decay amplitude was first calculated in
Ref. [19] and can be written as

iMðB̄s → μþμ−Þ
���LO
O7

¼−
α

2π
Q2

lQsCeff
7 mMfBs

×N ½ūðpÞð1þ γ5Þvðp0Þ�FLOðE;mÞ;
ð2Þ

with

N ¼ VtbV�
ts
4GFffiffiffi

2
p α

4π
ð3Þ

and

FLOðE;mÞ ¼
Z

∞

0

dω
ω

ϕþðωÞ
�
1

2
ln2

m2

2Eω
þ ln

m2

2Eω
þ π2

3

�
:

ð4Þ

Here m denotes the muon mass, M ¼ mBs
≃mb the mass

of the B̄s meson, and E ≃M=2 the muon energy in the

FIG. 1. QED box diagram describing the leading contribution
of the operator O7 (indicated by the black square) to the B̄s →
μþμ− decay amplitude. The analogous diagram with the role of
μþ and μ− interchanged gives the same result and is not shown.
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B̄s meson rest frame. The fermion electric charge fractions
are given by Ql ¼ −1 and Qs ¼ −1=3.
In Ref. [19] it has been pointed out that the strange-

quark propagator in the box diagram leads to a power-
enhancement compared to the leading contribution from
the local b → slþl− operator O10. Furthermore, the
propagator depends on the light-cone momentum fraction
ω of the initial s̄-quark in the B̄s meson, and consequently
the result involves a convolution with the hadronic light-
cone distribution amplitude ϕþðωÞ. Most importantly for
our work, the form-factor F turns out to receive a double-
logarithmic enhancement which can be traced back to
endpoint divergences appearing in the convolution integrals
from individual momentum regions, which we discuss in
detail in the following.

A. Kinematics

We first fix the notation for the relevant kinematic
variables. The momenta of the muons in the final state
are used to define two light-cone vectors nμ and n̄μ, such
that

outgoing μ−∶ pμ ¼ ðn̄ · pÞ n
μ

2
þ m2

ðn̄ · pÞ
n̄μ

2
;

outgoing μþ∶ p0μ ¼ ðn · p0Þ n̄
μ

2
þ m2

ðn · p0Þ
nμ

2
; ð5Þ

and the momentum of the incoming B̄s-meson given by

Mvμ ¼ M

�
nμ

2
þ n̄μ

2

�
: ð6Þ

Here n2 ¼ n̄2 ¼ 0 and n · n̄ ¼ 2. The energy E of the
muons in the B̄s-meson rest frame is approximately given
by the relation ðn̄ · pÞ ¼ ðn · p0Þ ≃ 2E ¼ M. In the diagram

in Fig. 1, the incoming b-quark is described as a static
quark in heavy-quark effective theory, characterized by a
momentum pμ

b ¼ mbvμ þ Δμ, with a residual momentum
Δμ of order ΛQCD. The momentum of the incoming s̄-quark
is decomposed as

incoming s̄-quark∶ lμ ¼ ðn̄ · lÞ n
μ

2
þ lμ⊥ þ ðn · lÞ n̄

μ

2
; ð7Þ

where here and in the following we neglect the strange-
quark mass. It turns out that in the above diagram only the
projection ω≡ ðn̄ · lÞ of the s̄-quark in the B̄s-meson enters
at leading approximation, which therefore is identified as
the argument of the light-cone distribution amplitude in
Eq. (4). The ratio of ðn̄ · p0Þ and ðn̄ · lÞ defines the relevant
small expansion parameter which we denote as

λ2 ¼ m2

2Eω
∼O

�
ΛQCD

mb

�
∼O

�
m
mb

�
; ð8Þ

where the muon mass m and the light-cone projection ω of
the light spectator-quark momentum are both counted to be
of the order of the intrinsic QCD scale ΛQCD, which defines
the soft scale in the process. The energy of the muons,
E ≃M=2, defines the hard scale in the process. The product
ð2EωÞ appears in the denominator of the strange-quark
propagator (see below), and thus

ffiffiffiffiffiffiffiffiffi
2Eω

p
defines the hard-

collinear scale in the process.

B. Momentum regions and different choices
of analytic regulators

We characterize the external and internal momenta by the
scaling of the light-cone projections and the transverse
components, using a shorthand notation, e.g.,

pμ ⟷
1

2E
ðn̄ · p; p⊥; n · pÞ ∼ ð1; λ2; λ4Þ for collinear modes; ð9Þ

p0μ ⟷
1

2E
ðn̄ · p0; p0⊥; n · p0Þ ∼ ðλ4; λ2; 1Þ for anticollinear modes; ð10Þ

lμ ⟷
1

2E
ðn̄ · l; l⊥; n · lÞ ∼ ðλ2; λ2; λ2Þ for soft modes: ð11Þ

The presence of endpoint-divergent integrals requires the
introduction of an additional regulator, since dimensional
regularization alone is not sufficient. Depending on the
additional regulator, one then identifies different sets of
relevant momentum regions. In what follows, we compare
two different choices for an analytic regulator,

option ðaÞ∶ RaðkÞ ¼
�

ν2

−ðn · kÞðn̄ · lÞ þ i0

�
δ

; ð12Þ

option ðbÞ∶ RbðkÞ ¼
�

ν2

ðn̄ · kÞðn ·p0Þ− ðn · kÞðn̄ · lÞ þ i0

�
δ

;

ð13Þ
which are assigned to a muon propagator with momentum
k. These regulators are a generalization of the correspond-
ing options discussed—for instance—in Ref. [33] (see also
references therein) written in a manifestly boost-invariant
form, using the external momenta ðn̄ · lÞ and ðn · p0Þ.
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The nonvanishing momentum regions for the box dia-
gram in Fig. 1 are summarized in Table I. Here the momenta
of the upper and lower photon lines are given by

qμ ¼ ðp − kÞμ; q0μ ¼ ðp0 þ kÞμ; ð14Þ

and the intermediate strange-quark propagator has
momentum

k0μ ¼ ðp0 þ k − lÞμ: ð15Þ

We observe that in all relevant regions the intermediate
strange quark has anti-hard-collinear virtuality, ðk0Þ2 ∼ λ2,
with

k0 ∼
� ðλ2; λ; 1Þ for k anti − hard − collinear;

ðλ2; λ2; 1Þ for k soft; anticollinear; or anti − soft − collinear:

This implies that in all relevant cases, the strange-quark
propagator can effectively be replaced by

SFðk0Þ ≃ i
n̄
2

ðn · k0Þ
ðn · k0Þðn̄ · k0Þ þ ðk0⊥Þ2 þ i0

≃ i
n̄
2

ð2Eþ n · kÞ
ð2Eþ n · kÞðn̄ · k − ωÞ þ k2⊥ þ i0

; ð16Þ

which further simplifies in the individual momentum
regions (see below). Here ðn · k0Þ ∼ 2E is the large com-
ponent of the anti-hard-collinear momentum, and the
propagator only depends on the light-cone projection ω ¼
n̄ · l of the strange-quark momentum in the B̄s meson.
Inserting this approximation into the box diagram and

performing the Lorentz contractions and Dirac projections,
and exploiting the equations of motion for the external
muon states, we find that the problem reduces to analyzing
the scalar integral

IðωÞ ¼
Z

dðn̄ · kÞ
Z

dðn · kÞ
Z gdk⊥

·
1

ðp − kÞ2 þ i0
·

1

ðp0 þ kÞ2 þ i0

×
ð2Eþ n · kÞ2Eω

ð2Eþ n · kÞðn̄ · k − ωÞ þ k2⊥ þ i0

·
2Eþ n · k

ðn · kÞðn̄ · kÞ þ k2⊥ −m2 þ i0

����
leading power

: ð17Þ

The integral measure for the transverse loop momentum
reads

gdk⊥ ¼ iμ2ϵeϵγE

2πD=2 dD−2k⊥;

such that

FLOðE;mÞ ¼
Z

∞

0

dω
ω

ϕþðωÞIðωÞ; ð18Þ

where γE is the Euler-Mascheroni constant, D ¼ 4 − 2ϵ
denotes the number of space-time dimensions, and μ refers
to the MS scale. We now discuss the contributions to the
integral IðωÞ from the different momentum regions in turn.

1. The anti-hard-collinear region

The anti-hard-collinear region in the integral (17) is
defined by the scaling k ∼ ðλ2; λ; 1Þ, which simplifies the
integrand at leading power to

IhcðωÞ ¼
Z

dðn̄ · kÞ
Z

dðn · kÞ
Z gdk⊥

×
1

−2Eðn · kÞ þ i0
·

1

ð2Eþ n · kÞðn̄ · kÞ þ k2⊥ þ i0

×
ð2Eþ n · kÞ2Eω

ð2Eþ n · kÞðn̄ · k−ωÞ þ k2⊥ þ i0

·
2Eþ n · k

ðn · kÞðn̄ · kÞ þ k2⊥ þ i0
: ð19Þ

TABLE I. Momentum regions contributing to the box diagram in Fig. 1. Here, hc, c̄, s, and sc denote the anti-
hard-collinear, anticollinear, soft, and anti-soft-collinear regions, respectively. Notice that the anti-soft-collinear
region yields scaleless integrals if the analytic regulator Ra is used.

Region Muon Upper photon s̄-quark Lower photon Regulator

hc k ∼ ðλ2; λ; 1Þ q ∼ ð1; λ; 1Þ k0 ∼ ðλ2; λ; 1Þ q0 ∼ ðλ2; λ; 1Þ Ra;b

c̄ k ∼ ðλ4; λ2; 1Þ q ∼ ð1; λ2; 1Þ k0 ∼ ðλ2; λ2; 1Þ q0 ∼ ðλ4; λ2; 1Þ Ra;b

s k ∼ ðλ2; λ2; λ2Þ q ∼ ð1; λ2; λ2Þ k0 ∼ ðλ2; λ2; 1Þ q0 ∼ ðλ2; λ2; 1Þ Ra;b

sc k ∼ ðλ3; λ2; λÞ q ∼ ð1; λ2; λÞ k0 ∼ ðλ2; λ2; 1Þ q0 ∼ ðλ3; λ2; 1Þ Rb
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This integral features an endpoint divergence for ðn ·kÞ→0,
which is regularized in D ¼ 4 − 2ϵ dimensions, such that
the analytic regulator can be dropped. Actually, the endpoint
divergence arises from the convolution of a hard eikonal
propagator (the upper photon) with a remaining jet function
consisting of three anti-hard-collinear propagators.
It is convenient to first perform the ðn̄ · kÞ integration by

residues, and then afterwards the k⊥ integral. This can be
written as

IhcðωÞ ¼
Z

1

0

du
u
Hð0Þ

1 ðuÞJ̄ð1Þ1 ðu;ωÞ; ð20Þ

where Hð0Þ
1 ðuÞ ¼ 1 is the leading-order value of the hard

matching coefficient for the b → sγ tensor current with an
energy transfer ð1 − uÞE, and

J̄ð1Þ1 ðu;ωÞ ¼ −ΓðϵÞ
�

μ2eγE

2Eωuð1 − uÞ
�

ϵ

ð1 − uÞ ð21Þ

is the first nonvanishing term in the jet function associated
with the anti-hard-collinear momentum region, with u≡
−ðn · kÞ=ðn · p0Þ. Performing the u integral and expanding
in ϵ, the result for the anti-hard-collinear region gives

IhcðωÞ ¼
1

ϵ2
þ 1

ϵ
ln

μ2

2Eω
þ 1

2
ln2

μ2

2Eω
−
π2

12
þ 1

ϵ
þ ln

μ2

2Eω
þ 2;

ð22Þ

which features the standard double logarithms from soft and
collinear infrared (IR) divergences, and a single logarithm
arising from an endpoint-finite longitudinal integration.

2. The anticollinear region

The anticollinear region in the integral (17) is defined by
the scaling k ∼ ðλ4; λ2; 1Þ, which simplifies the integrand at
leading power to

Ic̄ðωÞ ¼
Z

dðn̄ · kÞ
Z

dðn · kÞ
Z gdk⊥ 1

−2Eðn · kÞ þ i0
·

1

ð2Eþ n · kÞðn̄ · p0 þ n̄ · kÞ þ k2⊥ þ i0

×
2Eω

−ωþ i0
·

2Eþ n · k
ðn · kÞðn̄ · kÞ þ k2⊥ −m2 þ i0

�
ν2

−ωðn · kÞ þ i0

�
δ

; ð23Þ

with ðn̄ · p0Þ ¼ m2=2E. This integral now features an
endpoint singularity from ðn · kÞ → 0 which is not regu-
larized in D ≠ 4 dimensions due to the nonvanishing mass
in the anticollinear muon propagator. In this case the
analytic regulator has been kept, and because of the
anticollinear scaling of k both variants Ra and Rb reduce
to the same term as indicated above.
We note that the integral now involves two eikonal

propagators. The first one, ð−ðn̄ · pÞðn · kÞÞ−1, reflects the
same tree-level hard function from the upper photon
propagator as in the anti-hard-collinear region. The second
one, ð−ωÞ−1, reflects the tree-level anti-hard-collinear
function which decouples from the anticollinear loop
integral. Again, we can first perform the ðn̄ · kÞ integration
by residues, and then the k⊥ integral in D − 2 dimensions.
The result can be written as

Ic̄ðωÞ ¼ J̄ð0Þ2 ð1;ωÞ
Z

1

0

du
u
Hð0Þ

1 ðuÞC̄ð1Þðu;ωÞ; ð24Þ

where we have defined the leading-order term in the jet
function for the anti-hard-collinear strange-quark propaga-
tor with ðn̄ · k0Þ ¼ zω,

J̄ð0Þ2 ðz;ωÞ ¼ 1

z
; ð25Þ

where the overall factor 1=ω—that appears in the con-
volution with the Bs-meson LCDA—has been factored out.
The function

C̄ð1Þðu;ωÞ ¼ ΓðϵÞ
�
μ2eγE

m2

�
ϵ
�

ν2

2Eω

�
δ

ð1 − uÞ1−2ϵu−δ ð26Þ

refers to the leading term of the anticollinear function that
describes the recombination process μþð−kÞγðp0 þ kÞ →
μþðp0Þ. Performing the u integration, the final result for the
anticollinear region gives

Ic̄ðωÞ¼
�
−
1

δ
− ln

ν2

2Eω

��
1

ϵ
þ ln

μ2

m2

�
þπ2

3
−
1

ϵ
− ln

μ2

m2
−2;

ð27Þ

where we first had to expand in δ and subsequently in ϵ. We
observe that the anticollinear region depends on the soft
momentum ω through the analytic regulator, reflecting the
collinear-anomaly phenomenon [38,39].

3. The soft region

The soft region in the integral (17) is defined by the
scaling k ∼ ðλ2; λ2; λ2Þ, which simplifies the integrand at
leading power to
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IsðωÞ ¼
Z

dðn̄ · kÞ
Z

dðn · kÞ
Z gdk⊥ ·

1

−2Eðn · kÞ þ i0

·
1

2Eðn̄ · kÞ þ i0
2Eω

n̄ · k − ωþ i0

·
2E

ðn · kÞðn̄ · kÞ þ k2⊥ −m2 þ i0
Ra;bðkÞ; ð28Þ

which is again endpoint divergent and thus requires the
additional regulator, as indicated. Let us first consider the
analytic regulator for case (b) which, in the soft region,
reduces to

RbðkÞ →
�

ν2

2Eðn̄ · kÞ þ i0

�
δ

;

where the i0 prescription matches the expression in the
respective eikonal photon propagator. In that case, one can
first perform the ðn · kÞ integration by residues, and then the
k⊥ integral in D − 2 dimensions. The soft contribution to
the integral then takes the form

ðbÞ∶ IsðωÞ ¼ ΓðϵÞ
�
μ2eγE

m2

�
ϵ
�

ν2

2Eω

�
δ Z∞

0

dv
ðvþ i0Þ−1−δ
v− 1þ i0

;

ð29Þ

with v≡ ðn̄ · kÞ=ω. The endpoint divergence at v → 0 is
regularized by the analytic regulator, while the integral

converges in the ultraviolet (UV), v → ∞. Notice that the
integral generates an imaginary part which stems from the
situation when the strange-quark propagator goes on shell
for v → 1,

ðbÞ IsðωÞ ¼
�
1

ϵ
þ ln

μ2

m2

��
−
1

δ
− ln

ν2

2Eω
þ iπ

�
: ð30Þ

On the other hand, taking the analytic regulator for
case (a)

RaðkÞ →
�

ν2

−ωðn · kÞ þ i0

�
δ

;

we can first perform the k⊥ integration, to end up with

ðaÞ ĨsðωÞ ¼
ΓðϵÞ
2πi

Z
dðn · kÞ

−n · kþ i0

Z
dðn̄ · kÞ
n̄ · kþ i0

ω

n̄ · k−ωþ i0

×

�
μ2eγE

−ðn · kÞðn̄ · kÞ þm2 − i0

�
ϵ

RaðkÞ: ð31Þ

Now consider the analytic structure in the ðn̄ · kÞ plane:
(i) There are two poles at

Reðn̄ · kÞ ¼ 0;ω below the real axis:

(ii) There is a branch cut from the dimensional regulator,

for ðn · kÞ > 0∶ m2=ðn · kÞ ≤ Reðn̄ · kÞ; below the real axis;

for ðn · kÞ < 0∶ Reðn̄ · kÞ ≤ m2=ðn · kÞ; above the real axis:

For ðn · kÞ > 0, the integrand is analytic in the upper half plane, and therefore the integral vanishes. For ðn · kÞ < 0, the
branch cut from the dimensional regulator is moved to the upper half plane, and by picking up the corresponding
discontinuity

Disc

�
μ2

−ðn · kÞðn̄ · kÞ þm2 − i0

�
ϵ

¼ 2πiθððn · kÞðn̄ · kÞ −m2Þ
ΓðϵÞΓð1− ϵÞ

�
μ2

ðn · kÞðn̄ · kÞ−m2

�
ϵ

; ð32Þ

we arrive at the representation

ðaÞ ĨsðωÞ ¼
1

Γð1 − ϵÞ
Z0
−∞

dðn · kÞ
n · k

Zm2=n·k

−∞

dðn̄ · kÞ
n̄ · k

ω

ω − n̄ · k

�
μ2eγE

ðn · kÞðn̄ · kÞ −m2

�
ϵ

RaðkÞ

¼ 1

Γð1 − ϵÞ
�
μ2eγE

2Eω

�
ϵ
�

ν2

2Eω

�
δ Z∞

0

du
u

Z∞
λ2=u

dρ
ρ

1

1þ ρ
ðuρ − λ2Þ−ϵu−δ; ð33Þ

where ρ ¼ −ðn̄ · kÞ=ω. This can be written as
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ðaÞ ĨsðωÞ ¼ Hð0Þ
1 ð0Þ

Z
∞

0

du
u

Z
∞

0

dρ
ρ
Sð1Þðu; ρ;ωÞ

× J̄ð0Þ2 ð1þ ρ;ωÞ ð34Þ

with the same hard and jet function as already defined
above, and a soft function

Sð1Þðu;ρ;ωÞ ¼ θðuρ− λ2Þ
�
μ2eγE

2Eω

�
ϵ
�

ν2

2uEω

�
δ ðuρ− λ2Þ−ϵ

Γð1− ϵÞ ;

ð35Þ

which stems from the discontinuity of the muon propa-
gator. Performing the longitudinal integrations, we end up
with

ðaÞ ĨsðωÞ ¼
�
1

δ
þ ln

ν2

m2

��
1

ϵ
þ ln

μ2

m2

�
−

1

ϵ2

−
1

ϵ
ln

μ2

m2
−
1

2
ln2

μ2

m2
þ π2

12
: ð36Þ

In that case, the full integral is already reproduced by the
sum of the anti-hard-collinear, the anticollinear, and the
soft region,

ðaÞ IðωÞ ¼ IhcðωÞ þ Ic̄ðωÞ þ ĨsðωÞ

¼ 1

2
ln2

m2

2Eω
þ ln

m2

2Eω
þ π2

3
: ð37Þ

Notice that the single logarithm in this expression stems
from the cancellation of single powers of 1=ϵ in the hc and
c̄ region.

4. Anti-soft-collinear region

For the regulator Rb, we also have to take into account
an anti-soft-collinear region, where kμ ∼ ðλ3; λ2; λÞ. In this
region the integral (17) at leading power reduces to

IscðωÞ ¼
Z

dðn̄ · kÞ
Z

dðn · kÞ
Z gdk⊥ ·

1

−2En · kþ i0

·
1

2En̄ · kþ i0
4E2ω

−2Eωþ i0

·
2E

ðn · kÞðn̄ · kÞ þ k2⊥ −m2 þ i0
RbðkÞ: ð38Þ

In that case, it is again convenient to first perform the k⊥
integration, which yields

ðbÞ IscðωÞ ¼
ΓðϵÞ
2πi

Z
dðn · kÞ
n · k − i0

Z
dðn̄ · kÞ
n̄ · kþ i0

×

�
μ2eγE

−ðn · kÞðn̄ · kÞ þm2 − i0

�
ϵ

×

�
ν2

2Eðn̄ · kÞ − ωðn · kÞ þ i0

�
δ

: ð39Þ

We now consider the analytic structure of the integrand in
the complex ðn · kÞ plane.

(i) There is always a pole at

Reðn · kÞ ¼ 0; above the real axis:

(ii) There is a branch cut from the dimensional regulator,

for ðn̄ · kÞ > 0 ∶ m2=ðn̄ · kÞ ≤ Reðn · kÞ; below the real axis;

for ðn̄ · kÞ < 0 ∶ Reðn · kÞ ≤ m2=ðn̄ · kÞ; above the real axis:

(iii) There is a branch cut from the rapidity regulator,

ðn ·p0Þðn̄ · kÞ=ω ≤ Reðn · kÞ; above the real axis:

For ðn̄ · kÞ < 0, the integrand is analytic in the lower half
plane, and therefore the integral vanishes. For ðn̄ · kÞ > 0,
the branch cut from the dimensional regulator is moved to
the lower half plane, and by picking up the corresponding
discontinuity (32), we obtain

ðbÞ IscðωÞ ¼
1

Γð1 − ϵÞ
Z∞
0

dðn · kÞ
n · k

Z∞
0

dðn̄ · kÞ
n̄ · k

× θððn · kÞðn̄ · kÞ −m2Þ ð40Þ

×

�
μ2eγE

ðn · kÞðn̄ · kÞ−m2

�
ϵ
�

ν2

2Eðn̄ · kÞ−ωðn · kÞ þ i0

�
δ

¼
�
μ2eγE

2Eω

�
ϵ
�

ν2

2Eω

�
δ Z∞

0

du0

u0

Z∞
0

dv
v
θðu0v− λ2Þ ðu

0v− λ2Þ−ϵ
Γð1− ϵÞ

× ðv− u0 þ i0Þ−δ; ð41Þ

where u0 ¼ −u ¼ ðn · kÞ=2E and v ¼ ðn̄ · kÞ=ω as before.
This integral can most easily be solved by decomposing it
into two terms, one with v > u0 and one with v < u0. Both
integrals are identical, except for an additional phase factor
e−iπδ that arises in the second case and effectively amounts
to replacing 1=δ → 1=δ − iπ after expanding in δ. It is also
instructive to consider the variable transform x ¼ v − u0
and y ¼ u0v. Here, the integral over x produces a UV pole
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that is regularized by δ, while y produces a UV pole that is
regularized by ϵ. The net result is

ðbÞ IscðωÞ ¼ ĨsðωÞ − IsðωÞ

¼ −
1

ϵ2
−
1

ϵ
ln

μ2

m2
−
1

2
ln2

μ2

m2
þ
�
1

ϵ
þ ln

μ2

m2

�

×

�
2

δ
− iπ þ ln

ν2

2Eω
þ ln

ν2

m2

�
þ π2

12
: ð42Þ

With this we obtain an alternative decomposition of the
form-factor integral

ðbÞ IðωÞ ¼ IhcðωÞ þ Ic̄ðωÞ þ IsðωÞ þ IscðωÞ: ð43Þ

Notice that the (divergent) imaginary part iπð1ϵ þ ln μ2

m2Þ
cancels between the soft and anti-soft-collinear region.
Furthermore, in the sc region, the reference scale for the
analytic regulator is set by the geometric mean of the anti-
hard-collinear scale

ffiffiffiffiffiffiffiffiffi
2Eω

p
and the soft scale m.

C. Anti-soft-collinear region with cutoff

The double-logarithmic term in IðωÞ can also be
obtained in an alternative manner by considering the IR
contribution to the anti-soft-collinear region only (see also
the analogous discussion in Refs. [33] or [36] and refer-
ences therein), where the dimensionless integration varia-
bles u, v are cut off from above at their natural value 1,

IðωÞ
���
double−log

¼ Isc
���
cut

¼
Z1
0

du
u

Z1
0

dv
v
θðuv − λ2Þ

¼ 1

2
θð1 − λ2Þln2λ2: ð44Þ

Notice that we have kept a theta-function θð1 − λ2Þ here,
because λ2 ¼ m2

2Eω depends on the integration variable ω,
such that formally we can have λ2 > 1 for ω < m2=2E.
However, in the end, the hadronic parameters in the
Bs-meson LCDA respect the power-counting ω ∼ ΛQCD,
such that we can expand, θð1 − λ2Þ ¼ 1þOðm=EÞ. The
double-logarithmic term in the form factor for the O7

contribution can thus be written as

FLOðE;mÞ
���
double−log

¼
Z

dω
ω

φþðωÞ
Z1
0

du
u

×
Z1
0

dv
v
θð2Eωuv −m2Þ: ð45Þ

For the following discussion it is useful to rewrite the
integral over the light-quark momentum ω in the so-called
dual space introduced in Ref. [40]:

ϕþðωÞ ¼
Z

dω0

ω0

ffiffiffiffiffi
ω

ω0

r
J1

�
2

ffiffiffiffiffi
ω

ω0

r �
ρþðω0Þ; ð46Þ

with the Bessel function of the first kind J1. Since the
second logarithmic moments of ϕþðωÞ and ρþðω0Þ
coincide [40], we can as well write the double-logarithmic
contribution to the form factor as

FLOðE;mÞ
���
double−log

¼ 1

2

Z
dω0

ω0 ρþðω0Þln2m
2e2γE

2Eω0 : ð47Þ

D. Construction of the factorization theorem

The analysis of the box diagram above determines the
form of a bare factorization theorem that takes into account
additional QCD corrections from different momentum
regions, depending on the regulator being used. For
concreteness, we stick to the analytic regulatorRaðkÞ, such
that the anti-soft-collinear region does not appear in the bare
factorization theorem. The form factor for the O7 contri-
bution then decomposes into three additive terms,

F ðE;mÞ ¼
Z

∞

0

dω
ω

ϕþðωÞ
�Z

1

0

du
u
H1ðuÞJ̄1ðu;ωÞ

þ J̄2ð1;ωÞ
Z

1

0

du
u
H1ðuÞC̄ðu;ωÞ þH1ð0Þ

×
Z

∞

0

du
u

Z
∞

0

dρ
ρ
Sðu; ρ;ωÞJ̄2ð1þ ρ;ωÞ

	
bare

ð48Þ
where each individual term contains an endpoint-divergent
convolution integral that is regularized for finite ϵ and δ. Here

H1ðuÞ ¼ Hð0Þ
1 ðuÞ þOðαsÞ; ð49Þ

J̄1ðu;ωÞ ¼ J̄ð1Þ1 ðu;ωÞ þOðαsÞ; ð50Þ

J̄2ðzÞ ¼ J̄ð0Þ2 ðzÞ þOðαsÞ; ð51Þ

with Hð0Þ
1 ðuÞ ¼ 1, and J̄ð1Þ1 ðu;ωÞ, J̄ð0Þ2 ðzÞ given in Eqs. (21)

and (25). Notice that in the bare factorization theorem (48)
wehave not taken into account additionalQEDcorrections to
the γ�γ� → μþμ− subprocess, i.e. the collinear and soft
functions related to the muon,

C̄ðu;ωÞ ¼ C̄ð1Þðu;ωÞ þOðαÞ; ð52Þ

Sðu; ρ;ωÞ ¼ Sð1Þðu; ρ;ωÞ þOðαÞ ð53Þ

are set to their leading-order expressions given in Eqs. (26)
and (35).
In order to get rid of the analytic regulator in the

bare factorization theorem, we have to exploit the
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refactorization condition [28,36,40] for the anticollinear
function. Following the notation of [36], we define

½½C̄ðu;ωÞ��≡ C̄ðu;ωÞju→0¼
Z

∞

0

dρ
ρ
Sðu;ρ;ωÞþOðαÞ ð54Þ

which in our case provides a trivial identity between the
QED fixed-order expressions in (26) and (35). In addition,

we use that in case of analytic regulators the scaleless
double integralZ

∞

0

du
u

Z
∞

0

dρ
ρ
Sðu; ρ;ωÞ ¼ 0; ð55Þ

vanishes. As described in detail in the Appendix, the
factorization can then be rearranged as follows:

F ðE;mÞ ¼
Z

∞

0

dω
ω

ϕþðωÞ
�Z

∞

0

du
u

�
H1ðuÞJ̄1ðu;ωÞθð1 − uÞ −H1ð0ÞJ̄2ð1;ωÞθðu − 1Þ

Z
∞

1

dρ
ρ
Sðuρ;ωÞ

�
λ2→0

þ J̄2ð1;ωÞ
Z

1

0

du
u
½H1ðuÞC̄ðuÞ −H1ð0Þ½½C̄ðuÞ��� þH1ð0Þ

Z
∞

0

du
u

Z
∞

0

dρ
ρ
½J̄2ð1þ ρ;ωÞ − θð1 − ρÞ

× J̄2ð1;ωÞ�Sðuρ;ωÞ þ J̄2ð1;ωÞH1ð0Þ
Z

1

0

du
u

Z
1

0

dρ
ρ
Sðuρ;ωÞjλ2→0

	
; ð56Þ

where now the limit δ → 0 can be performed before the
integrations, and therefore the anticollinear function does
not depend on ω anymore, and the soft function only
depends on the product uρ (and, via the dimensional
regulator, on ω). Comparison with the bare factorization
theorem shows that now all endpoint divergences are
subtracted from the anti-hard-collinear, anticollinear, and
soft momentum regions. The endpoint logarithms are fully
contained in the fourth term which coincides with the
expression obtained from the anti-soft-collinear region with
explicit momentum cutoffs, see Eq. (44) above. Notice that
the emerging cutoffs in the first and fourth terms of the r.h.s.
of Eq. (56) lead to additional power corrections in λ2 which
should be dropped, as indicated by the limit λ2 → 0. The
factorization theorem in Eq. (56) represents one of the main
results of our paper. The various functions appearing in
Eq. (56) can now be associated with effective operators in
soft-collinear effective theory (SCET) which can be renor-
malized in a standard manner before the convolution
integrals are performed. However, a detailed proof of the
factorization theorem along these lines is beyond the scope
of this work. We should also stress that despite the fact that
the structure of our factorization theorem allows us to
systematically include QCD corrections, it does not capture
the effect of additional QED corrections. In particular, the
latter would also modify the refactorization condition (54),
and the QED corrections to the Bs-meson LCDA have to be
taken into account as well [24].

III. LEADING-LOGARITHMIC QCD
CORRECTIONS

In the previous section we have identified the relevant
momentum configuration for the virtual muon in the QED
box diagram that is responsible for the double-logarithmic
enhancement. On top of these endpoint logarithms, we can
now include the leading-logarithmic QCD corrections to

the B̄s → γ�γ� subprocess within the very same momentum
configuration. A similar line of reasoning can be found, for
instance, in Ref. [41] for bottom-induced h → γγ decays.
Here the LO triangle diagram also contains a double-
logarithmic enhancement from the endpoint configuration
of the bottom-quark propagator between the two external
photons. In that case, the leading double-logarithmic
corrections can be included by dressing the off-shell
h → b�b̄� vertex with a standard QCD Sudakov form
factor. Notice that the systematic resummation of large
logarithms lnmb=mh for this process on the basis of RG
equations in SCET has been developed only recently in
Refs. [30,31].
At one-loop accuracy the RG evolution is multiplicative

in dual space, and—restricting ourselves to the anti-soft-
collinear region which generates the leading double-loga-
rithmic term in Eq. (47)—we can include the leading
logarithmic radiative QCD corrections from hard, anti-
hard-collinear, and soft QCD effects simply via the
factorization formula

F ðE;mÞ
���
LL

¼ 1

2
H1ð0; μÞ

Z
dω0

ω0 ρþðω0; μÞ ln2m
2e2γE

2Eω0

× J̄ 2ð1;ω0; μÞ; ð57Þ

where H1ð0; μÞ includes the leading-logarithmic (LL)
running of the hard matching coefficient for the b → sγ�

vertex, and J̄ 2ð1;ω0; μÞ the corresponding expression for
the anti-hard-collinear jet function in dual space. The dual
LCDA ρþðω0; μÞ includes the scale dependence from soft
QCD modes. This is illustrated in Fig. 2. The μ dependence
between the individual terms in Eq. (57) has to drop out.
We now discuss the individual terms in turn.

CONTRIBUTION OF THE ELECTROMAGNETIC DIPOLE … PHYS. REV. D 107, 013007 (2023)

013007-9



A. Hard QCD corrections at the b → sγ� vertex

The hard corrections to the Wilson coefficients of heavy-
to-light currents have been calculated in the framework of
SCET, see for instance Ref. [42]. In the double-logarithmic
approximation, we would only have to take into account the
leading universal term in the corresponding solution to the
RG equation,

H1ð0; μÞ ¼ eVðμ;μhÞ
�
μh
2E

�
−gðμ;μhÞ

H1ð0; μhÞ

≃ exp

�
−

4πCF

b20αsðμhÞ
�
1

zh
− 1þ ln zh

�

þ 2CF

b0
ln

μh
2E

ln zh

�
H1ð0; μhÞ; ð58Þ

with CF ¼ 4=3,

zh ¼ zðμ; μhÞ ¼
αsðμÞ
αsðμhÞ

≃
2π

2π þ b0αsðμhÞ ln μ
μh

ð59Þ

and b0 ¼ 11 − 2nf=3 being the leading coefficient in the
QCD beta function. The above formula resums all terms of
order αns ln2n

μ
μh
. The matching scale μh should be identified

with twice the energy of the virtual photon, which in the
anti-soft-collinear region equals the muon energy:

μh ¼ ðn̄ · pÞ ≃ 2E

such that H1ð0; μhÞ ¼ 1þOðαsÞ without logarithmically
enhanced terms, and

H1ð0; μÞ ¼ eVðμ;2EÞH1ð0; μh ¼ 2EÞ:

B. Soft corrections to the B-meson LCDA

The B-meson LCDA in dual space renormalizes multi-
plicatively at one-loop accuracy [40],

ρþðω0; μÞ ¼ eVðμ;μ0Þ
�
μ0e2γE

ω0

�−gðμ;μ0Þ
ρþðω0; μ0Þ; ð60Þ

where Vðμ; μ0Þ is defined analogously as before, with
μh → μ0, and

gðμ; μ0Þ ≃ −
2CF

b0
ln zs ð61Þ

to leading-logarithmic accuracy, with

zs ¼ zðμ; μ0Þ ¼
αsðμÞ
αsðμ0Þ

: ð62Þ

The scale μ0 refers to a soft reference scale where a model/
parametrization of the LCDA is defined. Throughout this
article, we set μ0 ¼ 1 GeV.

C. Hard-collinear corrections to the strange-quark
jet function

Following the discussion around (2.33) in Ref. [40], the
leading logarithmic corrections to the jet function describ-
ing the corrections to the strange-quark exchange in the
anti-hard-collinear scattering process in dual space is again
described by a multiplicative renormalization factor,

J̄ 2ð1;ω0; μÞ ¼ e−2Vðμ;μhcÞ
�
μ2hce

2γE

2Eω0

�
gðμ;μhcÞ

J̄ 2ð1;ω0; μhcÞ;

ð63Þ

with the same RG functions V and g as above.

D. Net result for RG-improved endpoint contribution

Combining all RG factors, the dependence on the
factorization scale μ drops out in the product

FIG. 2. Illustration of short-distance QCD corrections to the anti-soft-collinear region. Left: hard correction to b → sγ� vertex. Right:
anti-hard-collinear corrections to spectator scattering.
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eVðμ;2EÞJ ð2Eω0; μÞeVðμ;μ0Þ
�
μ̂0
ω0

�
−gðμ;μ0Þ

¼ eVðμhc;μhÞeVðμhc;μ0Þ
�
μ̂0
ω0

�
−gðμhc;μ0Þ

;

as required [43]. Here we abbreviate μ̂0 ¼ μ0e2γE , and
identify μh ¼ 2E, as well as J̄ 2ð1;ω0; μhcÞ ≃ 1. Inserting
the net leading-logarithmic RG factor into the form factor
for the O7 contribution, we end up with

F ðE;mÞ
���
LL

¼ 1

2
eVðμhc;μhÞeVðμhc;μ0Þ

Z
dω0

ω0 ln
2

m2

2Eω̂0

×

�
μ̂0
ω0

�
−gðμhc;μ0Þ

ρþðω0; μ0Þ; ð64Þ

with ω̂0 ¼ ω0e−2γE . If we define the generating function for
logarithmic moments of ρþðω0; μ0Þ as [40]

F½ρþ�ðt; μ0; μmÞ ¼
Z

∞

0

dω0

ω0

�
μ̂m
ω0

�
−t
ρþðω0; μ0Þ; ð65Þ

this can also be written as (μ̂m ¼ μme2γE)

F ðE;mÞ
���
LL

¼ 1

2
eVðμhc;μhÞeVðμhc;μ0Þ

�
2Eμ0
m2

�
−gðμhc;μ0Þ d2

dt2

× F½ρþ�

�
tþ gðμhc; μ0Þ; μ0;

m2

2E

�����
t¼0

: ð66Þ

The compact formulas for the form factor contain the
leading double-logarithmic enhancement from the endpoint
configuration of the muon propagator, supplemented by the
leading-logarithmic QCD corrections in RG-improved
perturbation theory. As such they still depend on the shape
of the Bs-meson LCDA or its generating function for

logarithmic moments. Thus, for numerical studies one has
to consider models or generic parametrizations for ρþðω0Þ
or F½ρþ�ðtÞ at the soft reference scale μ0 which is the subject
of the next subsection.

E. Explicit parametrization of the Bs-meson LCDA
and numerical estimates

With the compact expression for the form factor at hand,
we can use an explicit but general parametrization of the
LCDA as suggested in Ref. [44]:

ρþðω0; μ0Þ ¼
e−ω0=ω0

ω0
XK
k¼0

ð−1Þkakðμ0Þ
1þ k

Lð1Þ
k ð2ω0=ω0Þ; ð67Þ

where Lð1Þ
k are associated Laguerre polynomials. The

logarithmic moments of ρþðω0Þ for this parametrization
can be obtained as derivatives of the generating function:

F½ρþ�ðt; μ0; μmÞ ¼
Γð1 − tÞ

ω0

�
μ̂m
ω0

�
−t

×
XK
k¼0

akðμ0Þ2F1ð−k; 1þ t; 2; 2Þ; ð68Þ

where the hypergeometric functions with a negative integer
−k as their first argument are polynomials of order k,

2F1ð0; 1þ t; 2; 2Þ ¼ 1;

2F1ð−1; 1þ t; 2; 2Þ ¼ −t;

2F1ð−2; 1þ t; 2; 2Þ ¼ 1

3
ð1þ 2t2Þ etc: ð69Þ

Truncating the parametrization for ρþðω0; μ0Þ at K ¼ 2, we
obtain

F ðE;mÞ
���
LL

≃
Γð1 − gÞ
2ω0

eVðμhc;μhÞþVðμhc;μ0Þ
�
μ̂0
ω0

�
−g
��

a0 − ga1 þ
1þ 2g2

3
a2

�
½ðln λ̂20 þ ψð1 − gÞÞ2 þ ψ 0ð1 − gÞ�

þ
�
2a1 −

8

3
ga2

�
ðln λ̂20 þ ψð1 − gÞÞ þ 4a2

3

	

≡X2
k¼0

akfkðω0Þ; ð70Þ

where ψ is the digamma function, ak ¼ akðμ0Þ,
g ¼ gðμhc; μ0Þ, and we defined the abbreviation

λ̂20 ≡m2e2γE

2Eω0

:

To illustrate the numerical effect of the RG improve-
ment, we consider μ0 ¼ 1 GeV, μh ¼ 5.3 GeV,

μhc ¼ ffiffiffiffiffiffiffiffiffi
μhμ0

p ≃ 2.3 GeV, with the following values of
the strong coupling at the individual scales:

αsðμ0Þ ¼ 0.49; αsðμhÞ ≃ 0.21;

leading to
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zðμhc; μhÞ ¼ 1.30; zðμhc; μ0Þ ¼ 0.65;

for nf ¼ 4, which yields

g ≃ 0.138 and Vðμhc; μhÞ ≃ −0.037;

Vðμhc; μ0Þ ≃ −0.053:

for the relevant RG functions. From Fig. 3 we see that the
RG effect can be as large as ð−15;þ30;þ10Þ% for the
contributions of the coefficients a0;1;2, respectively, de-
pending on the value of the auxiliary scale ω0 in the
parametrization of the Bs-meson LCDA. Notice that the ω0

dependence of the RG effect is dominated by the factor
ðμ̂0=ω0Þ−g in Eq. (70).
The leading-logarithmic QCD corrections to the O7

contribution have also been outlined in Ref. [20] where
the additional approximation

eVðμhc;μ0Þ
Z

dω0

ω0 ln
2

m2

2Eω̂0

�
μ̂0
ω0

�
−g
ρþðω0; μ0Þ

→
eVðμhc;μ0Þ

R
dω0
ω0 ðμ̂0ω0Þ−gρþðω0; μ0ÞR

dω0
ω0 ρþðω0; μ0Þ

·

�Z
dω0

ω0 ln
2

m2

2Eω̂0 ρþðω0; μ0Þ
�

¼ λBs
ðμ0Þ

λBs
ðμhcÞ

Z
dω0

ω0 ln
2

m2

2Eω̂0 ρþðω0; μ0Þ ð71Þ

has been used, which is formally valid since

ln2
m2

2Eω̂0 ¼ ln2
m2

2Eω̂0

þ subleading logs;

as long as ω0 ∼ ΛQCD. For the numerical estimate of the
scale dependence of the first inverse moment λ−1Bs

of the Bs-
meson LCDA, the authors of Ref. [20] employed the simple
exponential model that corresponds to taking a0 ¼ 1 and
ak>0 ¼ 0 in the generic parametrization (67). Adopting
these additional simplifications and using otherwise the
same numerical input as quoted above, we find about
ð−15%Þ to ð−30%Þ reduction—depending on the value of
ω0—from the leading-logarithmic QCD corrections to the
form factor F. Up to numerical differences related to the
treatment of αs and the implementation of the RG evolution
of λBs

ðμÞ [45], this is in line with the numerical estimate in
Ref. [20]. We also observe that without the approximation
(71) the RG effect on the a0 contribution captured by the
function f̂0, as illustrated by the green solid line in Fig. 3, is
slightly reduced.

IV. SUMMARY

We have studied the factorization of QCD effects for the
contribution of the electromagnetic dipole operator O7 to
the B̄s → μþμ− decay amplitude. This arises from the
nonlocal hadronic matrix element in Eq. (1). To this
end, we have first performed a careful reanalysis of the
leading QED box diagram using the method of momentum
regions with two different options for an analytic regulator
that has to be introduced to handle the otherwise divergent
convolution integrals. In particular, we identified the
relevant momentum region that is responsible for the
double-logarithmic enhancement in the small ratio of soft
and hard scales in the process. Considering the bare QCD
factorization theorem that captures the different momentum
regions for a given regulator, we performed the necessary
subtractions to render all convolution integrals finite, such
that the integrands can be renormalized in the standard
manner. The so-obtained factorization theorem allows one
to include radiative QCD corrections in renormalization-
group improved perturbation theory. Focusing on the
kinematic configuration that is responsible for the dou-
ble-logarithmic enhancement, we included the leading-
logarithmic QCD corrections in a straightforward manner
by taking into account the RG evolution for the hard, soft,
and jet function describing the relevant decay of the
B̄s-meson to two (virtual) photons in QCD factorization.
The leading-logarithmic RG factor takes a particularly
simple form in the so-called dual space for the light-cone
distribution amplitude of the B̄s-meson. We find a compact
analytic expression on the basis of a systematic para-
metrization of the Bs-meson’s two-particle LCDA.
Numerically, the effect of the leading-logarithmic QCD
corrections turns out to be up to 30% relative to the O7

contribution at fixed-order Oðα0sÞ, in qualitative agreement
with an earlier estimate in Ref. [20]. We remind the reader
that the net contribution of O7 to the total B̄s → μþμ− rate
is, however, small. From the theoretical point of view it

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.8

1.0

1.2

1.4

1.6

FIG. 3. For illustration of the RG effect, we plot the prefactors
in front of the expansion coefficients ak defined in Eq. (70) as a
function of the auxiliary scale ω0 and normalized to the case

g ¼ V ¼ 0, which we call f̂kðω0Þ≡ fkðω0Þ
fkðω0Þjg¼V¼0

, for k ¼ 0, 1, 2.
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would be interesting to confirm our findings by an explicit
two-loop calculation including all combinations of momen-
tum regions, which we leave for future investigation.
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APPENDIX: DETAILED DERIVATION
OF THE FACTORIZATION THEOREM

In this appendix we give a detailed derivation of the
factorization theorem Eq. (56), by specifying the necessary
subtractions that make every single convolution integral
finite. The starting point is the bare factorization theorem
for the analytic regulator RaðkÞ in Eq. (48),

F ðE;mÞ ¼
Z

∞

0

dω
ω

ϕþðωÞ
�Z

1

0

du
u
H1ðuÞJ̄1ðu;ωÞ

þ J̄2ð1;ωÞ
Z

1

0

du
u
H1ðuÞC̄ðu;ωÞ þH1ð0Þ

×
Z

∞

0

du
u

Z
∞

0

dρ
ρ
Sðu; ρ;ωÞJ̄2ð1þ ρ;ωÞ

	
bare

:

The procedure to perform the subtractions of endpoint
divergences in the convolution integrals follows closely the
analysis in Ref. [36]. However, in our case the situation is
somewhat simpler, because some of the functions are only
needed at leading order, as long as QED corrections of
order OðαÞ are ignored.
By means of the refactorization condition (54) we can

rearrange the divergent convolution integral in the second
line of the factorization theorem as follows:

J̄2ð1;ωÞ
Z

1

0

du
u
H1ðuÞC̄ðu;ωÞ

¼ J̄2ð1;ωÞH1ð0Þ
Z

1

0

du
u

Z
∞

0

dρ
ρ
Sðu; ρ;ωÞ

þ J̄2ð1;ωÞ
Z

1

0

du
u
½H1ðuÞC̄ðu;ωÞ −H1ð0Þ½½Cðu;ωÞ���

ðA1Þ

where the integral in the last line does not contain
an endpoint divergence anymore. Similarly, in the last

term of the bare factorization, we first decompose the ρ
integral as [47]

H1ð0Þ
Z

∞

0

du
u

Z
∞

0

dρ
ρ
J̄2ð1þ ρ;ωÞSðu; ρ;ωÞ

¼ H1ð0Þ
Z

∞

0

du
u

Z
1

0

dρ
ρ
J̄2ð1þ ρ;ωÞSðu; ρ;ωÞ

þH1ð0Þ
Z

∞

0

du
u

Z
∞

1

dρ
ρ
J̄2ð1þ ρ;ωÞSðu; ρ;ωÞ; ðA2Þ

where the first term on the right-hand side contains the 1=δ
divergence, while the second term is finite in the limit
δ → 0. The former can be further decomposed

H1ð0Þ
Z

∞

0

du
u

Z
1

0

dρ
ρ
J̄2ð1þ ρ;ωÞSðu;ρ;ωÞ

¼H1ð0Þ
Z

∞

0

du
u

Z
1

0

dρ
ρ
ðJ̄2ð1þ ρ;ωÞ− J̄2ð1;ωÞÞSðu;ρ;ωÞ

þH1ð0ÞJ̄2ð1;ωÞ
Z

∞

0

du
u

Z
1

0

dρ
ρ
Sðu;ρ;ωÞ; ðA3Þ

where the 1=δ divergence resides in the last term. We can
now combine the two endpoint-divergent terms as

J̄2ð1;ωÞH1ð0Þ
�Z

1

0

du
u

Z
∞

0

dρ
ρ
þ
Z

∞

0

du
u

Z
1

0

dρ
ρ

�
Sðu;ρ;ωÞ

¼ J̄2ð1;ωÞH1ð0Þ
�Z

1

0

du
u

Z
1

0

dρ
ρ
−
Z

∞

1

du
u

Z
∞

1

dρ
ρ

�
× Sðu;ρ;ωÞjλ2→0 ðA4Þ

where we have used that in case of analytic regulators the
scaleless double integralZ

∞

0

du
u

Z
∞

0

dρ
ρ
Sðu; ρ;ωÞ ¼ 0;

vanishes. The indicated limit λ2 → 0 is understood to be
performed after the convolutions, keeping the logarithmi-
cally enhanced terms. Notice that in the second term in
brackets on the right-hand side of Eq. (A4) we can drop the
analytic regulator and directly set λ2 → 0 in the soft
function [in fact, for the leading expression Sð1Þðu; ρ;ωÞ,
the Oðλ2Þ terms only contribute at OðϵÞ]. This term is thus
insensitive to the long-distance dynamics of the muon and
thus can be combined with the first term in the factorization
theorem. Collecting all terms then leads to Eq. (56) in the
main text.
It is instructive to consider the leading-order expressions

for the individual contributions in the endpoint-subtracted
factorization theorem (56). For the first line, we obtain
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Z
∞

0

du
u

�
Hð0Þ

1 ðuÞJ̄ð1Þ1 ðu;ωÞθð1 − uÞ −Hð0Þ
1 ð0ÞJ̄ð0Þ2 ð1;ωÞθðu − 1Þ

Z
∞

1

dρ
ρ
Sð1Þðuρ;ωÞ

�
λ2→0

¼
�
μ2eγE

2Eω

�
ϵ Z ∞

0

du
u1þϵ

�
−ΓðϵÞð1 − uÞ1−ϵHð0Þ

1 ðuÞθð1 − uÞ −Hð0Þ
1 ð0Þ θðu − 1Þ

Γð1 − ϵÞ
Z

∞

1

dρ
ρ1þϵ

�

¼
�

μ2

2Eω

�
ϵ Z 1

0

du

��
δðuÞ −

�
1 − u
u

�
þ

�
1

ϵ
þ 2δðuÞ þ

�ð1 − uÞ ln½uð1 − uÞ�
u

�
þ

�
Hð0Þ

1 ðuÞ

≡
Z

1

0

du J̄effð1Þ1 ðuÞHð0Þ
1 ðuÞ: ðA5Þ

We observe that the 1=ϵ2 term that originally appeared in
the anti-hard-collinear region from the endpoint divergence
at u → 0 is now canceled by the subtraction, and the
remaining contributions can be obtained from an endpoint-
finite convolution with an effective anti-hard-collinear
function, which is distribution valued and reproduces the
single-logarithmic term.
Similarly, for the second line of the endpoint-subtracted

factorization theorem we find at leading order

J̄ð0Þ2 ð1;ωÞ
Z

1

0

du
u
½Hð0Þ

1 ðuÞC̄ð1ÞðuÞ −Hð0Þ
1 ð0Þ½½Cð1ÞðuÞ���

¼ ΓðϵÞ
�
μ2eγE

m2

�
ϵ Z 1

0

du
u
½Hð0Þ

1 ðuÞð1 − uÞ1−2ϵ −Hð0Þ
1 ð0Þ�

¼
�
μ2

m2

�
ϵ Z 1

0

du

��
−δðuÞ þ

�
1 − u
u

�
þ

�
1

ϵ

−
�
2 −

π2

3

�
δðuÞ −

�
2ð1 − uÞ lnð1 − uÞ

u

�
þ

�
Hð0Þ

1 ðuÞ

≡ J̄ð0Þ2 ð1;ωÞ
Z

1

0

duC̄effð1ÞðuÞHð0Þ
1 ðuÞ; ðA6Þ

which again only contains the single-logarithmic term.
The associated 1=ϵ divergence cancels with the one from
the first line, see Eq. (A5), on the integrand level, with an

effective anticollinear function which is again distribution
valued.
For the third line in the factorization theorem, we find

Hð0Þ
1 ð0Þ

Z
∞

0

dρ
ρ
½J̄ð0Þ2 ð1þ ρ;ωÞ− θð1− ρÞJ̄ð0Þ2 ð1;ωÞ�

×
Z

∞

0

du
u
Sð1Þðuρ;ωÞ

¼
�
μ2eγE

2Eω

�
ϵZ ∞

0

dρ
ρ

�
1

1þ ρ
− θð1− ρÞ

�Z
∞

λ2=ρ

du
u
ðuρ− λ2Þ−ϵ
Γð1− ϵÞ

¼ ΓðϵÞ
�
μ2eγE

m2

�
ϵZ ∞

0

dρ
ρ

�
1

1þ ρ
− θð1− ρÞ

�
¼ 0; ðA7Þ

and therefore the soft region does not contribute at leading
order after subtraction.
Finally, as already stated in Eq. (44), the fourth line of

the subtracted factorization theorem reproduces the anti-
soft-collinear region with cutoffs,

J̄ð0Þ2 ð1;ωÞHð0Þ
1 ð0Þ

Z
1

0

du
u

Z
1

0

dρ
ρ
Sð1Þðuρ;ωÞ

����
λ2→0

¼ 1

2
ln2λ2:
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