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Contribution of the electromagnetic dipole operator O, to the B, — u*pu-
decay amplitude
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We construct a factorization theorem that allows one to systematically include QCD corrections to the
contribution of the electromagnetic dipole operator in the effective weak Hamiltonian to the B, — u*u~
decay amplitude. We first rederive the known result for the leading-order QED box diagram, which features
a double-logarithmic enhancement associated with the different rapidities of the light quark in the B, meson
and the energetic muons in the final state. We provide a detailed analysis of the cancellation of the related
endpoint divergences appearing in individual momentum regions, and show how the rapidity logarithms
can be isolated by suitable subtractions applied to the corresponding bare factorization theorem. This
allows us to include in a straightforward manner the QCD corrections arising from the renormalization-
group running of the hard matching coefficient of the electromagnetic dipole operator in soft-collinear
effective theory, the hard-collinear scattering kernel, and the B,-meson distribution amplitude. Focusing on
the contribution from the double endpoint logarithms, we derive a compact formula that resums the

leading-logarithmic QCD corrections.
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I. INTRODUCTION

The rare decay B, — "y~ mediated by flavor-changing
neutral current b — s transitions represents one of the
golden channels to test the flavor sector of the Standard
Model (SM). Precision measurements of its decay rate are
performed at current flavor experiments [1-12]. Precise
theoretical predictions include higher-order QCD and
electroweak corrections (see e.g. Refs. [13—16], for reviews
see e.g. Refs. [17,18] and references therein). Comparing
experimental precision measurements and theoretical pre-
dictions thus allows us to search for indirect effects of
physics beyond the SM. As it has been pointed out in
Refs. [19,20], at the level of the intended precision,
theoretical calculations also have to take into account
corrections from nonlocal QED effects. In particular, the
exchange of an additional photon between the light degrees
of freedom in the B,-meson and the final-state muons
leads to a power enhancement compared to the leading
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contribution from the local semileptonic operator O;.
Besides the phenomenological importance, these effects
are of particular theoretical relevance for two reasons. First,
QED corrections to exclusive decays of heavy quarks at
large recoil are conceptually interesting, and the corre-
sponding generalization of the QCD factorization approach
is nontrivial [21-24]. Second, the contribution of the
electromagnetic dipole operator (J; features a double-
logarithmic enhancement that results from endpoint con-
figurations of the light-cone momentum fractions of the
intermediate muon propagator with respect to the external
muons. Analyzing the relevant QED box diagram with
the method of momentum regions then leads to end-
point-divergent convolution integrals, which makes the
formulation of factorization theorems and the renormaliza-
tion-group improvement for this contribution difficult and
nonstandard [25]. The systematic understanding of end-
point logarithms in the context of factorization theorems
and effective-field-theory methods is currently a very active
field of research. While the analysis of endpoint dynamics
and rapidity logarithms for nonperturbative setups, like
exclusive charmless b-quark decays [26], is notoriously
difficult [27], progress has recently been made for a number
of perturbative examples, including bottom-induced 7 —
yy decay [30,31], off-diagonal gluon thrust [32], or muon-
electron backward scattering [33]. In this context, the O,
contribution to the B, — u*u~ decay amplitude offers
another example to study rapidity logarithms in hard
exclusive transitions. In this case the origin of the endpoint
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double logarithms resides on the muon side and can thus be
understood in QED perturbation theory, while the dynam-
ics of the strange quark is embedded in the exclusive
hadronic B — vacuum transition.

The aim of this work is to provide a QCD factorization
theorem for the OO, contribution to the B, — u*u~ decay
amplitude. To this end, in the following Sec. II, we first
rederive the result from Ref. [19] by adding up the relevant
momentum regions [34,35] of the QED box diagram.
Depending on the choice for the additional regulator that is
needed to render the convolution integrals finite, we find
different relevant momentum regions. In particular, we
show that the double-logarithmic term in the final result
can be isolated from a certain momentum configuration,
where the photon propagators become eikonal and the
intermediate muon propagator goes on shell (see e.g.
Ref. [36] and references therein). The results from the
analysis of the leading QED box diagram can be gener-
alized to obtain a bare factorization theorem that takes into
account additional QCD corrections, depending on the
applied regulators. By means of suitable subtractions on
the basis of refactorization conditions, we construct a
factorization theorem with endpoint-convergent convolu-
tions where the additional analytic regulator can be
dropped and the 1/¢ divergences from dimensional regu-
larization are manifest.

On the basis of this result, it is a rather straightforward
task to implement the leading-logarithmic QCD corrections
to the b — sy vertex, the jet function describing the
exchange of a hard-collinear strange quark and the light-
cone distribution amplitude (LCDA) of the B,;-meson. This
is worked out in detail in Sec. III. On the basis of an explicit
and systematic parametrization for the LCDA we also
provide a relatively compact formula that resums the
leading-logarithmic QCD effects in renormalization-group
(RG) improved perturbation theory. A brief numerical
analysis shows that the effect of the leading-logarithmic
QCD corrections can be of the order of 10%-30% relative
to the O; contribution at fixed-order O(a?), depending on
the shape of the B,-meson LCDA. It should, however, be
noted that the overall effect of the electromagnetic dipole
operator is small because of the associated small Wilson
coefficient C;, such that our result only has a marginal
phenomenological impact on the By — u*u~ decay rate.
We conclude this paper with a short summary. A detailed
description of the subtractions that are required to get rid of
endpoint-divergent convolution integrals in the bare fac-
torization theorem is provided in the Appendix.

II. THE LEADING-ORDER QED BOX DIAGRAM

Our starting point is the nonlocal matrix element

() / T { (). Her (0)}1B,) (1)
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,
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FIG. 1. QED box diagram describing the leading contribution

of the operator O; (indicated by the black square) to the B, —
utp~ decay amplitude. The analogous diagram with the role of
u' and p~ interchanged gives the same result and is not shown.

of the time-ordered product of the quark electromagnetic
current jem(x) = 3, Q,q(x)r*q(x) and the effective weak
Hamiltonian H., of which we adopt the convention of
Ref. [37] and of which the operator

0; =

16 ——my(5,6"bg)F,
is our focus in this article. The leading-order contribution
of Oy to the B, — u*u~ decay amplitude via the nonlocal
matrix element (1) is diagrammatically shown in Fig. 1,
where an additional virtual photon connects the spectator
quark of the B, meson to one of the final-state leptons. The
contribution of this diagram (and the corresponding
crossed one with the role of the two muons interchanged,
which turns out to give the identical contribution) to the
B, = pty~ decay amplitude was first calculated in
Ref. [19] and can be written as

. = _.|LO a
iM(By = )| ) == Q20,C5 mM f,

x Na(p)(1+ys)v(p")| F-O(E.m),

2)
with
4Gr a
N = thVtS \/—F4ﬂ (3)
and
dw 1 m> 2 77,'2
LO _ “cw Z -
Fo(Em) = [T ) i+
4)

Here m denotes the muon mass, M = mp_ =~ m;, the mass
of the B, meson, and E ~ M /2 the muon energy in the
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B, meson rest frame. The fermion electric charge fractions
are given by Q, = —1 and Q;, = —1/3.

In Ref. [19] it has been pointed out that the strange-
quark propagator in the box diagram leads to a power-
enhancement compared to the leading contribution from
the local b — s£T¢~ operator Oy Furthermore, the
propagator depends on the light-cone momentum fraction
o of the initial 5-quark in the B; meson, and consequently
the result involves a convolution with the hadronic light-
cone distribution amplitude ¢, (@). Most importantly for
our work, the form-factor F turns out to receive a double-
logarithmic enhancement which can be traced back to
endpoint divergences appearing in the convolution integrals
from individual momentum regions, which we discuss in
detail in the following.

A. Kinematics

We first fix the notation for the relevant kinematic
variables. The momenta of the muons in the final state
are used to define two light-cone vectors n* and 72*, such
that

. B _ n* m:
outgoing u~: p* = (n-p)j—i- ER

. i m?  n#
outgoing u*: p* = (n- p) > + 2 (5)

and the momentum of the incoming B,-meson given by

nt* n*
Ho— 4
My M(2+2>. (6)

Here n> =7#> =0 and n-7i =2. The energy E of the
muons in the B,-meson rest frame is approximately given
by the relation (7 - p) = (n- p’) ~2E = M. In the diagram
|

1
pte——(@m-p.pi.n-p)~(1,222)

in Fig. 1, the incoming b-quark is described as a static
quark in heavy-quark effective theory, characterized by a
momentum p, = m,v* 4+ A*, with a residual momentum
A* of order Agcp. The momentum of the incoming 5-quark
is decomposed as

nt n#
incoming s-quark: /* = (7 - 1) >+ Fo+(n-l) TR (7)

where here and in the following we neglect the strange-
quark mass. It turns out that in the above diagram only the
projection = (7 - [) of the 5-quark in the B,-meson enters
at leading approximation, which therefore is identified as
the argument of the light-cone distribution amplitude in
Eq. (4). The ratio of (7 - p’) and (7 - [) defines the relevant
small expansion parameter which we denote as

2 A
2 M QD) (M
’  2Ew O( m, > O(’”h)’ (®)

where the muon mass m and the light-cone projection @ of
the light spectator-quark momentum are both counted to be
of the order of the intrinsic QCD scale AQCD, which defines
the soft scale in the process. The energy of the muons,
E ~ M /2, defines the hard scale in the process. The product
(2E®) appears in the denominator of the strange-quark
propagator (see below), and thus v2Ew defines the hard-
collinear scale in the process.

B. Momentum regions and different choices
of analytic regulators

We characterize the external and internal momenta by the
scaling of the light-cone projections and the transverse
components, using a shorthand notation, e.g.,

5E for collinear modes, 9)
1

P — 3E (a-p,p\,n-p)~(A*22,1)  for anticollinear modes, (10)
1

)/ (_)ﬁ(ﬁ.l’ Li,n-1)~(22,22,2%) for soft modes. (11)

The presence of endpoint-divergent integrals requires the
introduction of an additional regulator, since dimensional
regularization alone is not sufficient. Depending on the
additional regulator, one then identifies different sets of
relevant momentum regions. In what follows, we compare
two different choices for an analytic regulator,

A2 5
option (a): R, (k) = (—(n 0D + i0> ; (12)

[

option (b): R, (k) = (

2 5
(ﬁ-k)(n-p’)—(n~k)(f1-l)—|—i0> ’
(13

which are assigned to a muon propagator with momentum
k. These regulators are a generalization of the correspond-
ing options discussed—for instance—in Ref. [33] (see also
references therein) written in a manifestly boost-invariant
form, using the external momenta (7 - [) and (n - p’).
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TABLE I. Momentum regions contributing to the box diagram in Fig. 1. Here, he, ¢, s, and 5¢ denote the anti-
hard-collinear, anticollinear, soft, and anti-soft-collinear regions, respectively. Notice that the anti-soft-collinear
region yields scaleless integrals if the analytic regulator R, is used.

Region Muon Upper photon s-quark Lower photon Regulator
he k~(22,2,1) g~ (1,4,1) K ~(22,2,1) q ~ 1) Rab
c k~ (2% 221) g~ (1,22,1) K~ (22,2%,1) q ~ (221 Ras
s k~(22,22,22) g~ (1,22,2%) K ~(22,22,1) q ~ (%221 Rab
sC k~(23,22,2) g~ (1,22,2) K~ (22,2%,1) q ~(23221) Ry
The nonvanishing momentum regions for the box dia- K* = (p' + k=D (15)

gram in Fig. 1 are summarized in Table I. Here the momenta
of the upper and lower photon lines are given by

¢ =k "= +k (14)

and the intermediate

momentum

strange-quark propagator has

Y { (22, 4,1)
(22,22,1)

This implies that in all relevant cases, the strange-quark
propagator can effectively be replaced by

(n-K)
(n-K)(n-k)+ (K )*+i0
A (2E +n-k)
"DQE+n k)i k—o) + K& +i0

Sp(K)

1R

NSNRRN

i

R

(16)

which further simplifies in the individual momentum
regions (see below). Here (n - k') ~2E is the large com-
ponent of the anti-hard-collinear momentum, and the
propagator only depends on the light-cone projection @ =
ii - [ of the strange-quark momentum in the B, meson.

Inserting this approximation into the box diagram and
performing the Lorentz contractions and Dirac projections,
and exploiting the equations of motion for the external
muon states, we find that the problem reduces to analyzing
the scalar integral

I(a))—/d(ﬁ-k)/d(n'k) dk,
1 1
(p=k?+i0 (p'+k)?+i0
5 (2E + n - k)2Ew
(QE+n-k)(i-k—w)+ k3 +i0
2E+n-k
(k) (k) + K2 —m?+i0

(17)

leading power

We observe that in all relevant regions the intermediate
strange quark has anti-hard-collinear virtuality, (k')> ~ A2,
with

for kanti — hard — collinear,

for k soft, anticollinear, or anti — soft — collinear.

|
The integral measure for the transverse loop momentum
reads

P 1,2€ L€V E
- - u e D2
dk, = 2D/ d” =k,
such that
Lo o dw
FOE,m) = A ;44(0))1((0), (18)

where yp is the Euler-Mascheroni constant, D = 4 — 2¢
denotes the number of space-time dimensions, and u refers
to the MS scale. We now discuss the contributions to the
integral /(w) from the different momentum regions in turn.

1. The anti-hard-collinear region

The anti-hard-collinear region in the integral (17) is
defined by the scaling k ~ (4%, 1, 1), which simplifies the
integrand at leading power to

tiz(0) = [ dG-0) [ dones) [ dk

1 1
“2E(m- k) +i0 QE+n-k)(7-k) + K+ 00
(2E+n-k)2Ew
2E+n-k)(ii -k — ) + k3 +i0

2E+n-k
(n-k)(n-k)+ k2 +i0

1

013007-4



CONTRIBUTION OF THE ELECTROMAGNETIC DIPOLE ...

PHYS. REV. D 107, 013007 (2023)

This integral features an endpoint divergence for (n-k) — 0,
which is regularized in D = 4 — 2¢ dimensions, such that
the analytic regulator can be dropped. Actually, the endpoint
divergence arises from the convolution of a hard eikonal
propagator (the upper photon) with a remaining jet function
consisting of three anti-hard-collinear propagators.

It is convenient to first perform the (7 - k) integration by
residues, and then afterwards the &k, integral. This can be
written as

Ii-(w) = / M0 )7 (1), (20)

u

where H EO)(u) =1 is the leading-order value of the hard
matching coefficient for the b — sy tensor current with an
energy transfer (1 — u)E, and

/’lz e}/E

7V (w3 0) = —T'(e) <m>g(1 —u) (1)

is the first nonvanishing term in the jet function associated
with the anti-hard-collinear momentum region, with u=
—(n-k)/(n-p'). Performing the u integral and expanding
in €, the result for the anti-hard-collinear region gives

1 1 1 w1 u?
In In> = — - In—+2,
2+€ 2E Jr2 2Ew 12Jr +in 2Ew *

(22)

which features the standard double logarithms from soft and
collinear infrared (IR) divergences, and a single logarithm
arising from an endpoint-finite longitudinal integration.

2. The anticollinear region

The anticollinear region in the integral (17) is defined by
the scaling k ~ (4*, A%, 1), which simplifies the integrand at
leading power to

— 1
I; = [|dn-k) | dn-k) | dk .
(@) /<" )/ (n )/ L 22E(n-k)+i0 2E+n-k)a-p +7-k) + K +i0
2Ew 2E+n-k V2 0
X - - . — 1, (23)
—w+1i0 (n-k)(i-k)+ ki —m?+i0 \—~o(n-k) +i0

with (7 - p') = m?*/2E. This integral now features an
endpoint singularity from (n - k) — 0 which is nor regu-
larized in D # 4 dimensions due to the nonvanishing mass
in the anticollinear muon propagator. In this case the
analytic regulator has been kept, and because of the
anticollinear scaling of k both variants R, and R, reduce
to the same term as indicated above.

We note that the integral now involves two eikonal
propagators. The first one, (—(7i - p)(n - k))~!, reflects the
same tree-level hard function from the upper photon
propagator as in the anti-hard-collinear region. The second
one, (—w)~!, reflects the tree-level anti-hard-collinear
function which decouples from the anticollinear loop
integral. Again, we can first perform the (7 - k) integration
by residues, and then the k| integral in D — 2 dimensions.
The result can be written as

1d
la))/ " 0

where we have defined the leading-order term in the jet
function for the anti-hard-collinear strange-quark propaga-
tor with (72 - k') = zw,

I(w) = J9( CO(u;0), (24)

J5 (za)) =7 (25)

where the overall factor 1/w—that appears in the con-
volution with the B;-meson LCDA—has been factored out.
The function

Ewo) =10(5) (5, ) - w2t (9

refers to the leading term of the anticollinear function that
describes the recombination process ut(—k)y(p' + k) —

ut(p'). Performing the u integration, the final result for the

anticollinear region gives

1 v 1 u? 1 u?
L(o)= -2 ) [+ )+ 22—’ 2,
() ( 5 n2Ea)> <e+ nm2> 3T

(27)

where we first had to expand in 6 and subsequently in €. We
observe that the anticollinear region depends on the soft
momentum o through the analytic regulator, reflecting the
collinear-anomaly phenomenon [38,39].

3. The soft region
The soft region in the integral (17) is defined by the
scaling k ~ (4%, 4%,4%), which simplifies the integrand at
leading power to

013007-5
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Lw)= [ad) [t [y et
1 2Ew

2E(ii- k) +i07 - k—w + i0
2E
(n-k)(in-k)+ k% —m*+i0

Rap(k), (28)

which is again endpoint divergent and thus requires the
additional regulator, as indicated. Let us first consider the
analytic regulator for case (b) which, in the soft region,
reduces to

Ry (k) = (mnyi;M)y

where the i0 prescription matches the expression in the
respective eikonal photon propagator. In that case, one can
first perform the (n - k) integration by residues, and then the
k, integral in D — 2 dimensions. The soft contribution to
the integral then takes the form

(b): I (w)=T(e) <ﬂzezm>é(2gw>57d” ZJ—HIOJF i0
0

(29)

with v = (7 - k)/w. The endpoint divergence at v — 0 is
regularized by the analytic regulator, while the integral
|

for (n
for (n

k) >0: m*/(n-k) <Re(n
k) <0: Re(ii - k) < m?/

converges in the ultraviolet (UV), v — oco. Notice that the
integral generates an imaginary part which stems from the
situation when the strange-quark propagator goes on shell
for v — 1,

(b) Is(w):<é+lnzl—22> <—%—ln%+m> (30)

On the other hand, taking the analytic regulator for
case (a)

")~ ()

we can first perform the k| integration, to end up with

@)M@—”@/

27l

d(n-k) d(n-k) @

—n'k+i0/ﬁ-k+i0fz-k—a}+i0
uere

X(—(n.k)(ﬁ.k)+m2—io

>€Ra(k). (31

Now consider the analytic structure in the (7 - k) plane:
(i) There are two poles at

Re(ii- k) =0, belowthe real axis.

(i1) There is a branch cut from the dimensional regulator,

- k), below the real axis,

n-k), above the real axis.

For (n - k) > 0, the integrand is analytic in the upper half plane, and therefore the integral vanishes. For (n - k) < 0, the
branch cut from the dimensional regulator is moved to the upper half plane, and by picking up the corresponding

discontinuity

; u? ¢ 2mif((n-k)(n-k)—m?) u? ¢
P SC(—(n~k)(ﬁ-k) +m? = iO) T T(or(i-e) <(n k)(7- k) - ) ’ (32)
we arrive at the representation
b a0 2
. - n- - ) u evE €
@) Lfw F(l—e)/ n-k / n-k w-n k((n k)(n-k)—mz) Ra(k)
1 urereNe [ 2 \? y du (dp 1 2\ e
—F(l—e) <2Ea)> <2Ea)) u Fm( p=&) ' (33)
2/u

where p = —(7i - k) /w. This can be written as
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(u, p; ®)

@) Lo / du /
x 11+ p.w (34)

with the same hard and jet function as already defined
above, and a soft function

2 ,7e\ € 2 ) _12\—e€
pe v (up = 2%)
Sm(”’p;w):g(up_iz)<2Ew> <2uEa)) T(l—¢)

(35)

which stems from the discontinuity of the muon propa-
gator. Performing the longitudinal integrations, we end up
with

~ 1 AVa! u? 1
(a) Ij(w)= <g+1nW> (E—HnW) ~2

1w 1y
——In——=In> 5+ —. 36
P R AR T (36)
In that case, the full integral is already reproduced by the
sum of the anti-hard-collinear, the anticollinear, and the
soft region,

(a) (o) = I (0)+ I:(w) + I,(w)
o ) m? 2
:El %—I—l E+? (37)

Notice that the single logarithm in this expression stems
from the cancellation of single powers of 1/¢ in the ic and
¢ region.

|

for (7 -
for (7

(iii) There is a branch cut from the rapidity regulator,

(n-p)(n-k)/w<Re(n-k), above the real axis.

For (7 - k) < 0, the integrand is analytic in the lower half
plane, and therefore the integral vanishes. For (7 - k) > 0,
the branch cut from the dimensional regulator is moved to
the lower half plane, and by picking up the corresponding
discontinuity (32), we obtain

x 0((n-k)(n-k) - (40)

k) >0 : m*/(ii-k) <Re(n

k) <0 : Re(n-k) <m?/(ii- k),

4. Anti-soft-collinear region

For the regulator R, we also have to take into account
an anti-soft-collinear region, where k* ~ (1°, 4%, 2). In this
region the integral (17) at leading power reduces to

Iﬁ(w)_/d(ﬁ-k)/d("‘k)/ﬁi'm

1 4FE% 0
2En -k +i0-2Ew + i0
2F

R T T (38)

In that case, it is again convenient to first perform the k|
integration, which yields

- I;(ﬂel) / nd'(Z ;kl')O / ﬁd(z '+k1?0

x (—(n : k)(ﬁlu- Z;+ m’ — io>€

2

(b)  Isz(w)

1%

—w(n-k) + iO)é'

* <2E(7z ) (39)

We now consider the analytic structure of the integrand in

the complex (n - k) plane.
(i) There is always a pole at

Re(n-k) =0, abovethe real axis.

(ii) There is a branch cut from the dimensional regulator,

- k), belowthe real axis,

above the real axis.

’ ((n ’ k);(l:‘eiy’:) - mi)e <25(ﬁ k) _V;(n k) + i0> 6
B (f];f;><2Ew>6[du—lf/[% W'~ zz)%

x (v —u' +i0)79, (41)

where ' = —u = (n-k)/2E and v = (- k)/w as before.
This integral can most easily be solved by decomposing it
into two terms, one with » > u’ and one with v < u’. Both
integrals are identical, except for an additional phase factor
e~ that arises in the second case and effectively amounts
to replacing 1/6 — 1/6 — in after expanding in 6. It is also
instructive to consider the variable transform x = v — i/
and y = u'v. Here, the integral over x produces a UV pole
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that is regularized by 6, while y produces a UV pole that is
regularized by e. The net result is

(0) Ie(w) =1(@) ~ I,(w)

11 42 12,u2 1 U

2 2 2 72
——1 In— +In— —. (42
X<5 iz 4 In 5 nmz>—i-12 (42)

With this we obtain an alternative decomposition of the
form-factor integral

(b) (o) = I (@) + I(0) + [ (@) + I (w).  (43)

2
Notice that the (divergent) imaginary part iﬂ(%—i—ln%)
cancels between the soft and anti-soft-collinear region.
Furthermore, in the sc region, the reference scale for the
analytic regulator is set by the geometric mean of the anti-
hard-collinear scale v/2Ew and the soft scale m.

C. Anti-soft-collinear region with cutoff

The double-logarithmic term in I(w) can also be
obtained in an alternative manner by considering the IR
contribution to the anti-soft-collinear region only (see also
the analogous discussion in Refs. [33] or [36] and refer-
ences therein), where the dimensionless integration varia-
bles u, v are cut off from above at their natural value 1,

1 1
:/@/@9@”}_,12)
cut u v
0 0

1
=5 0(1 = 2)In%2. (44)

()

= I—
double—log s¢

Notice that we have kept a theta-function (1 — 4?) here,
because 1> = % depends on the integration variable o,
such that formally we can have 1> > 1 for @ < m?/2E.
However, in the end, the hadronic parameters in the
Bg-meson LCDA respect the power-counting @ ~ Agcp,
such that we can expand, O(1 — %) = 1 + O(m/E). The
double-logarithmic term in the form factor for the O,
contribution can thus be written as

1

_ [do (@) du
double—log - w b u

0

FYO(E, m)

1
d
X /UH(ZEa)uv—m2). (45)
v
0

For the following discussion it is useful to rewrite the
integral over the light-quark momentum ® in the so-called
dual space introduced in Ref. [40]:

bt = [ o0 (/%) o

with the Bessel function of the first kind J;. Since the
second logarithmic moments of ¢, (w) and p, (@)
coincide [40], we can as well write the double-logarithmic
contribution to the form factor as

1 [do m2e?re

LO E [ el ! 1 2 .
7 ( ,m) double—log 2/ o' p+(w) n 2Ew’

(47)

D. Construction of the factorization theorem

The analysis of the box diagram above determines the
form of a bare factorization theorem that takes into account
additional QCD corrections from different momentum
regions, depending on the regulator being used. For
concreteness, we stick to the analytic regulator R, (k), such
that the anti-soft-collinear region does not appear in the bare
factorization theorem. The form factor for the O, contri-
bution then decomposes into three additive terms,

FEm) = [ g ] [1 % w0 w0)

w

+Iy(1, ) Al %Hl(u)é’(u;a)) +H,(0)

o (] o (] -
x/ au —pS(u,p;w)J2(1+p,w)}
0 u Jjo P bare
(48)

where each individual term contains an endpoint-divergent
convolution integral that is regularized for finite € and 6. Here

Hy (1) = H (u) + O(ay), (49)
Ji(u;0) = 7(11)(u;w) + O(ay), (50)
1(z) = 10 (2) + O(ay). (51)

with H\” (1) = 1, and 7\ (u; ), 7 (2) given in Egs. (21)
and (25). Notice that in the bare factorization theorem (48)
we have not taken into account additional QED corrections to
the y*y* — utu~ subprocess, i.e. the collinear and soft
functions related to the muon,

C(u;0) = CY(u; w) + Oa), (52)
S(u, p;w) = SV (u, p; w) + O(a) (53)

are set to their leading-order expressions given in Eqgs. (26)
and (35).

In order to get rid of the analytic regulator in the
bare factorization theorem, we have to exploit the
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refactorization condition [28,36,40] for the anticollinear
function. Following the notation of [36], we define

[C(w0)]] = C(:0) [y = / w%sw,p;w)w(a) (54)

which in our case provides a trivial identity between the
QED fixed-order expressions in (26) and (35). In addition,
|

x Jo(1, ®)|S(up; @) + J5 (1, @)H, (0 /1du/

where now the limit 6 — 0 can be performed before the
integrations, and therefore the anticollinear function does
not depend on @ anymore, and the soft function only
depends on the product up (and, via the dimensional
regulator, on ). Comparison with the bare factorization
theorem shows that now all endpoint divergences are
subtracted from the anti-hard-collinear, anticollinear, and
soft momentum regions. The endpoint logarithms are fully
contained in the fourth term which coincides with the
expression obtained from the anti-soft-collinear region with
explicit momentum cutoffs, see Eq. (44) above. Notice that
the emerging cutoffs in the first and fourth terms of the r.h.s.
of Eq. (56) lead to additional power corrections in 4> which
should be dropped, as indicated by the limit 4> — 0. The
factorization theorem in Eq. (56) represents one of the main
results of our paper. The various functions appearing in
Eq. (56) can now be associated with effective operators in
soft-collinear effective theory (SCET) which can be renor-
malized in a standard manner before the convolution
integrals are performed. However, a detailed proof of the
factorization theorem along these lines is beyond the scope
of this work. We should also stress that despite the fact that
the structure of our factorization theorem allows us to
systematically include QCD corrections, it does not capture
the effect of additional QED corrections. In particular, the
latter would also modify the refactorization condition (54),
and the QED corrections to the B;-meson LCDA have to be
taken into account as well [24].

III. LEADING-LOGARITHMIC QCD
CORRECTIONS

In the previous section we have identified the relevant
momentum configuration for the virtual muon in the QED
box diagram that is responsible for the double-logarithmic
enhancement. On top of these endpoint logarithms, we can
now include the leading-logarithmic QCD corrections to

du [d
+H/”/p

Ldp

we use that in case of analytic regulators the scaleless
double integral

/d”/ L S(u, prw) = 0, (55)

vanishes. As described in detail in the Appendix, the
factorization can then be rearranged as follows:

I +p.0)=6(1-p)

_S up’ )|12—>0}’ (56)

the B; — y*y* subprocess within the very same momentum
configuration. A similar line of reasoning can be found, for
instance, in Ref. [41] for bottom-induced & — yy decays.
Here the LO triangle diagram also contains a double-
logarithmic enhancement from the endpoint configuration
of the bottom-quark propagator between the two external
photons. In that case, the leading double-logarithmic
corrections can be included by dressing the off-shell
h — b*b* vertex with a standard QCD Sudakov form
factor. Notice that the systematic resummation of large
logarithms Inm,,/m,, for this process on the basis of RG
equations in SCET has been developed only recently in
Refs. [30,31].

At one-loop accuracy the RG evolution is multiplicative
in dual space, and—restricting ourselves to the anti-soft-
collinear region which generates the leading double-loga-
rithmic term in Eq. (47)—we can include the leading
logarithmic radiative QCD corrections from hard, anti-
hard-collinear, and soft QCD effects simply via the
factorization formula

mzez}/E
2E
x To(1.' ), (57)

(@1 40) In?

1 do’
FEm)|, =5 [%

LL

where H,(0,u) includes the leading-logarithmic (LL)
running of the hard matching coefficient for the b — sy*
vertex, and J,(1,®’, ) the corresponding expression for
the anti-hard-collinear jet function in dual space. The dual
LCDA p, (@', p) includes the scale dependence from soft
QCD modes. This is illustrated in Fig. 2. The x dependence
between the individual terms in Eq. (57) has to drop out.
We now discuss the individual terms in turn.
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S(A2 0202 (A3, 021) (A4 0,1)
FIG. 2.

anti-hard-collinear corrections to spectator scattering.

A. Hard QCD corrections at the b — sy* vertex

The hard corrections to the Wilson coefficients of heavy-
to-light currents have been calculated in the framework of
SCET, see for instance Ref. [42]. In the double-logarithmic
approximation, we would only have to take into account the
leading universal term in the corresponding solution to the
RG equation,

m —g(p-tn)
Hy(0; ) = eVlsw) (ﬂ};) Hi(0:pm)

47TCF 1
~exp|——>——(——1+1In
p[ b (uy) (Zh Zh>
2C U
+b—OFlnﬁlnzh] H(0;uy), (58)
with Cr = 4/3,
o (p 2n
2 = z(p, ) = W (59)

as(ﬂh) a 2r + b()as(/uh) lnﬂﬁh

and by = 11 —2n,/3 being the leading coefficient in the
QCD beta function. The above formula resums all terms of
order o In?" ﬁ The matching scale y;, should be identified

with twice the energy of the virtual photon, which in the
anti-soft-collinear region equals the muon energy:

pp = (- p)~2E

such that H,(0;u,) = 1 + O(ay) without logarithmically
enhanced terms, and

H(O;p) = ev(”'2E>H1(0§ﬂh =2E).

B. Soft corrections to the B-meson LCDA

The B-meson LCDA in dual space renormalizes multi-
plicatively at one-loop accuracy [40],

(1,A2,)) (1,0, A%

[

| |

. [ P

(A1) | ke | se(A3, A2, 0)
{

s(A2 A% 02) (A, A%0) (A\4,0,1)

Mlustration of short-distance QCD corrections to the anti-soft-collinear region. Left: hard correction to b — sy* vertex. Right:

2vE
py (@' p) = e¥lmm) (,u()e

=9(p-po) .
) @), (60

where V(u,pg) is defined analogously as before, with
My = Mo, and

2C
9(p. o) = == FInz (61)
0

to leading-logarithmic accuracy, with

zy = 2(u. o) = % (62)

The scale p refers to a soft reference scale where a model/
parametrization of the LCDA is defined. Throughout this
article, we set yy = 1 GeV.

C. Hard-collinear corrections to the strange-quark
jet function

Following the discussion around (2.33) in Ref. [40], the
leading logarithmic corrections to the jet function describ-
ing the corrections to the strange-quark exchange in the
anti-hard-collinear scattering process in dual space is again
described by a multiplicative renormalization factor,

T1. o) = o2V ktnc) //M G(kttne) Lo
jz( ,a)’ﬂ)—e 2Ea jz( ’a)’ﬂhc)a

(63)
with the same RG functions V and ¢ as above.
D. Net result for RG-improved endpoint contribution

Combining all RG factors, the dependence on the
factorization scale u drops out in the product
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[\ —9(H-Ho)
ev(ﬂ’2E)j(2Ea) /’t) V(u.po) <l/§) 0

= ev(ﬂhc-ﬂh)ev(ﬂm Ho) (ﬂ()) 8lkscto)

a)/

as required [43]. Here we abbreviate fiy = poe’®, and
identify y, = 2E, as well as J,(1,®; u.) ~ 1. Inserting
the net leading-logarithmic RG factor into the form factor
for the O, contribution, we end up with

1 do' m?
E = Z Vlunekn) oV (pnc-to) In2
a ’m)‘LL 2¢ ¢ o  2E®
o\ ~9Wne o)
(B ) (64)

with @ = @'e~t. If we define the generating function for
logarithmic moments of p, (@', yg) as [40]

o dot ()
FW](f?Mo,Mm):A —,(—,> pi(@' pg),  (65)

o \o
this can also be written as (f1,, = p,,e)

1 2Euy\ ~ 9(Hneto) 2

E, ‘ — _ oVHnctn) oV (Hne-Ho) -

F(E,m) L= 5¢ e . e

(66)

m2
X Fp | t+ g(knes Ho)s ﬂO’ZE

The compact formulas for the form factor contain the
leading double-logarithmic enhancement from the endpoint
configuration of the muon propagator, supplemented by the
leading-logarithmic QCD corrections in RG-improved
perturbation theory. As such they still depend on the shape
of the B;-meson LCDA or its generating function for

|

F(E,m) ‘LL 2w,

8 5 4
+<2a1 —3ga2> (In A +w(1-g)) +§2}

2

= Zakfk o),

k=0

@

where w is the digamma function, a; = a;(po),
9= 9(fpe, Ho), and we defined the abbreviation

mzez}/E
- 2E(1)0 '

To illustrate the numerical effect of the RG improve-
ment, we consider jpuo=1GeV, pu,=53GeV,

B 2
zMeV(ﬂm ) +V (fne Ho) <”0> ' { <ao - ga, + I+29

logarithmic moments. Thus, for numerical studies one has
to consider models or generic parametrizations for p_ (')
or F|, 1(#) at the soft reference scale y, which is the subject
of the next subsection.

E. Explicit parametrization of the B;-meson LCDA
and numerical estimates

With the compact expression for the form factor at hand,
we can use an explicit but general parametrization of the
LCDA as suggested in Ref. [44]:

e~/ ZK (=D ac(mo) (1)
/ _ /
p+(6() Hu()) - CO/ £t 1 + k Lk (20)0/60 )’ (67)
where Lil) are associated Laguerre polynomials. The

logarithmic moments of p_ (@') for this parametrization
can be obtained as derivatives of the generating function:

K

xS ailuo),Fr (k.1 +£:2:2). (68)

k=0

F, (83 Hos tm)

where the hypergeometric functions with a negative integer
—k as their first argument are polynomials of order k,

ZF1(0,1+12;2) =1,
(-1, 14+162;2) =—

Fi(=2,1+12;2) = (1 +2£2) etc.  (69)

w \

Truncating the parametrization for p_ (@', ) at K = 2, we
obtain

2 ) (0 41 =) 49/ )

(70)

[
Hne = /Mt =~ 2.3 GeV, with the following values of
the strong coupling at the individual scales:

ag(o) =049, ay(uy) =021,

leading to
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1.6 ————T T
o
14} [=== fi ]
-—=hl -
1.2} ,___———"‘ i
10 =—— 1
08 0.4 0.5 0.6 0.7 0.8 0.9 1.0
wo
FIG. 3. For illustration of the RG effect, we plot the prefactors

in front of the expansion coefficients a; defined in Eq. (70) as a
function of the auxiliary scale @, and normalized to the case

g =V =0, which we call j‘k(wo) =_Jdo) gor k= 0, 1, 2.

Si(@g) |_r/:V:0 ’

Z(ppes ) = 130, z(ppe, Ho) = 0.65,
for ny = 4, which yields

g~0.138
—0.053.

and  V(upe, uy) =~ —0.037,
V(ﬂhm HO)

for the relevant RG functions. From Fig. 3 we see that the
RG effect can be as large as (—15,430,+10)% for the
contributions of the coefficients ay;,, respectively, de-
pending on the value of the auxiliary scale w, in the
parametrization of the B;-meson LCDA. Notice that the
dependence of the RG effect is dominated by the factor
(fto/ @)~ in Eq. (70).

The leading-logarithmic QCD corrections to the O
contribution have also been outlined in Ref. [20] where
the additional approximation

2 /p N\ -
m- (jo\™9
Vo) / 2 (co’) pa (@, o)

N Y e o) f‘ff,u (’;,0 Ipi (@', po)
fdl/[hr (@' o)
do' m?2
- [ )
/13\.(/40) do' m?
:/IB(ﬂh) Cl)/ 1 22E /p+(w ﬂo) (71)
s Whe

has been used, which is formally valid since

2 2

m
= In? bleading logs,
2E&)o+su eading logs

n2
2E&

as long as @y ~ Agcp. For the numerical estimate of the
scale dependence of the first inverse moment 1z 1 of the B,-
meson LCDA, the authors of Ref. [20] employed the simple
exponential model that corresponds to taking ay = 1 and
ay-o = 0 in the generic parametrization (67). Adopting
these additional simplifications and using otherwise the
same numerical input as quoted above, we find about
(—15%) to (=30%) reduction—depending on the value of
wy—from the leading-logarithmic QCD corrections to the
form factor F. Up to numerical differences related to the
treatment of @, and the implementation of the RG evolution
of Ag (1) [45], this is in line with the numerical estimate in
Ref. [20]. We also observe that without the approximation
(71) the RG effect on the a, contribution captured by the
function fo, as illustrated by the green solid line in Fig. 3, is
slightly reduced.

IV. SUMMARY

We have studied the factorization of QCD effects for the
contribution of the electromagnetic dipole operator O; to
the B, = upu~ decay amplitude. This arises from the
nonlocal hadronic matrix element in Eq. (1). To this
end, we have first performed a careful reanalysis of the
leading QED box diagram using the method of momentum
regions with two different options for an analytic regulator
that has to be introduced to handle the otherwise divergent
convolution integrals. In particular, we identified the
relevant momentum region that is responsible for the
double-logarithmic enhancement in the small ratio of soft
and hard scales in the process. Considering the bare QCD
factorization theorem that captures the different momentum
regions for a given regulator, we performed the necessary
subtractions to render all convolution integrals finite, such
that the integrands can be renormalized in the standard
manner. The so-obtained factorization theorem allows one
to include radiative QCD corrections in renormalization-
group improved perturbation theory. Focusing on the
kinematic configuration that is responsible for the dou-
ble-logarithmic enhancement, we included the leading-
logarithmic QCD corrections in a straightforward manner
by taking into account the RG evolution for the hard, soft,
and jet function describing the relevant decay of the
B,-meson to two (virtual) photons in QCD factorization.
The leading-logarithmic RG factor takes a particularly
simple form in the so-called dual space for the light-cone
distribution amplitude of the B;-meson. We find a compact
analytic expression on the basis of a systematic para-
metrization of the Bg-meson’s two-particle LCDA.
Numerically, the effect of the leading-logarithmic QCD
corrections turns out to be up to 30% relative to the O,
contribution at fixed-order O(a?), in qualitative agreement
with an earlier estimate in Ref. [20]. We remind the reader
that the net contribution of O, to the total B, — u*u~ rate
is, however, small. From the theoretical point of view it
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would be interesting to confirm our findings by an explicit
two-loop calculation including all combinations of momen-
tum regions, which we leave for future investigation.
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APPENDIX: DETAILED DERIVATION
OF THE FACTORIZATION THEOREM

In this appendix we give a detailed derivation of the
factorization theorem Eq. (56), by specifying the necessary
subtractions that make every single convolution integral
finite. The starting point is the bare factorization theorem
for the analytic regulator R, (k) in Eq. (48),

FEm = [ Lo [T o)

)

+Luaa/W@H<)Cma»+Hmm

d
/ u/ —Suﬂ, )2 (14 p, )} .
bare

The procedure to perform the subtractions of endpoint
divergences in the convolution integrals follows closely the
analysis in Ref. [36]. However, in our case the situation is
somewhat simpler, because some of the functions are only
needed at leading order, as long as QED corrections of
order O(a) are ignored.

By means of the refactorization condition (54) we can
rearrange the divergent convolution integral in the second
line of the factorization theorem as follows:

Ju@/@mwa@

d
om0 [ [ s

+1(1w) / S, () (s 0) = H (0)[[Cs )]
(A1)

where the integral in the last line does not contain
an endpoint divergence anymore. Similarly, in the last

term of the bare factorization, we first decompose the p
integral as [47]

/ du/ LI+ p,@)S(u, p; w)

d dp -
—H,(0 / / DL 501 + p.@)S(u. pr )

/du/ L1 +p,0)S(w.prw),  (A2)

where the first term on the right-hand side contains the 1/4
divergence, while the second term is finite in the limit
0 — 0. The former can be further decomposed

mo) [ [ 50 s)

— H,(0) / du / P (7,01 4 pw) = To(1.0))S(u,p: )

d
+H lea)/ u/—Sup,

where the 1/6 divergence resides in the last term. We can
now combine the two endpoint-divergent terms as

J2<1,w>H1<o>(/1@/°°@+/“d—;‘/ol%)sw,p;m
= ([ [ 0= [75 [7)

x S(u.p; )220

)S(u,p;w)

(A3)

(A4)

where we have used that in case of analytic regulators the
scaleless double integral

d
/ M/ —Sup, =0,

vanishes. The indicated limit 1> — 0 is understood to be
performed after the convolutions, keeping the logarithmi-
cally enhanced terms. Notice that in the second term in
brackets on the right-hand side of Eq. (A4) we can drop the
analytic regulator and directly set 4> — 0 in the soft
function [in fact, for the leading expression S(‘)(u,p;w),
the O(4?) terms only contribute at O(¢)]. This term is thus
insensitive to the long-distance dynamics of the muon and
thus can be combined with the first term in the factorization
theorem. Collecting all terms then leads to Eq. (56) in the
main text.

It is instructive to consider the leading-order expressions
for the individual contributions in the endpoint-subtracted
factorization theorem (56). For the first line, we obtain
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u

/omﬂ {HﬁO)(“)jgl)(u;w)e(l -

P03 000=1) [P 50 upi0)

P 20

) [ fron-srenom ot [

() [l )

ff 0
= [ s ),

We observe that the 1/¢* term that originally appeared in
the anti-hard-collinear region from the endpoint divergence
at u — 0 is now canceled by the subtraction, and the
remaining contributions can be obtained from an endpoint-
finite convolution with an effective anti-hard-collinear
function, which is distribution valued and reproduces the
single-logarithmic term.

Similarly, for the second line of the endpoint-subtracted
factorization theorem we find at leading order

7(10) [ 00000 - P )l )

rie)(*

em>€/ol B0 )1 = )2 = B (0)]
2
)

) el (o [57].)2
(25 o
=791, a))/ duCt O () H " (u),

) [2(1 —u)In(1 — u)} ]Hﬁ(’) ”

u

(A6)

which again only contains the single-logarithmic term.
The associated 1/e divergence cancels with the one from
the first line, see Eq. (AS), on the integrand level, with an

u

o+ [0 T,

(AS)

effective anticollinear function which is again distribution
valued.
For the third line in the factorization theorem, we find

H(0) / w%w&‘”(l tpow)—0(1- )0 (1. )]
< [Tt s

() [y [
oll) [t

and therefore the soft region does not contribute at leading
order after subtraction.

Finally, as already stated in Eq. (44), the fourth line of
the subtracted factorization theorem reproduces the anti-
soft-collinear region with cutoffs,

- Id )
191, 0)H(0) / du / B $0) (up:
o U Jo p

(A7)

1
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