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Anyonic spin-Hall effect on the black hole horizon
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Using the fact that the horizon of black holes is a Carroll manifold, we show that an “exotic photon,” i.e.,
a particle without mass and charge but with anyonic spin, magnetic moment, and exotic charges associated

with the two-parameter central extension of the two-dimensional Carroll group moves on the horizon of a

Kerr-Newman black hole consistently with the Hall law.
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I. INTRODUCTION

The horizon of black holes is a genuine laboratory to
explore gravitational physics. Several interesting and non-
intuitive effects, linked to key questions such as the
information paradox [1,2], are expected to take place on
it. In this paper we add one more item to the list by showing
that exotic photons (to be introduced below) exhibit the
spin-Hall effect on the horizon.

The clue is “Carroll symmetry.” The Carroll group, a
“degenerate cousin” of the Galilei group (as put by Lévy-
Leblond [3]), is obtained by contracting, in the Poincaré
group, the velocity of light to zero, instead of letting it go to
infinity, as in the usual Galilean limit [3,4]. Alternatively,
Carroll symmetry is found by restricting a Lorentzian
spacetime to a null hypersurface [5-9].

Recent attention in the subject arose when Carroll
symmetry was found to be relevant, for instance, for
physics on a black hole horizon [10-13]: the celebrated
Bondi-Metzner-Sachs (BMS) group is indeed conformal
Carroll [14-16]. Interest in Carroll dynamics has long been
limited, though, by the fact that Carroll particles (other than
tachyons [16,17]) were believed not to move [3-5,9].

As will be explained elsewhere [18], “no motion” is
understood by studying deviations from null geodesics. The
“time” coordinate of Carroll geometries is in fact a null
coordinate from the ambient spacetime and “not moving”
means following the corresponding ambient null geodesic.
Another approach [18,19] relates the immobility of quasi-
particles called fractons [20] to Carrollian boost invariance.
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The anomalous Hall effect observed in ferromagnetic
crystals had been attributed to an anomalous current [21].
Later it was argued that spinning particles (including light)
exhibit a spin Hall effect [22,23] for which a semiclassical
explanation was proposed using a Berry phase-extended
framework [24-28]. The clue is the anomalous velocity
relation,

de_0P)_ p.e

dt  op
where £(p) is the band energy, E (x) is the electric field, and
the three-vector @(p) represents the Berry curvature. The
anomalous velocity term here is clearly the mechanical
counterpart of the anomalous current. Choosing E in the
x-y plane and @ perpendicular to it, Eq. (1.1) reduces to the
exotic Galilean model based on a two-parameter central
extension of the planar Galilei group [29,30]. The physical
relevance of central extensions was recognized by Bargmann
[31], followed by [32]. See [33] for another recent applica-
tion. Extensions hint at deviations from null geodesics. For
instance, the deviations of light from geodesic motions can be
attributed to the coupling of photon spin to the gravitational
field including gravitational waves [8,34—41].

It has recently been recognized that in 2 4+ 1 dimensions
the Carroll group admits a two-parameter central extension
[42,43] inducing an extended dynamics [44].

The aim of this paper is to study the Carrollian analog of
the Galilean case, illustrated by motion on a specific Carroll
geometry: the Kerr-Newman black hole horizon.

(1.1)

II. DOUBLY EXTENDED CARROLL PARTICLE

The two-parameter nontrivial central extension of the
planar Carroll algebra [42,43] is given by

© 2022 American Physical Society
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where J3 is the rotation, the (K;) are boosts, the (P;) are
spatial translations, (Pg) is time translation, and A.,, and
Apgg are the exotic and “magnetic” extensions, respec-
tively. These extensions allow us to endow planar Carroll
particles canonically with two additional central charges we
shall call, correspondingly, exotic and magnetic and denote
by Kexo and Ky, reSpectively [18,44].

Then we show that massless uncharged particles (we call
“exotic Carrollian photon”) move on the horizon of a Kerr-
Newman black hole by following the Hall law, providing us
with a Carrollian version of the spin-Hall effect for anyons
and contradicting the no-motion statement [44].

Classical particle models associated with the transitive
action of a given symmetry group are conveniently con-
structed using the Kirillov-Kostant-Souriau (KKS) orbit
method [32,45]. In Souriau’s version that we follow here,
the motions are determined by the “Souriau 2-form” ¢, which
is closed and has constant rank. Then ¢ = dw (locally). The
“Cartan form” @ could be used for a variational calculus
[32,46]. Splitting the Souriau form as ¢ = Q — d.7 A ds
provides us, moreover, with a symplectic form Q whose
inverse defines, in turn, commutation relations [46]. Applied
to the doubly centrally extended Carroll group, the con-
struction yields for a free particle with mass m the Poisson
brackets and Hamiltonian,1

K, m
{X,,)C]} _ﬁeu’ {xi’pj}:%aij’
m
{pi.p;} = o Kmag€ijo Hy=0, (2.1)
where
* KCXO
m* = m(l —mszag> (2.2)

is an effective mass, assumed not to vanish [18,44].

Let us underline that (i) the coordinates do not commute
and (ii) the second extension parameter Kp,q behaves as an
internal magnetic field carried by the particle.”

Note that the free Hamiltonian has no kinetic term. The
Hamiltonian equations of motion are thus trivially that a

"The commutation relations (2.1) have an overlap with those of
the so-called Maxwell algebra [47]. The respective Hamiltonians
are substantially different, though: the doubly extended Carroll and
the Maxwell or “enlarged” [48] systems are fundamentally differ-
ent, as they are built from different ingredients: constant external
electromagnetic fields for Maxwell and intrinsic central extension
parameters for our doubly extended Carroll, respectively.

’In the Galilean theory [30], the mass is part of the moment
map.

(doubly extended) Carroll particle with nonzero effective
mass m* # 0 does not move.

The free system (2.1) is by construction invariant with
respect to the action of the doubly extended Carroll group
x—>Ax+c¢ s—s—b-Ax+f, p—-Ap+mb, (2.3)
where A € SO(2),¢,b € R?, f €R, cf. no. (3.15) in [44].
Here s is Carrollian time. All this follows from the structure
of the Carroll group upon applying the KKS algorithm.

Coupling such a particle to an electromagnetic field
modifies both the symplectic structure and the Hamiltonian
[32,46,49]. For simplicity, we restrict our attention at an
uncharged doubly extended Carroll particle’ with magnetic
moment y and anyonic spin y in a static electromagnetic
field (B, E). The Poisson brackets are as in (2.1), but the
modified Hamiltonian 5# = —uyB yields, for m # 0,

. K, ..
(x")' =y ———"——¢€"0;B,
KexoKmag — M
0;B
= m?— (2.4)

2 b
m= — KexoKmag

where the prime means d/ds.

These equations are both of the first order. The one for x
is fully decoupled and can be solved on its own, but the one
for p depends on the result for x.

Moreover, letting here m — 0, k., drops out as long as it
does not vanish, leaving us with

() = et 22

mag

and p;=0. (2.5)

Note that the usual electromagnetic terms were switched
off by choosing e = 0, but the magnetic field plays a new
role—that of an electric potential.

Motion in a curved Carroll manifold was considered in
[9,44], however, the gravitational field does not couple to
the Carrollian equations of motion. An intuitive justifica-
tion is that gravitational minimal coupling impacts, through
the covariant derivative, the equation for the momentum,
however, not that for the position. However (as noticed
above), the momentum has no impact on the x motion.

III. CARROLL STRUCTURE OF THE
KERR-NEWMAN HORIZON

A Kerr-Newman black hole characterized by its mass M,
angular momentum J, and charge Q can be described by
using the Eddington-like coordinates (u,r,d,¢) [50]. In
these coordinates, the metric

3Charged particles are studied in [18].
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A z 2

9=-5 (du —I—Kdr — asin219d¢>
'219 z

+S”; (adu—(r +a*)dg)* + 2d9* +Tdr?, (3.1a)
Y=r’+a’cosd, A=r’+a*+Q*-2Mr, (3.1b)

where a = J/M, and its inverse is regular on the (outer)
horizon ‘H of a Kerr-Newman black hole defined by

r=r,=M++/M?*—(a>+Q?)=const hypersurface defined
by A = 0. Note that the seemingly problematic dr? terms in
(3.1a) containing A in their denominator cancel one another
out. Then we consider the 2 + 1-dimensional structure
[11,12] whose ingredients are the induced metric and a
vector, In what follows r will denote its value above fixed
on the horizon.

_ sin%9
9= 0lazo =

(adu — (r* + a®)dg)* + =d9?, (3.2a)

a

5 = au + QHaq‘) Where QH = m,

(3.2b)
respectively. Here Qp is the angular velocity of the horizon.
The restricted metric (3.2a) is singular as made manifest by
the coordinate change (9,¢,u) — (9,9 = ¢ — Quu, u),
which leads to the metric

(r* + a?)sin?9

do? + $d9?
s ¢t

g= and ¢=9,. (3.3)
The kernel is generated by the vector &, §(£) = 0. Thus we
have a degenerate metric and a vector field in its
kernel, allowing us to conclude that the horizon H of a
Kerr-Newman black hole carries a Carroll structure
(S? xR, g, & [5]. The degenerate “metric” § carries the
geometric information of the S? part of the black hole,
while & generates the R part.

The horizon of a Kerr-Newman black hole carries a

magnetic field

cosd

B=(2 T+ d?) a5
(2aQr(ri +a%) (r2 + a*cos?9)?

. (34

while in comoving coordinates the electric field van-
ishes [18].

IV. MOTION ON THE KERR-NEWMAN HORIZON

A massive particle associated with the unextended
Carroll group can stay fixed, but cannot move [5,16].
However, the horizon is a 2 + 1-dimensional Carroll
manifold; therefore, the particle may have an extended
dynamics associated with the double central extension with
parameters Ky, and Ky, [18,42-44].

Now we show that the extended dynamics can lead to
motion, namely, on the black hole horizon. Remember first
that geodesics on the horizon are necessarily massless [5].4
An exotic photon, i.e., one with no mass and charge, m = 0
and e =0, but with nonvanishing magnetic moment p,
anyonic spin y, and double central extension can be
coupled to the electromagnetic field through a spin-field
term ¢ = —uyB, where B is the magnetic field (3.4) on
the horizon. Then the equations of motion (2.5) describe an
anomalous spin-Hall effect with VB behaving as an
effective electric field, uy as an effective electric charge,
and K, as an effective magnetic field.

Coupling to the gravitational field amounts to replacing
the derivative on p; by a covariant derivative [44].
However, this does not change the velocity equation, which
is indeed the only relevant one for the poor Carrollian
dynamics: the momentum equation remains decoupled.

Having a nonzero gradient for the magnetic field (3.4)
requires nonzero electric charge Q and angular momentum
J (since a = J/M).

Using (comoving) angular coordinates (9, ¢, u) we see
that the electric field induced on the horizon vanishes. The
radial component would survive, but disappears in the 2 + 1
restriction. The gradient of B is tangent to the longitudinal
great circles ¢ = const. By (2.5), the motion is governed by

(x19)/ — O’

—Ja“Ccos 41
(x?) = <2aQr(r2++a2) ”1)7(& Sa¢0d) Gin g, (4.1)

Kmag (ri—}—azcosz&)“

which is shown in Fig. 1. Thus our exotic photon performs
azimuthal circular motion with & = const, parameterized by
@. Consistent with the Hall behavior, the motion is
perpendicular to the (longitudinal) effective electric field
VB (which vanishes at the poles and takes its maximum on
the equator). The direction of the rotation is correlated with
the angular momentum J and the charge Q which should not
vanish—and this is precisely the reason that we consider
Kerr-Newman black holes. The angular velocity goes
smoothly to zero as we approach the poles and depends
on the radius of the horizon roughly as r, implying that the
rotation would be more important for smaller black holes.

The rotation we have just found, although reminiscent of
the frame dragging by a rotating black hole, is, however,
unrelated to it: frame dragging is hidden in the coordinates,
which are comoving with the horizon.

*Such a photon trajectory could be created by turning on a
lamp and then throwing it into a stationary black hole in such a
way that when the lamp crosses the horizon, the photons are
emitted in the direction of the horizon’s null generator.
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FIG. 1. On the horizon of a Kerr-Newman black hole the
velocity field (4.1) is perpendicular to the axis of rotation and
obeys the anomalous Hall law with an effective electric field
E* = VB, which is tangent to the longitudinal great circles with
wuy playing the role of an effective electric charge. The arrows
indicate the directions and norms.

V. CARROLL SYMMETRY ON THE HORIZON

We conclude our paper with a short survey of the
symmetries, conveniently studied by looking at the
Cartan 1-form [32] @w defined by ¢ = dw as mentioned
in Sec. II. Switching tov = p/m before letting m — 0 yields

Kexo Kmag

w = > eijvidvj+

€;;x'dx! + pyBds. (5.1)
In presymplectic terms, the Noether theorem says: a vector
field X is a symmetry of the dynamics, if Lyw vanishes up
to a total derivative, Lyw = df. Then Cartan’s formula
implies that

Ox =ixm—f (5.2)

is conserved [32].
The isometry group of the Kerr-Newman horizon H is
SO(2) X 7T, generated by the vector fields

X =0, + 7(9,9)a,, (5.3)

where the “supertranslation” .7 is an arbitrary function of
the coordinates (9, ¢) on the horizon. Thus:
(i) Translations of the black hole horizon generated by
d,, change @ by a surface term, Lyw = df with f =
—(Kmag/2)9. Thus (5.2) yields the conserved quantity

Py = Kmag9- (5.4)

This unusual expression is consistent with (3.18c)
in [44].

(ii) Now look at the zeroth order expansion of a super-
translation, i.e., a (Carrollian) time translation
X = 0d,. We readily have Lyw = 0, and so

iyw = uyB =, (5.5)
identified with the Carroll Hamiltonian is conserved.

(iii) For a general supertranslation X = .7(9, ¢)o, we
have, instead,

Lyw = (uy)Bo; 7 dx', (5.6)

which is not a total derivative, in general due to
d(Lyw) x dB A dT #0, unless . = .7 (9)—for
which (5.2) then yields a conserved quantity. If the
supertranslation is, for example, induced by the
magnetic field, .7 = 7(B), e.g., for .7, « B" for
some positive integer n, then Lyw = nd "+ is a
total derivative, providing us with an infinite tower
of conserved quantities Q, = #"!'—which are,
however, mere powers of the Hamiltonian in (5.5).
(iv) It is instructive to study Carroll boosts in (2.3),

X —ox s—>s—b-x, b € R?,

(5.7)

characteristic for the Carroll symmetry. They belong
to the isometry “bottom” of BMS supertranslations
[15]. “Horizontal” boosts along d,, are broken by the
magnetic field, however, for “vertical” boosts,
T = —byd, (5.2) provides us with’

0 = (uy) {—B&—i— / Bd&]. (5.8)

So far we proceeded as follows: first we solved the
equations of motion and then checked that the associated
Noetherian quantities are indeed conserved along the
trajectories. The conservation of py in (5.4), of JZ in
(5.5), or of even the weird boost momentum in (5.8) is
indeed manifest from the fact that

9 = const

(5.9)

along the trajectories, as we had found earlier.

However conservation laws are often used conversely,
i.e., to derive the motions. Can we proceed in the reversed
direction? Remarkably, the answer is yes: their explicit
forms manifestly require (5.9) for being conserved.

VI. CONCLUSION

The absence of the kinetic term in their Hamiltonian
implies that Carroll particles have a purely anomalous
velocity relation. Position and momenta are partially
decoupled and we end up with first-order equations. The
motion of an exotic photon (2.5) is poor but not entirely
trivial: it exhibits the anyonic spin-Hall effect [23].

The horizon of a Kerr-Newman black hole realizes these
conditions: its magnetic field B (3.4) induces anomalous

For B = const we would get O = 0 consistent with [16].

L121503-4
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Hall motion for our exotic photon. Masslessness is man-
datory for getting nontrivial dynamics [18].

Particles of the type of our exotic photons might actually
play a role in condensed matter physics as quasiparticles
[51]. Here we took them chargeless for simplicity, however,
they could, in principle, carry also an electric charge [18].

The double central extension of the Carroll group is a
mathematical fact [42,43]. But is it a physical reality? With
no experimental data at hand, we just recall what Dirac
wrote about his magnetic monopole [52]:

“This new development ... is merely a generalisation of
the possibilities ... Under these circumstances one
would be surprised if Nature had made no use of it.”

We note also that our gravitational ideas could, in
principle, be tested in laboratory by the remarkable analog

of a Kerr-Newman black hole, which could be created in
condensed matter [53,54].
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