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We study the conditions under which the Majorana phase of the two flavor neutrino mixing matrix
appears in the oscillation probabilities and causes CP violation. We find that the Majorana phase remains in
the neutrino evolution equation if the neutrino decay eigenstates are not aligned with the mass eigenstates.
We show that, in general, two kinds of CP violation are possible: one due to the Majorana phase and
the other due to the phase of the off-diagonal element of the neutrino decay matrix. We find that the
CP violating terms in the oscillation probabilities are also sensitive to neutrino mass ordering.
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I. INTRODUCTION

Neutrinos are the most intriguing particles in nature.
They are the only known elementary neutral fermions.
Even their fundamental nature, whether they are Dirac or
Majorana fermions, is an open question. In the Standard
Model (SM), neutrinos are massless. However, the discov-
ery of neutrino oscillations showed that different neutrino
flavors mix to form mass eigenstates and these states have
tiny, nondegenerate masses, which are more than a million
times smaller than the electron mass. The mechanism that
gives rise to such tiny masses is also an open problem in
particle physics.
Since neutrinos are neutral, it is possible for them to be

their own antiparticle, i.e., they can be Majorana fermions.
The mass term for Majorana neutrinos has a very different
form compared to that of Dirac neutrinos and can be
naturally made small via a seesaw mechanism. Majorana
masses violate lepton number by two units and lead to
interesting signals, such as neutrinoless double beta decay
or same sign lepton pairs at colliders. If the neutrinos have
Majorana masses, the mixing matrix connecting the flavor
eigenstates to mass eigenstates has extra phases (called
Majorana phases).
Neutrino oscillation probabilities depend on the ele-

ments of the mixing matrix and the mass-squared
differences, in general. It is well established that vacuum
oscillation probabilities do not depend on the Majorana

phases [1–4]. Matter effects arise due to neutrino propa-
gation in dense matter and they modify the neutrino
evolution and, hence, neutrino oscillation probabilities.
The matter effects can be due to pure SM interactions or
they can include nonstandard interactions also. In both
cases, it can be shown that the Majorana phases do not
appear in the oscillation probabilities.
There are, however, some neutrino evolution equations

for which the Majorana phases appear in neutrino oscil-
lation probabilities. A new form of neutrino decoherence
with an off-diagonal term in the decoherence matrix was
considered in Ref. [5]. It was shown that the neutrino
oscillation probabilities depend on Majorana phases in
such a case. It was also shown that these probabilities are
CP violating [6]. This leads us to the question of what
other possibilities are there under which the Majorana
phases appear in neutrino oscillation probabilities and lead
to CP violation.
In this paper, we address the above question for the case of

two flavor oscillations. Extension of the discussion to three
flavor oscillations is straightforward. We consider the most
general neutrino evolution Hamiltonian including decay
terms. Then we identify the terms in this Hamiltonian that
lead to the appearance of the Majorana phase in oscillation
probabilities and discuss their CP and CPT properties.

II. VACUUM NEUTRINO OSCILLATIONS

In this section, we briefly discuss the dynamics of two
flavor neutrino oscillations in vacuum. In general, neutrino
mass eigenstates νi mix via a unitary matrix to introduce
flavor states να of neutrinos

να ¼ U νi ¼ O Uphνi;

where να ¼ ð νe νμ ÞT and νi ¼ ð ν1 ν2 ÞT , and
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O ¼
�

cos θ sin θ

− sin θ cos θ

�
Uph ¼

�
1 0

0 eiϕ

�
: ð1Þ

The mixing matrixU is parametrized in terms of the mixing
angle θ and the Majorana phase ϕ. We assume that two
other phases are pulled out on the left and are absorbed in
the flavor states. In the case of Dirac neutrinos, the phase ϕ
gets absorbed in the neutrino mass eigenstates through
rephasing and we are left with the orthogonal mixing
matrix. Such rephasing cannot be done for Majorana
neutrinos.
Let us now consider the traditional diagonal Hamiltonian

in mass basis that governs the time evolution of neutrino
mass eigenstates,

H ¼
�
a1 0

0 a2

�

¼ ða1 þ a2Þ
2

�
1 0

0 1

�
þ ða2 − a1Þ

2

�−1 0

0 1

�
;

where a1 ¼ m2
1=2E and a2 ¼ m2

2=2E, where mi are the
mass eigenvalues and E is the energy of the neutrinos.
Evolution equations in the mass eigenbasis are

i
d
dt

νiðtÞ ¼
�ða1 þ a2Þ

2
σ0 −

ða2 − a1Þ
2

σz

�
νiðtÞ; ð2Þ

where σ0 is the 2 × 2 identity matrix and σz is the diagonal
Pauli matrix. In the flavor basis, Eq. (2) has the form

i
d
dt
ναðtÞ ¼

�ða1þa2Þ
2

σ0 −
ða2−a1Þ

2
OUphσzU

†
phO

T

�
ναðtÞ:

ð3Þ

The term proportional to σ0 makes no distinction between
the flavors and hence is absent from the probabilities. Since
Uph and σz are diagonal matrices, they commute; the σz
term simplifies to OσzOT and the phase ϕ disappears from
the evolution equation. The vacuum neutrino flavor tran-
sition probability is obtained as

Pðνe → νμÞ ¼ sin2 2θ sin2
�ða2 − a1Þt

2

�
≡ Pvac

eμ : ð4Þ

The relations between different probabilities, Pvac
ee ¼ 1 −

Pvac
eμ ¼ Pvac

μμ and Pvac
μe ¼ Pvac

eμ , follow trivially. Expressing ai
as m2

i =2E, we get the standard expression for transition
probability,

Pvac
eμ ¼ sin2 2θ sin2

�
Δm2L
4E

�
; ð5Þ

where L is the distance traveled by neutrinos.

III. OSCILLATIONS WITH GENERAL
DECAY HAMILTONIAN

We now consider a neutrino Hamiltonian including
decay terms. Such a Hamiltonian has the form

H ¼ M − iΓ=2; ð6Þ
whereM is the mass matrix and Γ is the decay matrix. For a
general two particle system these matrices are diagonal,
i.e., the mass eigenstates are also the decay eigenstates.
However, for a system of two particles that can oscillate
into each other, these matrices can have off-diagonal terms,
as in the case of a neutral meson system [7–9]. In this work,
we choose the matricesM and Γ=2 to be of the form [10,11]

M ¼
�
a1 0

0 a2

�
; Γ=2 ¼

 
b1

1
2
ηeiξ

1
2
ηe−iξ b2

!
: ð7Þ

In Eq. (7), the parameters a1; a2; b1; b2; η, and ξ are real,
with a2 − a1 ¼ Δm2=2E depicting the frequency of neu-
trino oscillations and the rest causing decay of neutrino mass
eigenstates. The matrix Γ needs to be positive semidefinite,
i.e., non-negative, which leads to the following constraints:
b1, b2 ≥ 0, and η2 ≤ 4b1b2. A beam of oscillating neutrinos
has a spread of energies. For oscillating neutrinos, this
spread is large enough such that both ν1 and ν2 are on mass
shell. Because of this spread, both ν1 and ν2 can decay into
the same set of final states with the same energies. This
possibility gives rise to the off-diagonal term Γ12.
Neutrino evolution through this Hamiltonian describes

both neutrino oscillation as well as neutrino decay. If Γ is
diagonal (η ¼ 0), i.e., the decay eigenbasis is the same as
the mass eigenbasis. In such a case it is straightforward to
show that the Majorana phase ϕ disappears from neutrino
evolution equations through a discussion similar to that of
the previous section. We now consider the case where Γ is
nondiagonal (η ≠ 0), i.e., the mass eigenstates are not decay
eigenstates. In this case, the evolution equation in the mass
eigenbasis takes the form

i
d
dt

νiðtÞ ¼
�ða1 þ a2Þ

2
σ0 −

ða2 − a1Þ
2

σz

−
i
2
ððb1 þ b2Þσ0 þ σ⃗:Γ⃗Þ

�
νiðtÞ; ð8Þ

where Γ⃗ ¼ ½η cos ξ;−η sin ξ;−ðb2 − b1Þ�. Transforming
this equation to flavor basis, we get

i
d
dt

ναðtÞ ¼
�ða1 þ a2Þ

2
σ0 −

ða2 − a1Þ
2

OσzOT

−
i
2
ðb1 þ b2Þσ0 −

i
2
OUphðσ⃗:Γ⃗ÞU†

phO
T

�
ναðtÞ:

ð9Þ
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Since σx and σy do not commute withUph matrix, the phase
ϕ remains in the evolution equation.
The time evolution operator for neutrinos in the mass

eigenbasis is U ¼ e−iHt. This matrix can be expanded in the
basis spanned by σ0 and Pauli matrices [12]. This expan-
sion is parametrized by a complex four-vector nμ ≡ ðn0; n⃗Þ,
whose components are given by nμ ¼ Tr½ð−iHtÞ:σμ�=2.
Explicitly, they are expressed in terms of the parameters of
H as

n0 ¼ −
i
2
ða1 þ a2Þt −

1

2
ðb1 þ b2Þt;

nx ¼ −
1

2
ðη cos ξÞt;

ny ¼
1

2
ðη sin ξÞt;

nz ¼
i
2
ða2 − a1Þtþ

1

2
ðb2 − b1Þt: ð10Þ

In terms of these components, the evolution matrix U is

U ¼ en0
�
coshnσ0 þ

n⃗:σ⃗
n

sinh n

�
; ð11Þ

where

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

q
¼ t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ða2 − a1 − iðb2 − b1ÞÞ2

q
:

ð12Þ

The evolution matrix in flavor basis can be obtained
through the transformation Uf ¼ UUU−1, where U is
defined in Eq. (1). Oscillation probabilities can be
obtained as

Pαβ ¼ jðUfÞαβj2:

The general probability expressions with all the decay
parameters nonzero are quite complicated. In this article,
we are interested in how the probabilities depend on the
Majorana phase ϕ. To illustrate this, we consider the
probability expressions in the limit b1 ¼ b ¼ b2 and
η ≪ ja2 − a1j. For convenience, we define

A ¼ sinð2θÞ sin ½ða2 − a1Þt�
ða2 − a1Þ

;

B ¼ sinð2θÞ sin2 ½1
2
tða2 − a1Þ�

ða2 − a1Þ
: ð13Þ

Neglecting terms of Oðη2Þ and higher order, we get the
survival probabilities as

Pee ¼ e−2btðPvac
ee − η cosðξ − ϕÞAÞ;

Pμμ ¼ e−2btðPvac
μμ þ η cosðξ − ϕÞAÞ; ð14Þ

and the oscillation probabilities as

Peμ ¼ e−2btðPvac
eμ þ 2η sinðξ − ϕÞBÞ;

Pμe ¼ e−2btðPvac
μe − 2η sinðξ − ϕÞBÞ: ð15Þ

Hence, we see that the Majorana phase ϕ appears in the
probability expressions if the neutrino evolution equation
contains the off-diagonal term of the decay matrix Γ12 ∝ η.
The presence of this term also violates the equalities Pμμ ¼
Pee and Pμe ¼ Peμ that we see in the case of two flavor
vacuum oscillations. In addition, we note that the terms
with B, present in oscillation probabilities, have opposite
signs for the two cases a2 > a1 (m2 > m1) and a2 < a1
(m2 < m1); that is, the oscillation probability is sensitive to
the mass hierarchy.
We now consider the oscillations of antineutrinos. We

assume CPT conservation, which implies the following
relations for the mass and decay matrices [10]:

M̄ ¼ M and Γ̄ ¼ Γ�: ð16Þ

Hence, antineutrino probabilities expressions can be
obtained by making the substitutions ϕ → −ϕ and ξ → −ξ
in the neutrino probability expressions. Explicitly, these
expressions are

Pē ē ¼ e−2btðPvac
ē ē − η cosðξ − ϕÞAÞ;

Pμ̄ μ̄ ¼ e−2btðPvac
μ̄ μ̄ þ η cosðξ − ϕÞAÞ; ð17Þ

and

Pē μ̄ ¼ e−2btðPvac
ē μ̄ − 2η sinðξ − ϕÞBÞ;

Pμ̄ ē ¼ e−2btðPvac
μ̄ ē þ 2η sinðξ − ϕÞBÞ: ð18Þ

Since we assumed CPT invariance, we find Pē ē ¼ Pee,
Pμ̄ μ̄ ¼ Pμμ, and Pμ̄ ē ¼ Peμ. However, there is CP violation
(Pē μ̄ ≠ Peμ) and T violation (Pμe ≠ Peμ).

IV. RESULTS AND DISCUSSION

In this section, we discuss our results. In transforming the
evolution equation from the mass eigenbasis to the flavor
eigenbasis, we get the matrix productUphHU†

ph, whereH is
the Hamiltonian in mass eigenbasis. The diagonal phase
matrix Uph commutes withH wheneverH is diagonal. This
is true for the usual neutrino oscillations and for the case
where the mass eigenstates are also the decay eigenstates. In
such situations, Uph matrix drops out from the neutrino
evolution equation, which in turn leads to the oscillation
probabilities being independent of the Majorana phase ϕ.
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However, when the decay eigenstates are not aligned with
the mass eigenstates, there is an off-diagonal term in the
decay matrix Γ ofH. SinceH is no longer diagonal, it does
not commute with Uph, thus leading to the presence of ϕ in
the evolution equation and in the probabilities. In addition to
the off-diagonal dissipator discussed in [5], the off-diagonal
decay matrix is another possible source for the appearance
of Majorana phases in the oscillation probabilities and the
corresponding CP violation.
The off-diagonal term of the decay matrix Γ has the

general form ηeiξ and the CP violating term in the
oscillation probabilities is proportional to η sinðξ − ϕÞ.
We distinguish different forms of CP violation based on
the values of the phases ξ and ϕ.

(i) For η ≠ 0 and ξ ¼ 0, the decay matrix Γ is real and is
CP conserving. In such a case, we need ϕ ≠ 0 for
CP violation. We call this CP violation in mass
because ϕ arises due to the diagonalization of the
complex mass matrix.

(ii) If ϕ ¼ 0, it is still possible to have CP violation if
η ≠ 0 and ξ ≠ 0. We call this CP violation in decay
because the CP violating phase ξ comes from the
decay matrix.

(iii) The most general possibility is η ≠ 0, ξ ≠ 0, and
ϕ ≠ 0. In this case, we haveCP violation due to both
mass and decay provided ϕ ≠ ξ.

We see that η ≠ 0 in all the above three cases. However, a
nonzero value of η is a necessary condition for CP violation
but not a sufficient condition. For the two special cases,
(a) ϕ ¼ 0 ¼ ξ and (b) ϕ ¼ ξ, there is no CP violation even
when η ≠ 0. In these two cases, the CP violating terms
vanish and the flavor conversion probabilities are the same
as the vacuum probabilities multiplied by the decay term.
However, the presence of a nonzero value of η is discernible
in the survival probabilities.
We now briefly discuss the values of parameters for which

the effects described in this work are likely to be observable.
A bound of τν ≥ 5.7 × 105 s (mν=eV) is derived from
the neutrino data of Supernova 1987A [13], which leads
to Γν ≡ b ≈ 10−21 eV for a neutrino of mass 1 eV. We take
η ¼ b, which satisfies the semipositivity constraint η ≤ 2b.

The new effects considered in this work are of order
η=ða2 − a1Þ ¼ ηE=Δm2. These effects are of order 10%
for Δm2 ≈ 10−4 eV2 if E ≈ 1016 eV or 107 GeV. That is,
ultrahigh energy neutrinos from astrophysical sources pro-
vide a platform to study the effect of the off-diagonal decay
term considered here.

V. SUMMARY AND CONCLUSIONS

In this article, we point out scenarios in which the
Majorana phase can appear in neutrino oscillation proba-
bilities that also cause CP violation. We did this analysis for
two flavor oscillations, but the extension of this work for
three flavor oscillations is straightforward. CP violation in
neutrino oscillations requires complex values of neutrino
mixing matrix. In the case of standard two flavor oscilla-
tions, the phases of this matrix, including the Majorana
phase, drop out of the evolution equation and there is no CP
violation. In this work, we have shown that the Majorana
phase in two flavor mixing remains in the evolution equation
and causes CP violation provided the neutrinos decay and
the decay eigenstates are not the same as mass eigenstates.
This requires the decay matrix Γ to have an off-diagonal
term Γ12. We have shown that two types of CP violation are
possible: (a) that due to theMajorana phase ϕ, which we call
CP violation in mass, and (b) that due to the phase ξ of Γ12,
which we call CP violation in decay. The CP violating term
in the oscillation probability is also sensitive to the neutrino
mass ordering. In the two special cases, when ϕ and ξ are
equal to each other or when both are zero, there is no CP
violation even if the decay eigenstates are different from the
mass eigenstates. In such a situation, the flavor conversion
probabilities are insensitive to off-diagonal elements of Γ but
the flavor survival probabilities do depend on them.
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