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It was shown a few years back that for a stationary regular black hole or star solution in the Brans-Dicke
theory with a positive cosmological constant Λ, endowed with a de Sitter or cosmological event horizon in
the asymptotic region, not only there exists no nontrivial field configurations, but also the inverse Brans-
Dicke parameter ω−1 must be vanishing. This essentially reduces the theory to Einstein’s general relativity.
The assumption of the existence of the cosmological horizon was crucial for this proof. However, since the
Brans-Dicke field ϕ, couples directly to the Λ-term in the energy-momentum tensor as well as Λ acts as a
source in ϕ’s equation of motion, it seems reasonable to ask: can ϕ become strong instead and screen the
effect of Λ, at very large scales, so that the asymptotic de Sitter structure is replaced by some alternative, yet
still acceptable boundary condition? In this work we analytically argue that no such alternative exists, as
long as the spacetime is assumed to be free of any naked curvature singularity. We further support this result
by providing explicit numerical computations. Thus we conclude that in the presence of a positive Λ,
irrespective of whether the asymptotic de Sitter boundary condition is imposed or not, a regular stationary
black hole or even a star solution in the Brans-Dicke theory always necessitates ω−1 ¼ 0, and thereby
reducing the theory to general relativity. The qualitative differences of this result with that of the standard
no hair theorems are also pointed out.

DOI: 10.1103/PhysRevD.106.L121502

I. INTRODUCTION

The classical black hole no hair theorem [1] states that
there exists no nontrivial field configuration at the exterior
of a stationary black hole spacetime, save the long range
gauge fields, related to the uniqueness of stationary black
hole spacetimes, see [2] for a vast review and list of
references. The no hair theorems, their violations, and
associated uniqueness properties are much well studied, see
[3] and references therein. Most of these efforts have been
devoted to the asymptotically flat spacetimes. However, the
overwhelming observational evidences of accelerated
expansion of our current universe suggests that there is a
strong possibility that it is endowed with some form of the
dark energy, an exotic matter field with negative isotropic
pressure. A positive cosmological constant Λ is the
simplest and phenomenologically very successful model
of the same [4]. An important feature of such spacetimes, in

addition to the black hole horizon, is certainly the existence
of a de Sitter or cosmological event horizon as the outer
causal boundary, thereby making the asymptotic structure
very different compared to that of Λ ≤ 0, e.g., [5]. Can this
horizon bring into nontrivial boundary effects? We refer our
reader to [6–9] and references therein for discussion on
black hole no hair theorems and their violations in such
scenario.
Despite their phenomenological successes, the actual

nature of dark energy and dark matter remain elusive so far.
This has lead the community to plunge into research in
various gravity and dark energy theories alternative to
Einstein’s general relativity in recent times, see, e.g., [10]
for a vast review and references therein. Such alternative
models mimic the dark sector chiefly via some dynamical
matter fields or modification of the Einstein-Hilbert action.
The Brans-Dicke theory in particular, is the prototype of the
scalar-tensor class of theories [11,12],

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
ϕR − 2Λ −

ω
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where the scalar ϕ is the Brans-Dicke field, whose inverse
acts as a local and dynamical gravitational “constant” and
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LM stands collectively for the matter Lagrangian density. ω
is the Brans-Dicke parameter and as ω → ∞, the theory
reduces to Einstein’s general relativity.
The proof of no hair theorem for Eq. (1) in the

asymptotically flat spacetime can be seen in [13].
However, one can have nontrivial configurations for ϕ in
asymptotically flat nonblack hole spacetimes like the sun
[11]. We further refer our reader to, e.g., [14–32] and
references therein for various aspects of black holes and
large scale structures in the Brans-Dicke and some other
viable alternative gravity models. The extension of the no
Brans-Dicke hair theorem of [13] with a positive Λ was
considered a few years back in [19], with an asymptotic de
Sitter boundary condition. It was shown that not only any
nontrivial field configuration for ϕ is excluded, but also the
existence of the cosmological horizon reduces the theory to
Einstein’s General Relativity (i.e., ω−1 ¼ 0). Moreover,
similar conclusion was shown to exist for a stationary star
spacetime. Being a theory getting constrained, clearly these
results are in stark contrast to any existing no hair theorems,
which predict only about the field configurations.
Now, even though the asymptotic de Sitter boundary

condition seems to be reasonable, as we argue in Sec. II,
perhaps it cannot be unique, chiefly owing to the fact that Λ
acts as an omnipresent source to the Brans-Dicke field via a
Poisson equation, Eq. (2). Can we have hairy black hole and
star solutionswithsomealternativeasymptoticstructure?Orat
least, is it possible to just have the field configuration con-
strained as of [13], and leave ω unaffected? The answers to
both these questions are negative, as no such nonsingular
alternative asymptotic structure exists, shown below in
Secs. II, II A, and III, both analytically and numerically.
In order to prove this, we fix the boundary conditions on the
black hole event horizon, as described and argued in Sec. II.
Accordingly we conclude that, in the presence of a positiveΛ
and irrespective of whether the asymptotic de Sitter boundary
condition is assumed to hold or not, a stationary black hole or
star solution in theBrans-Dicke theoryessentiallynecessitates
ω−1 ¼ 0, thereby reducing the theory to general relativity, as
longas thereisnonakedcurvaturesingularity in thespacetime.

II. NONEXISTENCE OF BLACK HOLES WITH
GENERIC ASYMPTOTIC CONDITION

The equations of motion corresponding to Eq. (1) are
given by

Rμν ¼
Λð2ωþ 1Þ
ϕð2ωþ 3Þ gμν þ

Tμν

ϕ
−

Tðωþ 1Þ
ϕð2ωþ 3Þ gμν

þ ω

ϕ2
ð∇μϕÞð∇νϕÞ þ

∇μ∇νϕ

ϕ

□ϕ ¼ T − 4Λ
2ωþ 3

ðω ≠ −3=2Þ ð2Þ

where Tμν is the energy-momentum tensor corresponding
to LM and T is its trace. From Eq. (2), the Ricci scalar is
found to be

R ¼ 2ωð4Λ − TÞ
ϕð2ωþ 3Þ þ ω

ϕ2
ð∇μϕÞð∇μϕÞ ð3Þ

Let us look for regular stationary black hole solutions
admitted by Eq. (1). We take the ansatz for a static and
spherically symmetric metric

ds2 ¼ −fðrÞdt2 þ hðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ ð4Þ
Since the geometry is static and spherically symmetric, we
shall take, by the virtue of Eq. (2), that ϕ is explicitly
independent of time and is a function of the radial
coordinate only. From the staticity of ϕ, the equation of
motion for ϕ becomes

Dμð
ffiffiffi
f

p
DμϕÞ ¼ −

ffiffiffi
f

p ð4Λ − TÞ
2ωþ 3

ð5Þ

where Dμ is the spacelike covariant derivative on the
ðr; θ;ϕÞ-hypersurface of Eq. (4). Setting Tμν ¼ 0, and
multiplying the above equation by eϵϕ (ϵ ¼ �1), and
integrating it by parts on that spacelike hypersurface
(say, Σ), we haveZ
∂Σ

ffiffiffi
f
h

r
eϵϕ∂rϕ¼

Z
Σ

ffiffiffi
f

p
eϵϕ

�
ϵðDμϕÞðDμϕÞ− 4Λ

2ωþ3

�
ð6Þ

where the left-hand side consists of the boundary integrals
over 2-spheres. One of the boundaries is the black hole
event horizon where f; h−1 ¼ 0. If in addition we assume
the existence of a cosmological event horizon as a boun-
dary in the asymptotic region, we have f; h−1 ¼ 0 there as
well. The regularity of the field and its derivative on the
horizon, as it turns out to be necessary for non-naked
singular horizons then implies that the boundary integrals
vanish. The derivative term appearing on the right-hand
side of Eq. (6), being spacelike, is positive definite. We then
set ϵ ¼ −1ðϵ ¼ þ1Þ for 2ωþ 3 > 0ð2ωþ 3 < 0Þ, yield-
ing not only a constant ϕ, but alsoω−1 ¼ 0. This essentially
rules out the theory, provided a cosmological event horizon,
in addition to the black hole event horizon exists, as was
shown in [19]. Similar result was shown to exist for
stationary star solutions as well.
Thus the existence of a cosmological event horizon plays a

crucial role above. Such existence seems to be plausible, as
intuitively it seems that in the presence of positive Λ’s
repulsive effects, the Brans-Dicke field will become very
diluted at large scales. This assumption is strengthened by the
solar system constraint showing the weakness of the Brans-
Dicke parameter, jωj ≳ 40 000, e.g., [10]. However, the field
equation forϕ, Eq. (2), is basically a Poisson equationwith an
omnipresent source, Λ. Accordingly, even though ω is very
large, perhaps we cannot rule out the possibility of existence
of certain alternative boundary condition(s) that instead
permits a strong ϕ at very large scales. Since Λ couples
directly toϕ, the first of Eq. (2), this could indicate a possible
screening of the former. Under such circumstances, a
cosmological event horizon, corresponding to the asymptotic
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de Sitter boundary conditionmay not exist, replaced by some
suitable alternative asymptotic structure. What are these
alternative boundary conditions? Can we have a regular
stationary black hole solution in this scenario?
One might try conceiving asymptotic(s) alternative to de

Sitter or flat spacetimes, keeping only in mind the spacetime
must be non-naked singular. However, it seems that any such
particular choice will be highly nonunique, being devoid of
any symmetry argument in the asymptotic region. In order to
tackle this difficulty, and to accommodate sufficient general-
ity, we shall not at all impose any boundary condition as
r → ∞, and instead, we shall impose the same on the black
hole event horizon.
The recent discovery of gravity waves from the black

hole mergers suggests that the near horizon geometry
matches exceedingly well with the prediction of general
relativity [33–36]. This, along with the bound jωj ≳ 40 000
suggests that the Brans-Dicke field must be weak at small
scales such as a black hole. Hence we shall take the near
black hole horizon geometry to be the Schwarzschild-de
Sitter at the leading order,

ds2jBH→−
�
1−

2M
r

−
Λr2

3

�
dt2þ

�
1−

2M
r

−
Λr2

3

�−1
dr2

þr2ðdθ2þ sin2θdφ2Þ ð7Þ
Clearly, this necessitates that the field ϕ is close to unity
and very slowly varying near the black hole horizon. The
general solution of the second of Eq. (2) with Tμν ¼ 0 in the
background of Eq. (7) is given by [19],

ϕðrÞjBH → C2 þ
1

ωþ 3=2

"
C1

rH
ln

�
1 −

rH
r

�

þ
�
1 −

C1

2rC

�
ln

�
1 −

r
rC

�

þ
�
1þ C1

2rC

�
ln

�
1þ r

rC

�#
ð8Þ

where C1, C2 are integration constants and rH is the black
hole horizon radius (i.e., the smallest positive root of
1 − 2M=r − Λr2=3 ¼ 0) and rC ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

. For the sake
of computational simplicity, in the above derivation we
have assumed that the black hole horizon is much small
compared to rC, owing to the observed current tiny value of
Λ ∼ 10−52 m−2, implyingM

ffiffiffiffi
Λ

p
≪ 1. Since as ω → ∞, we

must have ϕ → 1, we set C2 ¼ 1. The above solution is
divergent on r ¼ rH. Thus a regular solution on it must
correspond to C1 ¼ 0, giving

ϕðr → rHÞ → 1þ 1

ωþ 3=2
ln

�
1 −

r2

r2C

�
ð9Þ

Note that setting Λ ¼ 0 (i.e., rC → ∞) yields ϕ → 1,
reproducing the no hair result of [13]. Using now
rC ∼ 1026 m, it is easy to see that the dynamical part of

the above solution is much small compared to unity. For
example, even for a few billion solar mass black hole
(rH ∼ 1016 m), and ω≳ 104, it is at most Oð10−24Þ and is
further smaller for smaller black holes. Using now Eqs. (9)
and (4) into Eq. (2), it is also easy to find out the leading
correction to the near horizon metric

fðr → rHÞ ¼ h−1ðr → rHÞ →
�
1 −

2M
r

−
Λr2

3
−

Λr4

5ωr2C

�

For rH ∼ 1016 m, the mass term is Oð1Þ, the Λ term is
Oð10−20Þ, whereas the Brans-Dicke correction term is
Oð10−45Þ, or smaller. Thus the backreaction on the spacetime
near the black hole horizon due toϕðrÞ can safely be ignored.
We also note that any other choice of C1 in Eq. (8) leads to a
curvature singularity on the black hole horizon [19]. Thus
Eq. (9) is the unique solution regular on the black hole and
hence the boundary condition of Eq. (7) is justified.
Note that in our present scenario, if we construct now an

integral equation like Eq. (6), although the boundary integral
on the black hole horizonvanishes (fðrHÞ; h−1ðrHÞ ¼ 0), the
outer boundary integral at r → ∞ does not, as f and h−1 is
nowhere vanishing except on the black hole horizon, by our
assumption. The simplest way to solve this problem seems to
be to solve Eqs. (2) and (4) numerically for general radial
values, with the boundary conditions of Eqs. (7) and (9).
However, wewish to do the same first in a much simpler and
perhaps clearer analytic way, as follows.
Let us integrate Eq. (5) over the spacelike hypersurces

ðr; θ;ϕÞ Σ of Eq. (4), and convert the total divergence into
surface integrals over S2’s on the black hole horizon and on
some larger radial coordinate, say r0. As explained above,
the surface integral on the black hole horizon vanishes
to yield,

4πr2
ffiffiffi
f
h

r
dϕ
dr

����
r¼r0

¼ −
4Λ

2ωþ 3

Z
Σ

ffiffiffi
f

p
ð10Þ

The above equation shows that ϕmust be monotonic in r in
the entire domain rH ≤ r < ∞. For otherwise if it had any
extremum at some r ¼ r0, we must have ω−1 ¼ 0, since
Λ ≠ 0 by our assumption. Also, since there is no horizon
for r > rH, fðrÞ cannot be asymptotically vanishing and
hence the integral on the right-hand side of the above
equation increases with increasing r0. Thus since Λ is
positive, for 2ωþ 3 > 0, ϕ is monotonically decreasing
whereas it is monotonically increasing for 2ωþ 3 < 0. Can
ϕðrÞ asymptote to some constant value? The answer is no,
as this will simply correspond to asymptotic fall off in
inverse power in r for the dynamical part of ϕ, leading to de
Sitter geometry as dictated by the field equations Eq. (2).
However, as we have stated earlier, in the presence of an
asymptotic de Sitter geometry, we must have ω−1 ¼ 0 [19].
Let us first consider 2ωþ 3 > 0, i.e., effectively ω > 0,

owing to the stringent solar system bound on it. Note that the
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dynamical part of Eq. (9) is negative, as rH < rC. Clearly,
sinceϕðrÞmust bemonotonically decreasing, this dynamical
part, as we move toward larger radial values, would decrease
to further negative values, no matter what its explicit form is.
Eventually thus the dynamical part will reachminus of unity,
making ϕðrÞ vanishing at that point. However, the first term
on the right-hand side of Eq. (3), will diverge then. The
second term contains a spacelike inner product since ϕ is
explicitly independent of time. Thus Eq. (3) is basically the
sum of two positive definite quantities for ϕ ≥ 0. Hence no
matter whether the second term diverges or not asϕ → 0, the
divergence of the first term sufficiently indicates the diver-
gence of the Ricci scalar, R → ∞, i.e., a naked curvature
singularity. Thus we must have ω−1 ¼ 0, in order to have a
regular black hole spacetime, thereby reducing the theory to
general relativity, and hence we have the Schwarzschild-de
Sitter to be the only solution.
Since ϕðrÞ is positive on the horizon, Eq. (9), for 2ωþ

3 < 0 (i.e., ω < 0 effectively) on the other hand, ϕðrÞ is
ever increasing to larger positive values with increasing r,
and hence would eventually diverge as r → ∞. We shall
show in Sec. II A that this also gives rise to a naked
curvature singularity. However, even without this knowl-
edge we wish to argue that having ϕ → ∞ is unphysical
and unacceptable. This is because since ϕ−1 should act as
an effective Newton’s “constant” in the Brans-Dicke theory,
a divergent ϕ in the asymptotic region would make any
matter field backreactionless there. For example, let us
imagine a static point mass m at some r ¼ r0. We have its
energy momentum tensor

Tμν ¼ mfðrÞδμ0δν0δ3ðr⃗ − r⃗0Þ

substituting this into the first of Eq. (2), we may solve for
corrections to f and h perturbatively due to m, assuming it
is tiny. The corresponding potential due to m will contain a
ϕðr0Þ in the denominator. Since ϕðr0Þ diverges as r0 → ∞,
the potential must vanish. This not only violates Mach’s
principle upon which the Brans-Dicke theory is based
[11,12], but also violates the most fundamental fact that any
mass-energy distribution, no matter how tiny it is, must
create its own gravity. To the best of our knowledge and
understanding, the above scenario is physically unaccept-
able, thereby necessitating ω−1 ¼ 0 in this case as well.
Thus we may conclude that there exists no regular or
physically acceptable stationary black hole solution in the
Brans-Dicke theory with a positive Λ, irrespective of
whether asymptotically de Sitter boundary condition holds
or not. We must have ω−1 ¼ 0 and hence the solution
corresponds to that of the general relativity.
The above result can easily be extended to rotating

black hole spacetimes, by replacing the near horizon boun-
dary condition, Eq. (7), with the Kerr-de Sitter spacetime.
The near horizon solution for ϕ can be found in the form
ϕðr → rHÞ → 1þ ϕðrÞ þ ϕðθÞ, where ϕðrÞ is analogous to
Eq. (9), free of any singularity on the black hole horizon and

ϕðθÞ → 0 as we take the static limit. Similar argument as
earlier then yields the same nonexistence result.
In the next section we shall further reinforce these

nonexistence features by explicit numerical computations.

A. Explicit numerical computations

Substituting Eq. (4) into Eq. (2), we now solve for fðrÞ,
hðrÞ and ϕðrÞ numerically using Mathematica with T ¼ 0,
subject to the boundary conditions Eqs. (7) and (9). We take
2M ∼ 1016 m and Λ ∼ 10−52 m−2. Using these we estimate
the above three functions and their first derivatives’ numeri-
cal values on the black hole event horizon, and further solve
the coupled differential equations for general r > rH.
Figure 1 shows the variation of the metric functions fðrÞ,
hðrÞ at large scales. Figure 2 shows the variation of ϕðrÞ,
whereas Fig. 3 depicts the samewith a magnified resolution.
Finally, using these results, we compute the Ricci scalar,
Eq. (3), in Fig. 4. We have taken jωj ≥ 40 000, once again to
be consistent with the recent observational evidence [10].
First, Fig. 1 shows that subject to the boundary condition

we have chosen on the black hole event horizon, there is
indeed no cosmological event horizon (necessitating
f → 0; h−1 → 0) in the asymptotic region. Figures 2
and 3 shows ϕðrÞ indeed monotonically decreases
and increases with r, respectively for 2ωþ 3 > 0 and
2ωþ 3 < 0, as was argued in the preceding section. Also
Fig. 3 shows that ϕðrÞ respectively passes through zero
(diverges) for 2ωþ 3 > 0 (2ωþ 3 < 0). Finally, Fig. 4
depicts the divergence of Ricci scalar for large radial values,
thereby clearly proving that the spacetimewe have obtained

FIG. 1. The variation of the metric functions fðrÞ (black curve)
and hðrÞ (red curve) vs r. The first plot corresponds to the Brans-
Dicke parameter ω ¼ 40 000, whereas the right one corresponds
to ω ¼ −40 000. We have used the logarithmic scales on both the
horizontal and vertical axes, in order to accommodate the large
variations.

FIG. 2. The Brans-Dicke field ϕðrÞ vs r, for different values of
the Brans-Dicke parameter ω showing its monotonic behavior, as
argued in Sec. II. The first set is for ω > 0, and the second is for
ω < 0. The different colors correspond to: black (ω ¼ �40 000),
red (ω ¼ �60 000) and green (ω ¼ �80 000).
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is naked singular and hence unacceptable. Thus the numeri-
cal analysis presented here explicitly reconciles with the
conclusion reached in the preceding section.

III. NONEXISTENCE OF STATIONARY
STAR SOLUTIONS

We assume that the trace of the energy momentum-tensor
constituting the star is less than or equal to zero. This is a
reasonable assumption, indicating that the pressure of the
matter field is not “too large” [37]. We also assume that the
center of the star is flat, owing to the fact that as we move
closer to the center, we have lesser and lesser matter fields to
create gravity [37]. There is no event horizon in this
spacetime. Using the flatness at the centre, we now integrate
Eq. (5) from r ¼ 0 up to the star surface to have for dϕ=dr,

4πr2
ffiffiffi
f
h

r
dϕ
dr

����
r¼R0

¼ −
1

2ωþ 3

Z
R0

Σ

ffiffiffi
f

p
ð4Λ − TÞ ð11Þ

where R0 is radius of the star. We next integrate Eq. (5) from
r ¼ R0 up to some r ¼ r0 outside the star and use Eq. (11)
into it to have

4πr2
ffiffiffi
f
h

r
dϕ
dr

����
r¼r0

¼ −
1

2ωþ 3

Z
R0

Σ;r¼0

ffiffiffi
f

p
ð4Λ − TÞ

−
4Λ

2ωþ 3

Z
r0

Σ;R0

ffiffiffi
f

p
ð12Þ

Thus as earlier, dϕ=dr is monotonically decreasing (increas-
ing) for 2ωþ 3 > 0 (2ωþ 3 < 0). Hence essentially the
nonexistence result of Sec. II holds for a star as well.

IV. CONCLUSION

We have discussed in this work the nonexistence of regular
stationary black hole and star solutions in the Brans-Dicke
theory in thepresenceof apositive cosmological constant,Λ. It
was shown earlier in [19] that if a cosmological event horizon
exists, we must have the inverse Brans-Dicke parameter
ω−1 ¼ 0, thereby reducing the theory to Einstein’s general
relativity. As we have argued in Sec. II, even though it is
reasonable to expect a cosmological event horizon in the
asymptotic region owing to the repulsive effects of positiveΛ,
one cannot a priori rule out possible alternative boundary
conditions where the Brans-Dicke fieldϕðrÞ is strong instead,
and therebyscreeningΛ at large scales.This corresponds to the
fact that ϕ is sourced by an omnipresent Λ, and it couples
directly with Λ, Eq. (2). Note that once we discard the
asymptotic de Sitter structure, we do not have any obvious
symmetry argument to explicitly define an alternative one.
Hence in order tomake our analysis as generic as possible, we
did not impose any boundary condition for large r, but did so
instead on the black hole event horizon explicitly, inspired by
the recent gravity wave data coming from the black hole
mergers [33–36]. With this “initial condition,” we showed in
Secs. II, II A, and III that the existence of any non-naked
singular stationary black hole as well as star spacetimes with
Λ > 0 essentially necessitate, ω−1 ¼ 0, thereby the theory
reduces to Einstein’s general relativity in this scenario as well.
Theblackholeand theexteriorof thestarwill thenbedescribed
by the Kerr- or the Schwarzschild-de Sitter spacetime.
We would like to emphasize the stark contrast that while

the standard no hair theorems only talk about the field
configurations, e.g., [13], we obtain the parameter character-
ising a theory is getting constrained, not only for black holes
but also for stars. Note also that the nontrivial effects due to a
positiveΛ reported in [19] (also in, e.g., [7,38]), was chiefly
related to the exotic boundary effects due to the cosmologi-
cal event horizon. This is contrary to our present case, as no
such horizon was assumed to be present and hence no
boundary effect was possible here. Since the Brans-Dicke
theory is considered to be the prototype of the scalar-tensor
class of alternative gravity theories, we believe the result we
have found to be interesting and important in its own right.
It seems to be an interesting task to check the cosmo-

logical anisotropy dissipation/no hair theorem of [39] in the
context of the Brans-Dicke theory with a positive Λ. We
hope to return to this issue in a future work.
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FIG. 3. ϕðrÞ vs r with a magnified scale, depicting its
pathological behavior at large radial distances. The left and right
plot respectively corresponds to ω ¼ �40 000. See main text for
discussion.

FIG. 4. The variation of the Ricci scalar R, Eq. (3), vs r. The left
and right plot respectively corresponds to ω ¼ �40 000. We have
used the logarithmic scales on both the horizontal and vertical
axes. The plots in the inset are in the usual scale to show the
asymptotic divergences in R. See main text for discussion.
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