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Fuzzy dark matter is an exciting alternative to the standard cold dark matter paradigm, reproducing its
large scale predictions, while solving most of the existing tension with small scale observations. These
models postulate that dark matter is constituted by light bosons and predict the condensation of a solitonic
core—also known as boson star, supported by wave pressure—at the center of halos. However, solitons
which host a parasitic supermassive black hole are doomed to be swallowed by their guest. It is thus crucial
to understand in detail the accretion process. In this work, we use numerical relativity to self-consistently
solve the problem of accretion of a boson star by a central black hole, in spherical symmetry. We identify
three stages in the process, a boson quake, a catastrophic stage and a linear phase, as well as a general
accurate expression for the lifetime of a boson star with an endoparasitic black hole. Lifetimes of these
objects can be large enough to allow them to survive until the present time.

DOI: 10.1103/PhysRevD.106.L121302

I. INTRODUCTION

One of the most solid predictions of the fuzzy dark
matter model (FDM) is that coherent solitonic cores
condense at the center of virialized FDM halos, satisfying
the soliton-halo mass relation [1–3]

MBS ≈ 6.5 × 109M⊙ m−1
22

�
Mhalo

1014M⊙

�1
3

; ð1Þ

while the outer halo profile resembles the Navarro-Frenk-
White profile for cold dark matter (CDM) halos [4]. Here,
m22 ≡mψ=10−22 eV, where mψ is the boson mass. These
solitons are self-gravitating configurations of a scalar field
supported by wave pressure, described well by ground-state
stationary boson stars (BSs) [5–10] (for complex scalars),
or long-lived oscillatons [11–15] (for real scalars). They
can form through gravitational cooling [16,17]; it was
argued that this mechanism may be understood in terms
of two-body relaxation of wave granules over a timescale
[18,19] (see also Refs. [20–22])

trelax ∼ 108 yr
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�
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22; ð2Þ

for a typical galactic DM velocity v and for a relaxed region
of radius R ∼ 2 kpc. Assuming that the relation (1) holds,

for given host halo of mass Mhalo, the density profile of a
FDM soliton is entirely determined by the boson mass mψ .
Using galactic rotation curves from the SPARC database
[23], stringent constraints on mψ can be imposed [24–26].
In particular, these results disfavor FDM with 10−24 eV≲
mψ ≲ 10−20 eV from comprising all DM; similar type of
constraints were found from the stellar orbits near Sgr A*
and by combining stellar velocity measurements with the
Event Horizon Telescope imaging of M87* [27]. Most of
these studies are based on the assumption that the soliton
mass and profile remains largely unaltered since its
formation.1

However, there is strong evidence that all large galaxies
(like our own Milky Way) or even dwarf galaxies possess
a central supermassive black hole (SMBH) [34–36].
So, FDM solitons are expected to host a parasite SMBH
feeding from it, growing and, eventually, swallowing it,
as suggested by no-hair results [37–41]. Despite this, most
studies in the literature neglect the effect of SMBHs
on solitons. The rationale for doing so is often based on
approximation schemes to estimate the impact of BH
accretion on the soliton, either by using the BH absorption

1There are also important cosmological constraints from, e.g.,
the Lyman-α forest [28–32] and the cosmic microwave back-
ground anisotropy [33] which do not resort to this assumption.
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cross-section [18,24,27] (formally only well-defined for
scattering states, whereas BSs are bounded), by using the
decay rate of “gravitational atom” states (valid only when
the BH dominates the dynamics) [42–47], or by evolving
numerically the system, but for short timescales and with
fine-tuned initial data [48]. BH accretion of diffuse scalars
was also studied in [49–54]. While the different schemes
predict quite disparate scalings for the accretion timescale,
all of them suggest that for typical FDM masses this
timescale is larger than a Hubble time. None of the existing
treatments in the literature captures the full picture of BS
accretion by SMBHs.
Here, we use numerical relativity to evolve the full

system—in spherical symmetry—for long timescales,
covering the whole accretion process, and find general
accurate expressions for the accretion time. We adopt the
mostly positive metric signature and use geometrized
units (c ¼ G ¼ 1).

II. SETUP

Consider a complex scalar field ψ minimally coupled to
the spacetime metric gμν described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−∇μψ∇μψ� − μ2jψ j2
�
; ð3Þ

where R is the scalar curvature, g≡ detðgμνÞ is the metric
determinant, and μ≡mψ=ℏ is the inverse of the reduced
Compton wavelength. The first variations of the action
yield the Einstein-Klein-Gordon field equations

Rμν −
1

2
gμνR ¼ 8πTμν; ð□ − μ2Þψ ¼ 0; ð4Þ

where Rμν is the Ricci tensor and □≡ gμν∇μ∇ν is the
covariant d’Alembert operator, with the energy-momentum
tensor Tμν¼∂μψ∂νψ

�þ∂νψ∂μψ
�−gμνð∂αψ∂αψ�þμ2jψ j2Þ.

We shall describe the scalar particles through the classical
field ψ , since the average particle number NBS in a FDM
soliton is extremely large,

NBS ∼ 1097 m−1
22

MBS

109M⊙
; ð5Þ

and quantum fluctuations (in a coherent state) are negli-
gible for a large average occupation number [19,55].
The FDM soliton will be described by a ground-state

spherically symmetric BS [56], which are regular stationary
solutions of equations (4) with ψ ¼ χðrÞe−iΩt. For a mass
MBS ≲ 4 × 1011M⊙ m−1

22 (equivalently, central amplitude
χð0Þ≲ 10−2), they are Newtonian objects and described
through the simpler Poisson-Schrödinger system, the
Newtonian limit of system (4) [57]. In this limit,
ground-state BSs satisfy the mass-radius relation

MBS ≈ 9 × 108M⊙
1 kpc
R98

m−2
22 ; ð6Þ

where R98 is the radius enclosing 98% ofMBS, and oscillate
with frequency ∼μ=2π ≈ 0.76 yr−1m22. These objects are
stable under linear perturbations and their fundamental
normal mode frequency is [57,58]

ωNM

2π
≈ 0.029 Myr−1 m2

22

�
MBS

109M⊙

�
2

: ð7Þ

For simplicity, we consider a spherically symmetric system
at all times. We focus on initial data describing BHs
with mass MBH;0 ≡MBHðt ¼ 0Þ smaller than the BS mass
MBS;0. The full system (4) is evolved using numerical
relativity (our numerical scheme and initial data are
described in the Supplemental Material [59]).

III. ADIABATIC APPROXIMATION

We consider first a Newtonian BS and use an adiabatic
approximation (see also Refs. [42,48]), which is useful
to understand our numerical results. Assume that the
BS mass changes at a much smaller rate than μ=2π,
so that the field is ψ ≈ χðrÞe−iðμ−iγðtÞÞt with 0 < jγj ≪ μ,
for jtj ≪ minðjγ=∂tγj; jγ=∂2t γj12Þ. Within the BH influence
radius ri ¼ MBH=jUBSðriÞj ∼ 1

2
ðMBH=MBSÞR98 (where

UBS is the BS gravitational potential) one can use the
test field approximation, describing the field through the
Klein-Gordon equation on a Schwarzschild background;
the radial field is then [60,61]

χ ≈

(
Ae−2iμMBH log ð1−2MBH

r Þ; r ≪ 1=μ

Aξ
iC0r

�
F0 −

4C2
0
μM2

BH
ξ G0

�
; 2MBH ≪ r≲ ri;

where F0ðη; i rξÞ and G0ðη; i rξÞ are Coulomb functions [62].

We define C0 ≡ jΓð1þ iηÞje−ηπ=2 and η≡ iμ2MBHξ, with
ξ≡ 1=

ffiffiffiffiffiffiffiffiffi
2iμγ

p
and Reξ > 0, where Γ is the gamma function.

For r ≫ 2MBH, the field satisfies

∂rðr2∂rχÞ ≈ r2
�
1

ξ2
þ 2μ2

�
UBS −

MBH

r

��
χ; ð8aÞ

∂r ðr2∂rUBSÞ ≈ 8πμ2r2jχj2; ð8bÞ

describing a “dirty” BS distorted by the BH gravitational
field. In general, the above system is a boundary value
problem with complex eigenvalue ξ that must be solved
numerically. The overall scale factor A is determined by the
condition that the total mass of the field is MBS.
For ν≡MBH=MBS ≲ 1=6, one can show that [57]

A ≈ 4.7 × 10−2μ2M2
BSð1þ 6νÞ; ð9Þ
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Imγ ∼ −10−1μ3M2
BS: ð10Þ

One can use this expression for A to compute the flux of
energy through the horizon and find the rate of accretion
_MBH ≡ dMBH=dt,

_MBH ≈ 32π½4.7 × 10−2μ3MBHM2
BSð1þ 6νÞ�2; ð11Þ

which can then be solved numerically, using energy con-
servation MBS ¼ MBS;0 þMBH;0 −MBH. Also by energy
conservation, 2MBSReγ ¼ _MBH, or

Reγ
μ

≈ 0.1μ5M5
BHð1þ 6νÞ2=ν3 ≪ 1; ð12Þ

which is consistent with the adiabatic assumption.
For ν≳ 2, one has ri ≈ R98, implying that the test field

approximation is valid almost everywhere, and so the scalar
field is described by a superposition of gravitational atom
states [63–65] [χ ≡P

n cnχn with
P

n jcnj2 ¼ 1], with

An ≈
μ2M2

BHffiffiffiffiffiffiffiffi
2πν

p
n3=2

; Imγn ≈ −
μ3M2

BH

2n2
; ð13Þ

with the integer n ≥ 1. Although weak, the self-gravity of
the scalars is responsible for R98 ≲ Reξ1, so that most
support is expected to be in the state n ¼ 1. This is
consistent with the projection of a ground-state BS onto
gravitational atom states (Supplemental Material [59]).
Using the analytic expression (8) to compute the flux of
energy through the event horizon gives

_MBH ≈ 16μ6M5
BHMBS; ð14Þ

which can be solved numerically for MBH, and implies

Reγ1
μ

≈ 8μ5M5
BH ≪ 1: ð15Þ

The instantaneous decay rate is in clear agreement with
Refs. [63,64,66] and is consistent with adiabaticity.

IV. NUMERICAL RESULTS

Using numerical relativity we can track the entire
evolution of both the central SMBH and the soliton (the
BH mass is computed from the apparent horizon area; the
initial data construction and numerical scheme employed
follow standard approaches [67–75] and are detailed in the
Supplemental Material [59]). We studied BS-BH systems
with mass ratios up to 20 and size ratio up to 103, probing
the limits of our numerical scheme. Figure 1 shows the
results of one particular simulation with parameters
MBS;0 ≈ 4 × 1011M⊙ m−1

22 and ν0 ≈ 1=16. In the top panel,
we show the evolution of the BH mass and in the bottom
panel the energy density of the scalar field measured at

different radii rc. All of our simulations are characterized
by three main stages of accretion (which we label as I, II,
and III) that we now describe. Results for different initial
parameters can be found in the Supplemental Material [59].
In stage I the dynamics is controlled mainly by the

soliton, since the scalar field amplitude close to the horizon
depends strongly on the BS self-gravity. The initial data for
the scalar describe a “pure” BS, while the quasi-equilibrium
configuration is a dirty BS. Thus, when the simulation
starts, a boson quake is excited and the soliton oscillates
with frequency ∼ωNM around an equilibrium dirty BS that
evolves adiabatically. These oscillations are clearly seen in
the energy density of the field, and are also present in the
evolution of the BH mass. The accretion rate in this stage is
very well described by the analytic approximation (11),

FIG. 1. Stages of accretion of a FDM soliton by a endoparasitic
SMBH. Blue corresponds to a boson quake—the excitation of
BS modes by the accreting BH, stage I in the process. Gray
corresponds to a violent accretion process, stage II. In stage III,
the BH dominates the entire dynamics, and the spacetime is well
described by a slightly perturbed BH, in yellow (notice the
cascade starting in phase III, which indicates a dominance of
progressively higher modes). Top: BH mass as a function of
time (dashed blue) for initial masses ðMBS;0;MBH;0Þ ≈ ð40; 3Þ×
1010M⊙ m−1

22 . Red curves show analytical approximation (11)
and (14), black crosses signal ν ¼ f1=6; 2g [where, respectively,
(11) ceases and (14) starts to be valid]. Bottom: Energy density of
scalar field as function of time at several different radii rc.
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at least until ν ≈ 1=6; after that point, the analytical model
tends to underestimate the accretion rate. We define the end
of stage I to be the instant when μMBH ¼ 0.08 or ν ¼ 2 is
attained, whichever happens first.
If the BH becomes massive enough that μMBH ≥ 0.08,

but still with mass ratio ν < 2, the system enters stage II.
This “catastrophic” stage of accretion is triggered by a
very efficient tunneling of the field through the potential
barrier [54] (the maximum in the effective potential
disappears at μMBH ¼ 0.25). This stage lasts for one
free-fall time τFF ∼ ½R3

98=ðMBH þMBSÞ�12, during which
the BH mass grows exponentially. We define the end of
stage II to occur when ν ¼ 2.
When the BH grows to ν≳ 2, the whole dynamics is

controlled by the BH. In this stage, the BH influence radius
is of the order of the configuration size, which implies that
the whole scalar behaves as a test field on a Schwarzschild
spacetime, whose mass evolves adiabatically. This picture
is confirmed by the fact that the accretion rate is very well
described by the analytic expression (14). The BH mass
saturates at ∼MBS;0 þMBH;0, which is compatible with
none of the scalar being radiated away. At late times, the
field decays in a superposition of states, starting at the
n ¼ 1 which is the shortest-livedmode, cf. Eq. (13). Thus a
“peeling-off” of different modes is apparent in Fig. 1,
which was also seen recently during the collision between
BHs and BSs [76]. At very late times, a power-law decay
will settle in [77,78], but a clear imprint would require
prohibitively large timescales.

Figure 2 shows the accretion timescales τ10% (dots), τ90%
(crosses) for different initial configurations, defined as
the time for 10%, 90% of the soliton mass to be accreted
by the BH, respectively. As discussed above, in all our
simulations most of the soliton mass is accreted during
stage II, which lasts a free-fall time τFF; thus, the difference
between τ10% and τ90% is usually of the same order of τFF.
Points to the left represent configurations with larger
ν0 ≡ νðt ¼ 0Þ ¼ Oð1Þ, implying that their accretion proc-
ess do not have stage I (or else it is very short), starting
already at stage II. This explains why τ90% in the left is very
well described by τFF, and why the relative difference
between τ10% and τ90% is larger in this region of the plot.
The points to the right represent configurations with
smaller ν0 (≲1=6), which have a long stage I (longer than
τFF). This explains why the relative difference between τ10%
and τ90% is smaller and why τ10% is very well described
by the analytical expression (16) in this region of the plot.
The agreement between the numerical results and the
analytical expressions is remarkable.

V. DISCUSSION

The accretion of a self-gravitating scalar structure by
a BH in a spherically symmetric setting is perhaps the
simplest dynamical process that one can conceive of. This
is the counterpart of Bondi accretion [79] for fundamental
fields, hence a process which is clearly interesting from the
physical point of view. Although we focus this discussion
mainly on FDM, our results are general and have a much
broader range of applications in theoretical physics.
Our simulations show that if initially a host BS is much

heavier than a newborn BH (ν0 ≲ 1=6), the process starts in
stage I, a slow accretion stage where the soliton dominates
the dynamics and its normal modes are excited. The same
type of normal mode excitation was seen in cosmological
evolutions of halos [3]. The excitation amplitude depends
on the initial data and, in particular, how the BH forms
(a detailed modeling of which is out of the scope of this
work). Our results suggest that, for initial configurations
with ν0 ≲ 1=6, the accretion time is of the same order of the
duration of stage I itself, which can be estimated by

τ10%
10 Gyr

≈ 3fðν0Þ
�
1010M⊙

MBS;0

�
5

m−6
22 ;

f ≈
60 − 470ν0

47ν0
þ 50ν0ð573þ 5530ν0Þ
282½1þ 4ν0ð5þ 31ν0Þ�

− 10 log

�
1þ 22ν0

15ν0ð1þ 4ν0Þ
�
; ð16Þ

where this expression is obtained by integrating (11),
and f is a strictly decreasing function with fð1=6Þ ≈ 2.2.
Note that, for these configurations, τ90% ∼ τ10%.
On the other hand, if the initial BHmass is comparable to

(or larger than) the BS mass (ν0 ≳Oð1Þ), the process starts

FIG. 2. BS accretion time as a function of R98=MBH;0 for
different configurations. Dots (crosses) represent τ10% (τ90%), the
time for 10% (90%) of the BS mass to be accreted by the BH.
For given BS mass (fixed color), points to the left have larger
ν0 ∼Oð1Þ, while points to the right have smaller ν0 ≲ 1=6. Black
dashed lines show the analytical prediction for μMBS;0 ≈ 0.31:
left is free-fall time τFF ≈ ½R3

98=ðMBH;0 þMBS;0Þ�12, and right is
Eq. (16) for τ10%. Even though this BS is only marginally
Newtonian, the agreement is remarkable (Note: we are not fitting
any free parameter).
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in stage II, a “catastrophic” stage where most of the BS is
accreted in one free-fall time (see Supplemental Material
[59]); in this case, our results indicate that τ90% is well
described by the free-fall time (cf. Fig. 2)

τFF
10 Gyr

≈ 102
ðκ=10Þ32

ð1þ ν−10 Þ2
�
108M⊙

MBH;0

�
2

m−3
22 ; ð17Þ

where κ≡ μ2R98ðMBH;0 þMBS;0Þ satisfies 3.8≲ κ ≲ 9.1.
However, stage II may not exist if the initial configuration
is not sufficiently massive, i.e., if μðMBH;0 þMBS;0Þ ≪
0.08 [equivalently, m22ðMBH;0 þMBS;0Þ ≪ 1011M⊙], in
which case the BH effective potential is strong enough
to suppress accretion [54]. In those cases, the distinction
between different stages is highly blurred, and the process
may be well described by stage III only; we have not
probed this regime as it requires prohibitively large
resources. If true, this picture suggests that for light
configurations with ν0 ≳Oð1Þ, the accretion process is
entirely linear, corresponding to gravitational atom states
[43–46] and which decay exponentially on a timescale
∼5 × 1018 yrð108M⊙=MBH;0Þ5m−6

22 [cf. Eq. (15)].
Our numerical results and analytical expressions for

the accretion time of a BS hosting a parasitic BH establish
once and for all the details of the accretion of light scalars
onto BHs. We find remarkable agreement between ana-
lytical estimates and full numerical relativity simulations
for different initial configurations. The lightest soliton we
evolved has a mass MBS;0 ≈ 4 × 1011M⊙ m−1

22 , consider-
ably heavy for FDM cosmology [80]. The extrapolation of
our results to lighter solitons is well grounded, since our
analytical expressions were derived in the Newtonian limit,
and are expected to be more accurate for lighter configu-
rations. Although we neglected the effect of spin, it is easy
to show that our adiabatic approximation can be extended to
a spinning BH; for MBH ≪ 1011M⊙ m−1

22 , spin suppresses
the accretion rate by a factor ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðJBH=M2

BHÞ2
p

Þ=2,
where JBH is the BH angular momentum [61]. However, for
complex scalars, new “hairy” BH solutions exist and could
be a possible end state of the accretion process [81,82];
further study is required to understand the system away from
spherical symmetry.
Taken together with relation (1), our main result Eq. (16)

[note that Eq. (17) applies only to very massive BHs]
implies that the lifetime of FDM cores hosting a central
BH born with mass MBH;0 ≲ 106M⊙ in a halo with
Mhalo ≲ 1015M⊙ is larger than a Hubble time for
mψ ≲ 8 × 10−20 eV. Thus, for an interesting region of
the parameter space, FDM solitons can survive until the

present day and help solve the potential small scale
problems of CDM [83]. However, this conclusion relies
heavily on the soliton-halo relation, which neglects bar-
yonic effects and was tested numerically only for
Mhalo ∼ ð108; 1011ÞM⊙ m−1

22 . The strong dependence of
Eq. (16) on MBS;0 implies that, if the presence of baryons
increases the soliton mass by a factor of 2 relative to (1) (as
found for stars [84]), the soliton can only survive one
Hubble time if mψ ≲ 2 × 10−22 eV.
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