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We investigate the effects of including strong CP violating effects through axion fields in the
microscopic equation of state of massive hybrid neutron stars. We assume that their cores contain
deconfined quark matter and include the effects of axions via an effective ‘t Hooft determinant interaction.
The hadronic crusts are described using different approaches in order to make our results more general.
We find that the presence of axions stabilizes massive hybrid neutron stars against gravitational collapse by
weakening the deconfinement phase transition and bringing it to lower densities. This enables to reproduce
hybrid neutron stars in agreement with modern astrophysical constraints.
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Recent developments in the field of observational
astronomy made possible through gravitational wave
interferometers, along with the Neutron Star Interior
Composition Explorer (NICER) [1–5], have played a key
role in providing tight constraints onneutron star (NS)masses
and radii. Consequently, the equation of state (EOS), which
is the most important ingredient in the characterization of
strongly interacting dense matter, has also been tightly
constrained. Now that the field of view is being narrowed
down, we need powerful tools to microscopically study the
properties of massive NSs and, by doing that, explore the
dense region of the quantum chromodynamics (QCD) phase
diagram, which cannot be explored with current state-of-the-
art terrestrial experiments and lattice QCD simulations.
The axion has long been considered as a prime constituent

of cold dark matter [6–8]. For a recent review, see, e.g.,
Ref. [9] and references therein. TheQCDaxionandaxionlike
particles that are predicted to exist in extensions of the
standard model of particle physics are assumed to be an
extremely light pseudo Nambu-Goldstone boson, which
couples very weakly to standard hadronic matter [10,11].

The concept of axions originated as the most appropriate
solution to the problem of violation of combined symmetries
of charge conjugation and parity (CP) in QCD [12,13] and,
since then, it has been associated with various strongly
interacting phenomena. The particular motivation for study-
ing the effects of axions on stellar objects (including massive
NSs) comes from the idea that they could take part in energy
transport and thus affect their thermal evolution [14–19].
Axions, as prime dark matter candidates, may also

influence neutron star properties due to their possible
continual accumulation and by their gravitational capture
during stellar formation. Hence, NSs may contain a sub-
stantial amount of dark matter and, in particular, dark matter
in the form of axions. Dark matter in the form of self-
interacting bosonic particles has been studied recently in
connection to several properties of neutron stars [20], and it
was shown that this can affect their maximummass and tidal
deformability. Axions, as bosons, are expected to share
many of those properties and, hence, lead to similar effects.
Changes in neutron-star composition affect the EOS, thus
influencing stellar stability, central density, and radius. This
is the subject we explore in the present paper, where we also
consider different fermionic descriptions and interactions.
The QCD axion has been recently studied in a hot and

magnetized medium in the context of the Nambu-Jona-
Lasinio (NJL) model for quark matter [21]. The NJL model
has been extensively used in the similar context of
spontaneous CP violation [22–27]. It incorporates the
effects of axions via an effective ‘t Hooft determinant
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interaction between the quarks [28,29]. In our case, we are
dealing with a much smaller energy scale than the axion
symmetry breaking energy (of the order of the scale in
grand unified theories, ∼1015 GeV) and, hence, we can
safely take the axion field a to be in its vacuum expectation
value. Thus, the Lagrangian density of the three quark
flavor NJL model, including the CP violating effects [30]
through axion fields, can be expressed in the following
form for a quark of flavor j ¼ u, d, s:

L ¼ ψ̄ jðiγμ∂μ −mj
0Þψ j þ Gs

X8

b¼0

½ðψ̄ jλ
bψ jÞ2

þ ðψ̄ jiγ5λbψ jÞ2� − Kfei afa det ½ψ̄ jð1þ γ5Þψ j�
þ e−i

a
fa det ½ψ̄ jð1 − γ5Þψ j�g −GVðψ̄ jγ

μψ jÞ2; ð1Þ
where the first, second and last terms are the usual NJL-
type ones for the quarks, including scalar, pseudoscalar,
and vector interaction terms. ψ j are the Dirac fields for the

quarks, γμ the Dirac matrices, mj
0 are the current quark

masses, λb are the Gell-Mann matrices, and Gs and GV are,
respectively, the coupling constants for the scalar/pseudo-
scalar and the vector interactions. The third term in Eq. (1)
represents the axion contribution, i.e., the interaction
between the axion field a and the quarks (with strength
K), through a chiral rotation by the angle a=fa, fa being
the axion decay constant. Within the mean-field approxi-
mation, we can effectively replace the interactions with
corresponding condensates.
Since we are interested in studying axion effects on the

stability of fully evolved hybrid NSs, which are equilibrated
with respect to the weak force, several conditions can be
imposed. These are effectively zero temperature (T ¼ 0),
electric charge neutrality, meaning the number densities for
the quarks up, down, and strange and for the electron should
satisfy 2

3
nu−1

3
ðndþnsÞ−ne¼0, along with the condition of

β equilibrium with a free Fermi gas of electrons
[μe ¼ −μQ ¼ −ðμu − μdÞ], and no constraint on strangeness
(μS ¼ 0), yielding μu ¼ μB

3
þ 2

3
μQ, and μd ¼ μs ¼ μB

3
− 1

3
μQ,

where μu, μd, μs, and μe are the chemical potentials for the
quark flavors and electrons. The independent chemical
potentials for the baryons μB, charged μQ, and strangeness
μS correspond to the conserved quantities baryon number,
electric charge, and strangeness (or lack of in our case).
For such a system, the thermodynamic potential reads

Ω ¼ Ωq þ 2Gs

X

j

ðσ2j þ η2jÞ þ 4K

�
σuσdσs cos

a
fa

þ ηuηdηs sin
a
fa

�
− 4K

�
cos

a
fa

ðηuηdσs þ ηuηsσd

þ ηdηsσuÞ þ sin
a
fa

ðσuσdηs þ σuσsηd þ σdσsηuÞ
�

−GVn2; ð2Þ

where σj ¼ −hψ jψ ji and ηj ¼ hψ jiγ5ψ ji are the scalar and
pseudoscalar quark condensates, respectively, and n ¼
P

j nj ¼
P

jhψ†
jψ ji is the total quark number density.

The quark contribution Ωq in Eq. (2) is given by

Ωq ¼ −2Nc

X

j

�Z

Λ

d3k
ð2πÞ3 E

j
k þ

Z

kjF

d3k
ð2πÞ3 ðeμj − Ej

kÞ
�
; ð3Þ

where Ej
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þMj2

p
with Mj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj

s
2 þMj

ps
2

q
denot-

ing the constituent quark masses.Mj
s andM

j
ps are the scalar

and pseudoscalar contributions of the constituent mass,
given by the gap equations

Mj
s ¼ mj

0 þ 4Gsσj þ 2K

�
cos

a
fa

ðσkσl − ηkηlÞ

− sin
a
fa

ðσkηl þ ηkσlÞ
�
; ð4Þ

Mj
ps ¼ 4Gsηj − 2K

�
cos

a
fa

ðσkηl þ ηkσlÞ

− sin
a
fa

ðηkηl − σkσlÞ
�
; ð5Þ

where j; k; l ¼ u, d, s (or cyclic permutations), μ̃j ¼ μj −
2GVn is the effective chemical potential, Λ is the ultraviolet

momentum cutoff and kjF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃j

2−ðMjÞ2
q

Θðμ̃j2−ðMjÞ2Þ
the Fermi momentum.
From the thermodynamic potential given by Eq. (2),

we can now find the physical values for the condensates σj,
ηj, and n by solving the appropriate gap equations
∂Ω
∂σj

¼ ∂Ω
∂ηj

¼ ∂Ω
∂n ¼ 0, which also depend on the vacuum

expectation value of the axion background field a.
Putting those physical values back in Eq. (2), we obtain
the effective thermodynamic potential at finite quark
chemical potential Ωða; μÞ. The normalized thermo-
dynamic potential is then defined by subtracting the
vacuum value,ΩN ¼ Ωða; μÞ −Ωða; 0Þ. The total pressure,
energy density, and baryon number density are, respec-

tively, given by p ¼ −ΩN þ μ4Q
12π2

, ϵ ¼ ΩN þP
jμjnj þ

μ4Q
4π2

,
nB ¼ 1

3

P
jnj ¼ 1

3π2
ðkuF3 þ kdF

3 þ ksF
3Þ.

It is known, however, that finding an EOS describing
stable pure quark matter can be a challenging task, a
problem that is aggravated with the introduction of a
repulsive vector interaction [31]. This stems from the fact
that stable pure quark matter must be more bound than iron
at nuclear saturation density, which becomes more difficult
for stiffer, larger (pðεÞ) EOS’s. For this reason, one needs to
consider a hadronic crust together with the quark matter
core. In this work, we will present results for the relativistic
NL3ωρ and CMFωρ;ω4 models. Both of them are in agree-
ment with standard saturation properties and astrophysics
observations (see regions shown in Fig. 1 for the latter).
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The NL3ωρ [32–34] is a nucleonic Walecka type model that
contains the fewest ingredients that allow hadronic matter
to be in agreement with nuclear and astrophysical obser-
vations, with ωρ referring to a mixed vector-isovector
interaction that allows to reproduce smaller stars with
lower tidal deformabilities, as measured by LIGO-Virgo
[1]. The chiral mean-field CMFωρ;ω4 model [35,36]
accounts for chiral symmetry restoration, while also being
in agreement with nuclear and astrophysical observations.
ω4 refers to a higher-order vector interaction that allows to
reproduce NSs with mass M > 2 MSun including hyperon
degrees of freedom. The complete EOS also contains
separate treatments at very low density to account for
the presence of nuclei. To describe nuclei, the CMF model
includes a unified EOS by Gulminelli and Raduta [37] with
effective Skyrme interaction of the type SkM proposed
by Bennour et al. [38] and cluster energy functionals
from Danielewicz and Lee [39]. The NL3 includes the
Baym-Pethick-Sutherland EOS [40] and a self-consistent
Thomas-Fermi approach with nonspherical pasta phases
[41]. The crust EOS’s utilized in this work are available in
the CompOSE repository [42–44].
Finally, the mass-radius relation for a family of spherical,

isotropic, static (or slowly rotating) stars is obtained solving
the Tolman-Oppenheimer-Volkoff equations [45,46]. In the
numerical analysis discussed in the following, we consider
the parameters of our model to be Λ ¼ 631.4 MeV,
Gs ¼ 1.835=Λ2, K ¼ 9.29=Λ5, mu;d

0 ¼ 5.5 MeV, and
ms

0 ¼ 135.7 MeV [47]. This set of parameters is tradition-
ally used in the literature. The parameters are fixed by
requiring that they satisfy experimentally measured proper-
ties of relevant quantities, e.g., the pion mass, the pion
decay constant, the kaon mass, and the η0 meson mass.
They are representative enough to illustrate well-known
features of the NJL model. The more flexible parameters
GV and a are varied widely in our analysis to study their
effects on the various quantities we compute. In particular,
we analyze the cases of a=fa ¼ 0 and a=fa ¼ π, such that
the results can be shown in the absence of the axion effects
and when these effects play a large role. Also, since GV has
the same dimension as Gs (∼1=energy2), it is natural to
consider GV to be proportional to Gs, with the proportion-
ality (dimensionless) factor taken here as a free parameter.
We start with the (complete) NL3ωρ model EOS for the

hadronic crust. In Fig. 1, we show (a) the obtained mass-
radius relation for different stellar families and correspond-
ing behaviors for (b) the compactness C ¼ M=R (as a
function of central baryon number density normalized by
the nuclear saturation value n0 ¼ 0.15 fm−3), (c) EOS
pðεÞ, and (d) speed of sound squared c2s ¼ dp=dε (as a
function of baryon number density normalized by the
nuclear saturation value). The kinks in panel (a), horizontal
lines in panels (b) and (c), and c2s ¼ 0 in panel (d)
[calculated as the derivative of panel (c)] are associated
with a first-order phase transition between the hadronic

crust and quark core. As a result of the first order phase
transition there are jumps in first derivatives of the grand
potential, such as number densities and energy density,
which then manifest in the results shown in Fig. 1. Stellar
stability is guaranteed in the mass-radius diagram (starting
from low density, bottom-right) until an extremum where
the curve rotates counterclockwise with increasing central
density. This can be derived from the Sturm-Liouville
equation for radial stellar oscillations [48]. From panel (a),
accounting for the axion field (through the nonzero ratio
a=fa) allows for stable branches of hybrid NSs to exist,
something not trivial when accounting for vector inter-
actions GV ≠ 0. In our work, increasing the value of the
vector coupling allows the EOS to support stars of higher
masses. For value of the ratio a=fa ¼ π, we find stable stars
with a maximum mass M > 2MSun for GV ¼ 0.2Gs and
GV ¼ 0.4Gs. Panel (b) of Fig. 1 shows the nature of the
compactness with varying values of GV and a=fa using
G ¼ c ¼ 1. For higher values of GV , hybrid NSs are more
compact, which agrees with our observations from panel (a).
The difference is that for a=fa ≠ 0 hybrid NSs are stable.
To better understand our findings described above, we

discuss the effect of GV and a=fa ≠ 0 on microscopic
properties, meaning the matter EOS. From panel (c) of
Fig. 1, the transition from the hadronic crust to the quark
matter core happens at higher energy densities ε and is
stronger (larger jump in ε across the first-order phase
transition) for higher values of GV . Increasing the ratio
a=fa has the effect of bringing the transition towards a
smaller value of ε (for a specific GV), in addition to making
the jump in ε smaller at the transition. Both of these features
are known to help with stellar stability, as discussed in
detail in Ref. [50]. In panel (d), we show the nature of the
square of the speed of sound c2s . The magnitude of c2s can be
understood as a measure of stiffness of the EOS. While GV
clearly turns the EOS stiffer, accounting for the axion field
does not modify the speed of sound of quark matter away
from the phase transition. Nevertheless, it modifies sig-
nificantly the phase transition region. The bump in c2s in the
quark matter phase, around n ¼ 3.6 ∼ 4.4 n0, happens
when the s quark starts to populate the system. Just before
that, the speed of sound is close to being constant.
In Fig. 2 we present our results obtained using a different

model EOS for the hadronic crust. In this case,we choose the
(complete) CMFωρ;ω4 model and take the values ofGV to be
0, 0.1, and 0.15Gs. The four panels in Fig. 2 indicate the
same quantities as Fig. 1. Looking at the black full line of
panel (d) for hadronic matter only [when compared to panel
(d) of the previous figure], it becomes clear that the
CMFωρ;ω4 model EOS is very different from the NL3ωρ
model EOS. But, in spite of that, all our conclusions from
Fig. 1 still hold. We still reproduce hybrid and stable 2MSun
stars [panel (a)], with the difference that now such stars
contain hyperons in the hadronic crust and a much smaller
quark core. Larger values of GV cannot be used in this case
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because theywould push the phase transition to densities not
reached inside NSs in the case of a=fa ¼ π. As a conse-
quence, the compactness of all the analyzed hybrid NSs are
now more similar [panel (b)]. The energy density jumps
across the phase transition are now narrower and take place
at larger energy densities [panels (c) and (d)].
In panel (a) of both Figs. 1 and 2, it can be seen that we

reproduce families of stars that fulfill all astrophysical
constraint shaded regions, which were shown in Fig. 1 of
Ref. [49] and extracted from LIGO/Virgo gravitational
wave observations [1] and NICER x-ray observations
[2–5]. The NICER regions, for both the observed low
and the large mass stars, appear in pairs because they
include results from two separate collaborations that
perform independent analyses. The two LIGO-Virgo
regions correspond to two different approaches based on
different prescriptions to access the EOS in a model-
independent (to a degree) approach. Looking at the results

derived from a=fa ≠ 0 (dashed lines), which are the ones
that reproduce stable hybrid NSs, the lower mass regions
are fulfilled by either pure hadronic stars (black full lines)
or hybrid NSs with GV ¼ 0. The issue is that the latter do
not fulfill M > 2MSun, as observed for the pulsar PSR
J0740þ 6620 [51]. Because of that, we conclude that,
within our framework, those are probably hadronic stars.
This result could be different had we used other hadronic
crust models. But, more interestingly, the higher mass
regions are fulfilled by both hadronic and hybrid NSs with
GV ≠ 0, which is a consequence of the large radius range
current observation constraints comprehend.
In this paper, we have presented how a combination of

repulsive quark interactions and the presence of a nonvanish-
ing axion condensate, both implemented at the level of the
NJL model, affect the structure and stability of hybrid NSs. It
has been known from recent studies (see, e.g., [52]) that, in
order to fulfill the constraints on the tidal deformability for
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FIG. 1. Results using the NL3ωρ crust: mass-radius relation (a), compactness vs normalized central number density (b), equation of
state (c), and speed of sound vs normalized baryon number density (d) for different values of vector coupling GV and the scaled axion
field a=fa. The shaded regions are obtained from observational constraints from LIGO/Virgo (brown and gray) and NICER (two
different shades of green) data [49].
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low mass NSs,M ∼ 1.4MSun, a soft EOS is necessary. At the
same time, to support NSs with M ∼ 2MSun against gravi-
tational collapse, a stiff EOS is required for intermediate to
high densities. Our results support such softening-stiffing of
the EOS (followed by a phase transition to a stiff phase)
within a thermodynamical consistent approach, thanks to the
combined effects of vector interactions in the hadronic crust
and the quark core, and the axion field condensate. The
appearance of a “bump” in the speed of sound (as described
above) can produce observables results that could be mea-
sured by LIGO/Virgo in the near future.
More specifically, the axion field modifies the quark

EOS mainly around the deconfinement phase transition by
weakening it and bringing it to lower densities, thus
allowing for a more extended region for stability in the
mass-radius diagram, as shown explicitly in our results in
Figs. 1(a) and 2(a). The axion field thus contributes non-
trivially to allow for branches with stable massive hybrid
NSs, which cannot be achieved by the effects of the vector

interaction alone. In particular, our results show that, for a
magnitude of the axion field ratio a=fa ¼ π, stable stars
with a maximum mass M > 2MSun are allowed for GV ¼
0.2–0.4 Gs. We expect that the results we have presented in
this paper to be complementary to the recent studies con-
cerning the effects of (bosonic) dark matter to the structure of
compact stars and help in further understanding those effects.
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FIG. 2. Same as Fig. 1 but using the CMFωρ;ω4 .
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