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We present for the first time classical multiparticle solutions in anti–de Sitter space (AdS) involving
scalars, gluons, and gravitons. They are recursively defined through multiparticle currents which reduce to
Berends-Giele currents in the flat space limit. This construction exposes a compact definition of tree-level
boundary correlators using a general prescription that removes unphysical boundary contributions.
Similarly to the flat space perturbiner, a convenient gauge choice leads to a scalar basis for all degrees
of freedom, while the tensor structure is exclusively captured by field theory vertices. This provides a fully
automated way to compute AdS boundary correlators to any multiplicity and cosmological wave function
coefficients after Wick rotating to de Sitter space.
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I. INTRODUCTION

Quantum field theory (QFT) in curved spacetime is full
of subtleties. For example, it is possible to construct an
S-matrix in asymptotically flat backgrounds, but its defi-
nition is unclear in generic spacetimes. Thus, general
techniques that we can export from flat to curved spaces
are very welcome. Naturally, studying QFT in curved
spacetime is also relevant for understanding quantum
gravity. Of particular interest are backgrounds with nonzero
cosmological constant, notably (anti–)de Sitter [(A)dS]
space. Boundary correlators in these spacetimes are con-
strained by conformal Ward identities and reduce to bulk
scattering amplitudes in the flat space limit. In AdS, this
underlies the gauge-gravity duality between conformal field
theory (CFT) and string theory [1]. In de Sitter (dS), this
provides a powerful new set of tools for computing
cosmological observables inspired by scattering amplitudes,
which is now a very active area of research (see e.g., Ref. [2]
for a recent review).
Recursive techniques have had a major impact on the

understanding of flat space scattering amplitudes and are
therefore valuable goals to pursue in curved space. For

instance, the Britto-Cachazo-Feng-Witten (BCFW) recur-
sion [3] was generalized to AdS in Refs. [4–6], while
recursions for Witten diagrams were developed in
Refs. [7–9] for scalars and more generally in Ref. [10].
However, they do not exhibit the same level of efficiency
as flat space recursions and cannot be directly used to
compute correlators involving more than one type of
particle. Alternatively, the Berends-Giele (BG) recursion
[11] (later extended and formalized in Ref. [12]) provides
a clearer path for the computation of curved space
correlators. In flat space, BG currents can be seen as
tree-level amplitudes with one off-shell leg. Higher-point
amplitudes are then built by connecting BG currents
through field theory vertices. More recently, the BG
recursion was partially extended to AdS embedding space
[13,14], yielding a differential representation for boundary
correlators with external scalars, although a practical
extension to spinning particles remained elusive.
In this paper, we take this extra step and establish the

AdS generalization of the so-called perturbiner method
[15–17] (see also Refs. [18–33] for a number of recent
applications). Based on a novel set of classical multiparticle
solutions, we propose a robust framework to describe
scalars, gluons, gravitons, and their interactions at tree
level. Contrary to flat space, the multiparticle recursion in
AdS momentum space is not algebraic and involves the
inversion of differential operators in the radial coordinate.
The key step here is a suitable gauge choice. Instead of the
traditional axial gauge, we define a boundary transversal
gauge. While equivalent at the linearized level, the latter
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lets us localize all the tensor structure into the vertices,
exclusively working with scalar propagators.
The multiparticle currents are given by nested integrals in

the radial coordinate and can be used to compute N-point
tree-level boundary correlators. Because of the boundary,
the usual BG prescription must be generalized to recover the
permutation symmetry of the correlators. In Yang-Millls
(YM), for example, this prescription makes the cyclicity
of the color-ordered correlators manifest while removing
unphysical boundary terms.
We start by discussing classical equations of motion in

AdS, with the introduction of a convenient gauge choice
for handling the multiparticle solutions. First, we look at the
YM theory and the color-stripped perturbiner. Next, we
analyze graviton multiparticle solutions and finalize with the
discussion of scalars coupled to YM and gravity. In each
case, we propose and verify the prescription for tree-level
correlators. Along the way, we explain how to adapt our
recursions to dS, where they compute coefficients of the
cosmological wave function [34–36]. We then present some
final remarks and natural directions to investigate next.

II. FIELD EQUATIONS IN AdS

We work with AdSdþ1 with radius R in the Poincaré
patch,

g̃mndxmdxn ¼
R2

z2
ðdz2 þ ημνdxμdxνÞ; ð1Þ

with 0 < z < ∞. The spacetime indices m; n;… generi-
cally represent the radial direction z and the boundary
directions. The latter are denoted by μ; ν ¼ 0;…; d − 1, and
ημν is the flat boundary metric (Lorentzian). We will often
use the shorthand ðU · VÞ ¼ ημνUμVν for boundary vectors.
For dS, we take the boundary metric to be Euclidean and
Wick rotate the radial coordinate, z → −iη.
We start with a scalar field with mass m coupled to the

curvature R via a constant parameter ξ, satisfying

gmn
∂m∂nϕ − gmnΓp

mn∂pϕ ¼ ðm2 þ ξRÞϕ: ð2Þ

The left-hand side is simply the curved d’Alembertian, with
Γp
mn ¼ gpqΓmnq denoting the Christoffel symbol

Γmnp½g� ¼
1

2
ð∂mgnp þ ∂ngmp − ∂pgmnÞ: ð3Þ

In the rest of this paper, we take the free solutions to be
eigenstates of the boundary momenta, denoted by kμ. In the
Poincaré patch (gmn ¼ g̃mn), Eq. (2) is recast as

D2
kϕ ¼ M2ϕ; ð4Þ

D2
k ≡ z2∂2z þ ð1 − dÞz∂z − z2k2; ð5Þ

with k2 ¼ ðk · kÞ, and effective mass M2 ¼ ðmRÞ2−
ξdðdþ 1Þ. The solutions of (4) are Bessel functions
(or Hankel functions for dS). Under proper boundary
conditions and normalization, they are identified with (A)
dS bulk-to-boundary propagators (see e.g., Refs. [37,38] for
more details).
The curved Yang-Mills equations are given by

gnp∂pFmn ¼ ignp½Ap;Fmn�þJmþ gnpðΓq
mpFqnþΓq

npFmqÞ;
ð6Þ

where Fmn ¼ ∂mAn − ∂nAm − i½Am;An� is the field
strength, Am is Lie algebra valued for some unspecified
gauge group with generators Ta, and Jm generically denotes
the coupling to other fields. We take Aμ ¼ ðR=zÞAμ and
Az ¼ ðR=zÞα, such that the linearized version of (6) is
rewritten as

ðD2
k þ d− 1ÞAμ ¼ izkμ½z∂z þ ð2− dÞ�α− z2kμðk ·AÞ; ð7aÞ

k2α ¼ ið1=z − ∂zÞðk · AÞ: ð7bÞ

Instead of the axial gauge α ¼ 0, we will choose the
boundary transversal gauge,

ημν∂μAν ¼ 0: ð8Þ

They are equivalent at the linearized level; when k2 ≠ 0, we
have α ¼ 0, while for k2 ¼ 0, we set α to zero via a residual
gauge symmetry.
Finally, we review Einstein’s field equations with cos-

mological constant Λ ¼ dð1 − dÞ=ð2R2Þ. In the presence
of matter, with action Smatter and energy-momentum tensor

Tmn ≡ −
2ffiffiffiffiffiffi−gp δ

δgmn Smatter; ð9Þ

they can be cast as

Rmn þ
d
R2

gmn ¼ κTmn −
κ

ðd − 1Þ gmngpqTpq; ð10Þ

with gravitational coupling κ, Ricci tensor Rmn given by

Rmn ¼ ∂pΓ
p
mn − ∂nΓ

p
mp þ Γp

pqΓq
mn − Γp

nqΓq
mp; ð11Þ

and scalar curvature R ¼ gmnRmn.
The graviton dynamics can be accessed via a deforma-

tion of the background metric. Gravitons are parametrized
here as

gmn ¼ g̃mn þ
R2

z2
hmn: ð12Þ

The analog of the boundary transversal gauge is
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ημν∂μhzν ¼
1

2
ημν∂zhμν þ

d
2z

hzz; ð13aÞ

ηνρ∂ρhμν ¼
1

2
∂μðηνρhνρ þ βhzzÞ; ð13bÞ

where β is a constant parameter. Then, the linearized
version of (10) is given by

k2hzz ¼ 0; ð14aÞ

k2hzμ ¼
i
2z

ðd − 2 − βz∂zÞkμhzz; ð14bÞ

D2
khμν ¼ ½ð1 − βÞz2kμkν þ ημνðd − z∂zÞ�hzz

þ ½z2∂z þ ð1 − dÞz�ð∂μhνz þ ∂νhμzÞ: ð14cÞ

Like in Yang-Mills, the components hzz and hzμ vanish
on shell (k2 ≠ 0) or via a residual gauge transforma-
tion (k2 ¼ 0).
With our gauge choice, the physical degrees of freedom

both in YM and in gravity have scalar propagators, with
interesting consequences in the context of multiparticle
solutions.

III. MULTIGLUON SOLUTIONS
AND CORRELATORS

We are now going to evaluate the multiparticle solutions
of (6) through the ansatz:

Aμðx; zÞ ¼
R
z

X
I

AIμðzÞTaIeikI ·x; ð15aÞ

Azðx; zÞ ¼
R
z

X
I

αIðzÞTaIeikI ·x; ð15bÞ

Jmðx; zÞ ¼
X
I

J ImðzÞTaIeikI ·x: ð15cÞ

The word I denotes a sequence of letters I ¼ i1…il,
where i is a single-particle label, with kI ≡ ki1 þ � � � þ kil
and TaI ¼ Tai1 � � �Tail . The boundary transversal gauge
translates to ðkI ·AIÞ ¼ 0. The single-particle solutions of
(7), i.e., bulk-to-boundary propagators, are then associated
to one-letter words, which we denote byAiμ ¼ εiμϕ̃ðzÞeiki·x
and αi ¼ 0. The polarization εiμ is transversal, ðki · εiÞ ¼ 0,
and ϕ̃ satisfies ðD2

i þ d − 1Þϕ̃ ¼ 0. We refer to AIμ and αI
as multiparticle currents. The specific form of Jm depends
on the model, and we will see an explicit example later.
After plugging the above ansatz in (6), we obtain the

multiparticle recursions

1

z2
ðD2

I þd− 1ÞAIμ ¼ ikIμ½∂zþð2−dÞ=z�αI −
R
z
J Iμ

þR
z

X
I¼JK

fðkKμαK þ 2i∂zAKμÞαJ þ kKμðAJ ·AKÞþAKμ½ið∂z−d=zÞαJ − 2ðkK ·AJÞ�− ðJ↔KÞg

þR2

z2
X

I¼JKL

f½αJαKALμþðAJ ·AKÞALμ− ðK↔ LÞ�þ ½αKαLAJμþðAK ·ALÞAJμ− ðJ↔KÞ�g; ð16Þ

and

k2IαI ¼
R
z

X
I¼JK

f2αKðkK ·AJÞ−2αJðkJ ·AKÞ

þ iðAJ ·∂zAKÞ− iðAK ·∂zAJÞgþ
R
z
J Iz

þR2

z2
X

I¼JKL

fαKðAJ ·ALÞ−αLðAJ ·AKÞþðJ↔LÞg;

ð17Þ

with shorthand D2
I ¼ D2

kI
. The operation I ¼ JK (JKL)

denotes a deconcatenation, which consists of all the order
preserving ways of splitting the word I into JK (JKL).
Note that AIμ; αI do not carry any color structure, which
has been stripped off in (15).

The inversion of ðD2
I −M2Þ is defined via the Green’s

function GIðz; yÞ, a bulk-to-bulk propagator, satisfying

ðD2
I −M2ÞGI ¼ zdþ1δðz − yÞ ð18Þ

with appropriate boundary conditions. In particular, we
have

ðD2
I −M2Þ−1OðzÞ ¼

Z
dy
ydþ1

GIðz; yÞOðyÞ; ð19Þ

and the recursion of AIμ, depicted in Fig. 1, is computed
through nested integrals in the radial coordinate. Explicit
expressions for GI in AdS were derived in Ref. [5]. Wick
rotating them to dS is subtle; see Refs. [38–40] for further
details.
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The prescription for computing N-gluon color-ordered
correlators is defined to be

Að1;…; NÞ ¼ −
1

N

Z
dz
zdþ1

ημν½A1μðD2
2…N þ d − 1ÞA2…Nν

þ cycð1;…; NÞ�; ð20Þ

where boundary momentum conservation is implicit.
Equation (20) effectively removes the bulk-to-bulk propa-
gator from A2…Nν (rightmost one in Fig. 1) and replaces it
by a bulk-to-boundary propagator. This is a straightforward
generalization of the usual Berends-Giele prescription [11].
The extra ingredients here are the integration over the radial
coordinate and the explicit sum over the cyclic permutations
of the N external legs, which is redundant in flat space. The
latter removes unphysical boundary contributions that
would otherwise break the cyclicity of the color-ordered
correlators.
Let us now present a couple of examples. The three-point

result is given by

Að1; 2; 3Þ ¼ R3ε1με2νε3ρV
μνρ
123

Z
dz
zd

ϕ̃1ϕ̃2ϕ̃3; ð21Þ

with the usual polarization structure of Yang-Mills,

Vμνρ
123 ¼ ημνηρσðk1 − k2Þσ þ cycð1μ; 2ν; 3ρÞ: ð22Þ

The four-point correlator is given by

Að1; 2; 3; 4Þ

¼ Π0
12j34

Z
dz
zdþ1

ðϕ̃1 ∂

↔

zϕ̃2Þðϕ̃3 ∂

↔

zϕ̃4Þ

þ Π1
12j34

Z
dz
zdþ1

ðzϕ̃1ϕ̃2ÞðD2
34 þ d − 1Þ−1ðzϕ̃3ϕ̃4Þ

þ ½ðε1 · ε3Þðε2 · ε4Þ − ð3 ↔ 4Þ�

×
Z

dz
zdþ1

ϕ̃1ϕ̃2ϕ̃3ϕ̃4 − ½ð34Þ → ð23Þ�; ð23Þ

with U ∂

↔

zV ¼ U∂zV − V∂zU. In the first line, the polari-
zation structure is encoded in

Π0
12j34 ¼

R4

k234
ðε1 · ε2Þðε3 · ε4Þ; ð24Þ

while in the second line, we have

Π1
12j34 ¼ R4

ðk21 − k22Þðk23 − k24Þ
k234

ðε1 · ε2Þðε3 · ε4Þ

þR4ημν½2ε1μðk1 · ε2Þ − k1μðε1 · ε2Þ − ð1 ↔ 2Þ�
× ½2ε3νðk3 · ε4Þ − k3νðε3 · ε4Þ − ð3 ↔ 4Þ�: ð25Þ

The third line in (23) is simply a four-point contact Witten
diagram.
Because of the boundary transversal gauge, the corre-

lators computed via (20) are expressed in terms of scalar-
like factorization channels. The price to pay is the apparent
introduction of spurious poles of the form k−2ij . The final
expression, however, is equivalent to other results in the
literature. For example, we match (23) with the results
of [41] when d ¼ 3.

IV. MULTIGRAVITON SOLUTIONS
AND CORRELATORS

For the multiparticle solutions of (10), we start with an
ansatz inspired by the parametrization (12),

gmn ¼ g̃mn þ
R2

z2
X
I

HImneikI ·x: ð26Þ

The main difference with YM is the absence of the color
structure, so we consider only the sum over ordered words
I ¼ i1…il, with i1 < i2 < … < il.
The natural multiparticle ansatz for gmn is

gmn ¼ g̃mn −
R2

z2
X
I

Imn
I eikI ·x: ð27Þ

Since the inverse metric satisfies gmpgnp ¼ δmn , the multi-
particle currents in (27) are constrained to be

Imn
I ¼ g̃mpHIpqg̃qn −

R2

z2
X

I¼J∪K
Imp
J HKpqg̃qn: ð28Þ

The operation I ¼ J ∪ K denotes the deshuffle, which
means we consider all possible ways of splitting the
ordered word I into two nonempty ordered words J and
K. Equation (28) is responsible for packing the infinite
number of vertices in gravity into a simple recursion [28].
In practice, the recursive structure is encoded in up to

FIG. 1. Graphic representation of the cubic vertex deconcate-
nation I ¼ JK in the multiparticle recursion, with I ¼ 12…i. The
dashed line denotes the AdS boundary. Thin (thick) lines denote
bulk-to-boundary (bulk-to-bulk) propagators.
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quintic interaction vertices, which is a vast improvement
over standard diagrammatic techniques.
In terms of the multiparticle currents, gauge (13) reads

iημνkIμHIzν ¼
1

2
ημν∂zHIμν þ

d
2z

HIzz; ð29aÞ

iηνρkIρHIμν ¼
i
2
kIμðηνρHIνρ þ βHIzzÞ; ð29bÞ

and the ansatz (26) solves Eq. (10) when the multiparticles
currents satisfy

k2IHIzz ¼
2κ

ðd − 1Þ ½ðd − 2ÞT Izz − ημνT Iμν� − 2GIzz; ð30aÞ

k2IHIzμ ¼ 2κT Izμ−2GIzμþ
i
2z

ðd−2−βz∂zÞkIμHIzz; ð30bÞ

D2
IHIμν ¼

2κz2

ðd− 1ÞημνðT Izz þ ηρσT IρσÞ− 2κz2T Iμν

þ ½ð1− βÞz2kIμkIν þ ημνðd− z∂zÞ�HIzz þ 2z2GIμν

þ iz½z∂z þ ð1− dÞ�ðkIμHIzν þ kIνHIzμÞ: ð30cÞ

T Imn denotes the currents of the multiparticle expansion
of the energy-momentum tensor, Tmn ¼

P
I T ImneikI ·x. The

interaction between gravitons and matter in AdS is captured
by GImn, which is fully displayed in the Supplemental
Material [75]. By construction, the currents HImn are
symmetric under the permutation of any single-particle
labels. The single-particle solutions of (14) are again
associated to one-letter words, which we denote by
Hiμν ¼ hiμνφðzÞeiki·x and Hizμ ¼ Hizz ¼ 0. The boundary
polarization hiμν is traceless (ημνhiμν ¼ 0) and transversal
(ηνρkiρhiμν ¼ 0), and φðzÞ is a massless minimally coupled
(ξ ¼ 0) scalar.
Like in YM, the recursions in (30) present a character-

istic feature of the boundary transversal gauge: the tensor
structure of the correlator is relegated to the interaction
vertices, and only scalar propagators appear. Moreover, the
currents HIzz and HIzμ, as well as ημνHIμν and ηνρkIρHIμν,
have a trivial propagator.
The generalization of the color-ordered correlators in

(20) to gravity is given by

MN ¼ −
1

N
κ

Z
dz
zdþ1

ημρηνσH1μνðD2
2…NH2…NρσÞ

þ permð1 → 2…NÞ: ð31Þ

The permutation in the last line makes the correlator
manifestly symmetric in all N legs.

Since graviton correlators quickly grow in size, we
present explicitly only the three-point case:

M3 ¼
κ

4
h1μνh2ρσh3γλ

�
Vμργ
123V

νσλ
123

Z
dz
zd−1

φ1φ2φ3

−
1

3
ηνρησγηλμ

Z
dz∂z

�
1

zd−1
∂zðφ1φ2φ3Þ

��
: ð32Þ

The first line is the well-known expression in terms of the
cubic vertices of Yang-Mills (22). The second line encodes
contact terms which have delta function support when
Fourier-transformed to position space. Therefore, it van-
ishes for generic boundary positions of the operators. In
momentum space, they are characterized by being analytic
in at least two of the momenta [34]. The total derivative in
(32) diverges when z → 0, so we introduce a cutoff at
z ¼ ϵ. After dropping the power-law divergent pieces, we
find that

Md
B ≡

Z
dz∂z

�
1

zd−1
∂zðφ1φ2φ3Þ

�
∝
X3
i¼1

kdi ; ð33Þ

in odd d, which can be removed by a redefinition of the
bulk metric [34]. For even d, we obtain

Md
B ∝

X3
i¼1

kdi ln

�
1

2
ϵkieγE

�
þ � � � ; ð34Þ

where the first term can also be removed by a redefinition
of the metric [42] and the ellipsis denotes polynomials in
the squares of momenta, known as ultralocal terms [43].

V. SCALARS, GLUONS, AND GRAVITONS

Now, we turn our attention to scalar theories. Since their
classical multiparticle solutions have a very simple struc-
ture, we will focus on the more interesting cases with
coupling to gluons and gravitons.
Consider first scalars in the adjoint representation of the

gauge group. Their color-stripped multiparticle expansion
is analogous to (15), given by

ϕ ¼
X
I

ΦIðzÞTaIeikI ·x: ð35Þ

Single-particle states satisfy ðD2
i −M2ÞΦi ¼ 0, and we

consider a minimal coupling with gluons,

∂mϕ → ∂mϕ − i½Am;ϕ�; ð36Þ

such that Jm ¼ ½ði∂mϕþ ½Am;ϕ�Þ;ϕ� in (6).
In the gauge (8), Eq. (2) minimally coupled to YM yields

the following recursion,
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1

z2
ðD2

I −M2ÞΦI ¼
R
z

X
I¼JK

½2ΦJðkJ ·AKÞ − i

�
ΦJ∂zαK þ 2αK∂zΦJ −

d
z
ΦJαK

�
− ðJ ↔ KÞ�

þR2

z2
X

I¼JKL

½ðAJ ·AKÞΦL − ðAJ ·ALÞΦK þ αJαKΦL − αJαLΦK þ ðJ ↔ LÞ�; ð37Þ

with color-ordered N-point correlators defined via

Að1;…; NÞ ¼ −
1

N

Z
dz
zdþ1

Φ1ðD2
2…N −M2ÞΦ2…N

þ cycð1;…; NÞ: ð38Þ

As an example, we take the case of four external scalars
exchanging gluons:

Að1;2;3;4Þ ¼R
2

Z
dz
zd

fΦ1Φ2½ðk1 − k2Þ ·A34�

þ iðΦ1∂zΦ2 −Φ2∂zΦ1Þα34gþ cycð1;2;3;4Þ:
ð39Þ

For a conformally coupled scalar (M2 ¼ 1 − d), this
expression can be directly obtained from the YM result
in (23) with the identifications ϕ̃i → Φi, ðki · εjÞ → 0, and
ðεi · εjÞ → 1. The final result matches the form obtained in
Ref. [41] for d ¼ 3.
When graviton excitations are considered, the color

structure cannot be stripped off from the multiparticle
currents, which would explicitly involve color indices.
For simplicity, we will turn off the gluons and consider
a colorless scalar

ϕ ¼
X
I

ΦIðzÞeikI ·x; ð40Þ

as the multiparticle ansatz solving Eq. (2). We then obtain
the recursion for ΦI,

1

z2
ðD2

I −M2ÞΦI ¼
R4

z4
X

I¼J∪K

�
Imn
J ∂m∂nΦK þ z2

R2
g̃mn

×
�
g̃pqΓJmnq∂pΦK −

2ξ

ðd− 1Þ κΦJT Kmn

�

− Γ̃mnqðg̃mnIpq
J þ g̃pqImn

J Þ∂pΦK

�
þ…:

ð41Þ

The ellipsis denotes contributions with higher-order
deshuffles, which are spelled out in the Supplemental
Material [75]. The current ΓImnp is defined through (3) as

ΓImnp ¼ Γmnp

�
R2

z2
HI

�
: ð42Þ

The notation ∂pOI ¼ iδμpkIμOI þ δzp∂zOI is implicit for
any current OI. Finally, T Imn denotes the multiparticle
coefficients of the energy-momentum tensor:

Tmn ¼ ∂mϕ∂nϕ −
1

2
gmnðgpq∂pϕ∂qϕþm2ϕ2Þ

þ ξ

�
Rmn −

1

2
gmnR

�
ϕ2 þ ξðgmngpq∂p∂q − ∂m∂nÞϕ2

− ξðgmngpqgrsΓpqr∂s − gpqΓmnp∂qÞϕ2: ð43Þ

The N-point scalar correlator is given by

AN ¼ −
1

N

Z
dz
zdþ1

Φ1ðD2
2…N −M2ÞΦ2…N

þ permð1 → 2…NÞ: ð44Þ

We have explicitly checked that the four-point correlator
matches the Witten diagram calculation modulo gauge-
dependent contact terms for the case M2 ¼ 0 (see the
Supplemental Material [75]). This case is of particular
interest since it arises from the dimensional reduction of
the four-point graviton amplitude in the flat space limit
[13]. Note that theβ-dependent piece coming from the
gauge choice (13) may be cast as a total derivative,

A4jβ ∝
X

234¼ij∪k

Z
dz∂z

�
z1−dΦ1∂zHijzzΦk

þ ðk2k − k21Þ
k2ij

z1−d½HijzzðΦ1∂zΦk −Φk∂zΦ1Þ�
�

þ permð1 → 234Þ: ð45Þ

Once again, these boundary contributions correspond to
contact terms with delta function support in position space.

VI. FINAL REMARKS

Inspired by the perturbiner method in flat space, we have
derived the first classical multiparticle solutions for scalars,
gluons, and gravitons in AdSdþ1. Their recursive character
requires nested integrations in the radial coordinate, with
bulk-to-bulk propagator insertions. Perhaps more notewor-
thy is the fact that in any of these theories we require only
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scalar bulk-to-bulk propagators. This follows from a special
gauge choice, dubbed here boundary transversal gauge [see
(8) for YM and (13) for Einstein gravity]. At the linear level,
it is equivalent to the axial gauge. At the nonlinear level,
however, the latter makes the perturbiner recursion imprac-
tical, introducing further differential operators in the radial
coordinate.
Our recursive approach is equivalent to the Witten

diagrammatic expansion in AdS momentum space up to
contact terms with delta function support when Fourier-
transformed to position space. In general, Witten diagrams
capture the transverse traceless part of the dual CFT
correlators. Ward identities can then be used to determine
the remaining terms. They correspond to contact terms in
position space and vanish for generic locations of the CFT
operators [34,44,45].
Due to the (A)dS boundary, the usual flat space BG

prescription had to be generalized. For Yang-Mills theory,
we introduced a prescription that makes the cyclicity of
color-ordered correlators manifest. We verified up to five
points that this removes unphysical boundary contributions.
For gravity, the prescription restores permutation invariance
of the correlators. Finally, we analyzed scalars exchanging
gluons and gravitons, obtaining novel formulas, which we
matched against four-point Witten diagrams. They exhibit
interesting new structures related to the double copy [46,47]
and will be presented in Ref. [48]. We expect our framework
to be more transparent to the color-kinematics duality, much
in the same way that the flat space perturbiner could realize
a Bern-Carrasco-Johansson (BCJ) gauge through a multi-
particle gauge choice [19].
In summary, we have established an elegant tool for

computing tree-level boundary correlators in (A)dS. Our

results also provide a systematic construction of higher-
point graviton correlators which is currently very challeng-
ing usingWitten diagrams. Exploring whether our approach
exposes some hidden structures in these correlators is
therefore an important priority for future work. We plan
to investigate the implications of our recursions for cosmol-
ogy and the relation to other recent approaches based on the
double-copy [13,14,37,44,49–59], factorization [41,60–63],
unitarity [40,64–67], Mellin space [39,68], Witten diagrams
[69,70], scattering equations in (A)dS [38,71–73], and
geometric approaches [7].
One of the claims to fame of BG recursion in flat space is

the first proof of the Parke-Taylor formula [74] for all tree-
level Maximally Helicity Violating (MHV) amplitudes in
YM [11]. In four-dimensional (A)dS, the natural analog of
MHVamplitudes is tree-level all-plus correlators of gluons,
which vanish in the flat space limit. It would be truly
rewarding if the recursion relations we formulate in this
paper could suggest all mutliplicity formulas for such
correlators.
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perturbiner expansion, J. High Energy Phys. 11 (2019) 010.

[26] H. Gomez, R. L. Jusinskas, C. Lopez-Arcos, and A. Q.
Velez, The L∞ structure of gauge theories with matter,
J. High Energy Phys. 02 (2021) 093.

[27] M. Guillen, H. Johansson, R. L. Jusinskas, and O.
Schlotterer, Scattering Massive String Resonances through
Field-Theory Methods, Phys. Rev. Lett. 127, 051601
(2021).

[28] H. Gomez and R. L. Jusinskas, Multiparticle Solutions to
Einstein’s Equations, Phys. Rev. Lett. 127, 181603 (2021).

[29] K. Cho, K. Kim, and K. Lee, The off-shell recursion for
gravity and the classical double copy for currents, J. High
Energy Phys. 01 (2022) 186.

[30] M. Ben-Shahar and M. Guillen, 10D super-Yang-Mills
scattering amplitudes from its pure spinor action, J. High
Energy Phys. 12 (2021) 014.

[31] V. G. Escudero, C. Lopez-Arcos, and A. Q. Velez, Homo-
topy double copy and the Kawai-Lewellen-Tye relations for
the non-abelian and tensor Navier-Stokes equations,
arXiv:2201.06047.

[32] K. Lee, Quantum off-shell recursion relation, J. High
Energy Phys. 05 (2022) 051.

[33] H. Gomez, R. Lipinski Jusinskas, C. Lopez-Arcos, and A.
Quintero Velez, One-loop off-shell amplitudes from
classical equations of motion, arXiv:2208.02831.

[34] J. M. Maldacena and G. L. Pimentel, On graviton non-
Gaussianities during inflation, J. High Energy Phys. 09
(2011) 045.

[35] J. M. Maldacena, Non-Gaussian features of primordial
fluctuations in single field inflationary models, J. High
Energy Phys. 05 (2003) 013.

[36] P. McFadden and K. Skenderis, Holographic non-
Gaussianity, J. Cosmol. Astropart. Phys. 05 (2011) 013.

[37] S. Albayrak, S. Kharel, and D. Meltzer, On duality of color
and kinematics in (A)dS momentum space, J. High Energy
Phys. 03 (2021) 249.

[38] H. Gomez, R. Lipinski Jusinskas, and A. Lipstein, Cosmo-
logical scattering equations at tree-level and one-loop,
J. High Energy Phys. 07 (2022) 004.

[39] C. Sleight and M. Taronna, From dS to AdS and back,
J. High Energy Phys. 12 (2021) 074.

[40] D. Meltzer, The inflationary wavefunction from analyticity
and factorization, J. Cosmol. Astropart. Phys. 12 (2021)
018.

[41] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee, and G. L.
Pimentel, The cosmological bootstrap: Spinning correlators
from symmetries and factorization, SciPost Phys. 11, 071
(2021).

[42] P. McFadden (private communication).
[43] A. Bzowski, P. McFadden, and K. Skenderis, Renormalised

3-point functions of stress tensors and conserved currents in
CFT, J. High Energy Phys. 11 (2018) 153.

[44] C. Armstrong, A. E. Lipstein, and J. Mei, Color/kinematics
duality in AdS4, J. High Energy Phys. 02 (2021) 194.

[45] A. Bzowski, P. McFadden, and K. Skenderis, Implications
of conformal invariance in momentum space, J. High
Energy Phys. 03 (2014) 111.

[46] Z. Bern, J. J. M. Carrasco, and H. Johansson, New relations
for gauge-theory amplitudes, Phys. Rev. D 78, 085011
(2008).

[47] Z. Bern, J. J. M. Carrasco, and H. Johansson, Perturbative
Quantum Gravity as a Double Copy of Gauge Theory, Phys.
Rev. Lett. 105, 061602 (2010).

[48] C. Armstrong, H. Gomez, R. L. Jusinskas, A. Lipstein, and
J. Mei (to be published).

[49] J. A. Farrow, A. E. Lipstein, and P. McFadden, Double copy
structure of CFT correlators, J. High Energy Phys. 02 (2019)
130.

[50] A. E. Lipstein and P. McFadden, Double copy structure and
the flat space limit of conformal correlators in even
dimensions, Phys. Rev. D 101, 125006 (2020).

[51] L. F. Alday, C. Behan, P. Ferrero, and X. Zhou, Gluon
scattering in AdS from CFT, J. High Energy Phys. 06 (2021)
020.

[52] S. Jain, R. R. John, A. Mehta, A. A. Nizami, and A. Suresh,
Double copy structure of parity-violating CFT correlators,
J. High Energy Phys. 07 (2021) 033.

[53] X. Zhou, Double Copy Relation in AdS Space, Phys. Rev.
Lett. 127, 141601 (2021).

[54] A. Sivaramakrishnan, Towards color-kinematics duality in
generic spacetimes, J. High Energy Phys. 04 (2022) 036.

[55] J. M. Drummond, R. Glew, and M. Santagata, BCJ relations
in AdS5 × S3 and the double-trace spectrum of super
gluons, arXiv:2202.09837.

[56] P. Diwakar, A. Herderschee, R. Roiban, and F. Teng, BCJ
amplitude relations for Anti-de Sitter boundary correlators
in embedding space, J. High Energy Phys. 10 (2021) 141.

[57] L. F. Alday, V. Gonçalves, and X. Zhou, Supersymmetric
Five-Point Gluon Amplitudes in AdS Space, Phys. Rev.
Lett. 128, 161601 (2022).

CONNOR ARMSTRONG et al. PHYS. REV. D 106, L121701 (2022)

L121701-8

https://doi.org/10.1016/S0370-2693(97)00268-2
https://arXiv.org/abs/hep-th/9710196
https://doi.org/10.1007/s002200050006
https://doi.org/10.1103/PhysRevD.92.066001
https://doi.org/10.1007/JHEP03(2016)090
https://doi.org/10.1007/JHEP03(2016)097
https://doi.org/10.1007/JHEP03(2016)097
https://doi.org/10.1007/JHEP07(2016)080
https://doi.org/10.1007/JHEP01(2017)031
https://doi.org/10.1007/JHEP10(2018)018
https://doi.org/10.1007/JHEP10(2018)018
https://doi.org/10.1007/JHEP02(2019)078
https://doi.org/10.1007/JHEP02(2019)078
https://doi.org/10.1007/JHEP11(2019)010
https://doi.org/10.1007/JHEP02(2021)093
https://doi.org/10.1103/PhysRevLett.127.051601
https://doi.org/10.1103/PhysRevLett.127.051601
https://doi.org/10.1103/PhysRevLett.127.181603
https://doi.org/10.1007/JHEP01(2022)186
https://doi.org/10.1007/JHEP01(2022)186
https://doi.org/10.1007/JHEP12(2021)014
https://doi.org/10.1007/JHEP12(2021)014
https://arXiv.org/abs/2201.06047
https://doi.org/10.1007/JHEP05(2022)051
https://doi.org/10.1007/JHEP05(2022)051
https://arXiv.org/abs/2208.02831
https://doi.org/10.1007/JHEP09(2011)045
https://doi.org/10.1007/JHEP09(2011)045
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1088/1475-7516/2011/05/013
https://doi.org/10.1007/JHEP03(2021)249
https://doi.org/10.1007/JHEP03(2021)249
https://doi.org/10.1007/JHEP07(2022)004
https://doi.org/10.1007/JHEP12(2021)074
https://doi.org/10.1088/1475-7516/2021/12/018
https://doi.org/10.1088/1475-7516/2021/12/018
https://doi.org/10.21468/SciPostPhys.11.3.071
https://doi.org/10.21468/SciPostPhys.11.3.071
https://doi.org/10.1007/JHEP11(2018)153
https://doi.org/10.1007/JHEP02(2021)194
https://doi.org/10.1007/JHEP03(2014)111
https://doi.org/10.1007/JHEP03(2014)111
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevLett.105.061602
https://doi.org/10.1103/PhysRevLett.105.061602
https://doi.org/10.1007/JHEP02(2019)130
https://doi.org/10.1007/JHEP02(2019)130
https://doi.org/10.1103/PhysRevD.101.125006
https://doi.org/10.1007/JHEP06(2021)020
https://doi.org/10.1007/JHEP06(2021)020
https://doi.org/10.1007/JHEP07(2021)033
https://doi.org/10.1103/PhysRevLett.127.141601
https://doi.org/10.1103/PhysRevLett.127.141601
https://doi.org/10.1007/JHEP04(2022)036
https://arXiv.org/abs/2202.09837
https://doi.org/10.1007/JHEP10(2021)141
https://doi.org/10.1103/PhysRevLett.128.161601
https://doi.org/10.1103/PhysRevLett.128.161601


[58] C. Armstrong, H. Gomez, R. Lipinski Jusinskas, A.
Lipstein, and J. Mei, Effective field theories and cosmo-
logical scattering equations, J. High Energy Phys. 08 (2022)
054.

[59] A. Bissi, G. Fardelli, A. Manenti, and X. Zhou, Spinning
correlators in N ¼ 2 SCFTs: Superspace and AdS ampli-
tudes, arXiv:2209.01204.

[60] N. Arkani-Hamed and J. Maldacena, Cosmological collider
physics, arXiv:1503.08043.

[61] N. Arkani-Hamed, D. Baumann, H. Lee, and G. L.
Pimentel, The cosmological bootstrap: Inflationary corre-
lators from symmetries and singularities, J. High Energy
Phys. 04 (2020) 105.

[62] D. Baumann, W.M. Chen, C. Duaso Pueyo, A. Joyce, H.
Lee, and G. L. Pimentel, Linking the singularities of
cosmological correlators, J. High Energy Phys. 09 (2022)
010.

[63] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee, and G. L.
Pimentel, The cosmological bootstrap: Weight-shifting oper-
ators and scalar seeds, J. High Energy Phys. 12 (2020) 204.

[64] H. Goodhew, S. Jazayeri, and E. Pajer, The cosmological
optical theorem, J. Cosmol. Astropart. Phys. 04 (2021) 021.

[65] S. Jazayeri, E. Pajer, and D. Stefanyszyn, From locality and
unitarity to cosmological correlators, J. High Energy Phys.
10 (2021) 065.

[66] S. Melville and E. Pajer, Cosmological cutting rules, J. High
Energy Phys. 05 (2021) 249.

[67] H. Goodhew, S. Jazayeri, M. H. Gordon Lee, and E. Pajer,
Cutting cosmological correlators, J. Cosmol. Astropart.
Phys. 08 (2021) 003.

[68] C. Sleight and M. Taronna, Bootstrapping inflationary
correlators in Mellin space, J. High Energy Phys. 02
(2020) 098.

[69] T. Heckelbacher, I. Sachs, E. Skvortsov, and P. Vanhove,
Analytical evaluation of cosmological correlation functions,
J. High Energy Phys. 08 (2022) 139.

[70] A. Bzowski, P. McFadden, and K. Skenderis, A handbook
of holographic 4-point functions, arXiv:2207.02872.

[71] L. Eberhardt, S. Komatsu, and S. Mizera, Scattering
equations in AdS: Scalar correlators in arbitrary dimensions,
J. High Energy Phys. 11 (2020) 158.

[72] K. Roehrig and D. Skinner, Ambitwistor strings and the
scattering equations on AdS3 × S3, J. High Energy Phys. 02
(2022) 073.

[73] H. Gomez, R. L. Jusinskas, and A. Lipstein, Cosmological
Scattering Equations, Phys. Rev. Lett. 127, 251604 (2021).

[74] S. J. Parke and T. R. Taylor, An Amplitude for n Gluon
Scattering, Phys. Rev. Lett. 56, 2459 (1986).

[75] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.106.L121701 for the full
expression of the current GImn in Eq. (30), as well as the
complete scalar recursion involving gravitons of equa-
tion (41) and the four-point scalar correlator exchanging
gravitons.

NEW RECURSION RELATIONS FOR TREE-LEVEL … PHYS. REV. D 106, L121701 (2022)

L121701-9

https://doi.org/10.1007/JHEP08(2022)054
https://doi.org/10.1007/JHEP08(2022)054
https://arXiv.org/abs/2209.01204
https://arXiv.org/abs/1503.08043
https://doi.org/10.1007/JHEP04(2020)105
https://doi.org/10.1007/JHEP04(2020)105
https://doi.org/10.1007/JHEP09(2022)010
https://doi.org/10.1007/JHEP09(2022)010
https://doi.org/10.1007/JHEP12(2020)204
https://doi.org/10.1088/1475-7516/2021/04/021
https://doi.org/10.1007/JHEP10(2021)065
https://doi.org/10.1007/JHEP10(2021)065
https://doi.org/10.1007/JHEP05(2021)249
https://doi.org/10.1007/JHEP05(2021)249
https://doi.org/10.1088/1475-7516/2021/08/003
https://doi.org/10.1088/1475-7516/2021/08/003
https://doi.org/10.1007/JHEP02(2020)098
https://doi.org/10.1007/JHEP02(2020)098
https://doi.org/10.1007/JHEP08(2022)139
https://arXiv.org/abs/2207.02872
https://doi.org/10.1007/JHEP11(2020)158
https://doi.org/10.1007/JHEP02(2022)073
https://doi.org/10.1007/JHEP02(2022)073
https://doi.org/10.1103/PhysRevLett.127.251604
https://doi.org/10.1103/PhysRevLett.56.2459
http://link.aps.org/supplemental/10.1103/PhysRevD.106.L121701
http://link.aps.org/supplemental/10.1103/PhysRevD.106.L121701
http://link.aps.org/supplemental/10.1103/PhysRevD.106.L121701
http://link.aps.org/supplemental/10.1103/PhysRevD.106.L121701
http://link.aps.org/supplemental/10.1103/PhysRevD.106.L121701
http://link.aps.org/supplemental/10.1103/PhysRevD.106.L121701
http://link.aps.org/supplemental/10.1103/PhysRevD.106.L121701

