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We construct a matrix-valued spin-dependent distribution function (MVSD) for massive spin-1=2
fermions and study its properties under Lorentz transformations. Such transformations result in a Wigner
rotation in spin space and in a nontrivial matrix-valued shift in space-time, which corresponds to the side
jump in the massless case. We express the vector and axial-vector components of the Wigner function in
terms of the MVSD and show that they transform in a Lorentz-covariant manner. We then construct
a manifestly Lorentz-covariant Boltzmann equation which contains a nonlocal collision term encoding
spin-orbit coupling. Finally, we obtain the spin-dependent distribution function in local equilibrium by
demanding detailed balance.
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I. INTRODUCTION

In noncentral heavy-ion collisions, a part of the large
orbital angular momentum (OAM) of the system is con-
verted into polarization of final-state hadrons [1–3]. The
polarization of Λ and Λ̄ hyperons along the direction of
the global OAM has been experimentally measured by the
STAR collaboration [4,5] and agrees well with theoretical
calculations [6–8]. However, the dependence on azimuthal
angle of the longitudinal polarization of Λ’s [9] shows the
opposite sign as in theoretical frameworks which reproduce
the global polarization. Various efforts [10–16] have been
made to resolve this so-called “sign problem of the
longitudinal polarization,” but a fully convincing explan-
ation does not yet exist. It was recently proposed [17–20]
that previous calculations had missed a shear-induced
contribution to the polarization at freeze-out, which has
the potential to solve this problem, but so far results
including this term appear to be sensitive to the equation
of state and other parameters of the calculation [21].
Therefore, from both the theoretical and the experimental

perspective, a consistent way to describe the dynamics of
spin in heavy-ion collisions is urgently needed. Recently, a
lot of activity was devoted to deriving kinetic theory for
massive particles with spin [22–31] and spin hydrodynamics
[32–41]. The dynamics of massless particles is described by
chiral kinetic theory (CKT), first proposed in Refs. [42–44].
The helicity, defined as the product of momentum and spin,

is Lorentz invariant. However, both the momentum and the
spin of a particle will change under a Lorentz boost, in order
to preserve the helicity. Conservation of total angular
momentum then requires that the OAM of the particle also
changes. This in general implies that the particle’s position
will undergo a nontrivial shift, which is called the side-jump
effect [45–47]. On the other hand, it has been realized that
the collisionless kinetic theory for massive particles can be
smoothly connected to CKT, if one properly defines the
reference frame [48] or if one directly replaces the spin
vector by the momentum vector [49–52]. Such a connection
exists because Wigner’s little group for massless particles
can be obtained from that for massive particles by taking the
infinite-momentum limit and the massless limit at the same
time, indicating that spin for massive particles reduces to
helicity in this limit [53–55]. Then, one naturally expects
that the massless limit for the collision term as well as for the
equilibrium distribution agrees with the result from CKT
[46,47,56]. In order to confirm this expectation, we need to
discard any reference to the rest frame of a massive particle,
as such a frame does not exist for massless particles. Instead,
we need to consider a Lorentz boost between two arbitrary
reference frames.
In this work, we derive a matrix-valued spin-dependent

distribution function (MVSD) and show that its Lorentz-
transformation properties are highly nontrivial: in addition
to a Wigner rotation in spin space, the MVSD undergoes a
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matrix-valued shift in space-time, which is similar to the
side-jump effect for massless particles. Using this MVSD,
we then construct a Lorentz-covariant Boltzmann equation
with a nonlocal collision term, which forms the theoretical
foundation for a consistent description of the dynamics
of massive spin-1=2 particles in heavy-ion collisions. It
constitutes a well-founded theory for numerical simulations
of spin polarization and thus may potentially contribute to
solving the sign problem of the longitudinal polarization.

II. MATRIX-VALUED SPIN-DEPENDENT
DISTRIBUTION FUNCTION

We define a plane-wave state as

jp; si≡ a†p;sj0i; ð1Þ

where a†p;s is the creation operator for a particle with
momentum p and spin s, with the corresponding annihi-
lation operator being ap;s, fulfilling the anticommutation
relation fa†p;s; ap0;s0 g ¼ 2Epð2πℏÞ3δð3Þðp − p0Þδss0 , with the
mass-shell energy Ep ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. The density matrix is

defined as

ρ≡X
rs

Z
Dp1

Z
Dp2f̃rsðp1;p2Þjp1; rihp2; sj; ð2Þ

where the invariant momentum-integration measure is
defined asDp≡ d3p=½ð2πℏÞ32Ep�. The MVSD in momen-
tum space is given as f̃rsðp1;p2Þ ¼ ha†p2;sap1;ri, where
hOi≡ TrðρOÞ denotes the expectation value of the oper-
ator O in the ensemble characterized by the density matrix
(2). We define the MVSD in phase space by taking the
Fourier transform with respect to the relative momentum
qμ ≡ pμ

1 − pμ
2,

frsðx; pÞ≡
Z

d4q
2ð2πℏÞ3 exp

�
−
i
ℏ
q · x

�
δðp · qÞf̃rsðp1;p2Þ;

ð3Þ

where pμ ≡ ðpμ
1 þ pμ

2Þ=2 is the average momentum. The
MVSD (3) is a generalization of the classical distribution
function to the case of quantum particles with spin 1=2,
which satisfies f�rs ¼ fsr, indicating that frsðx; pÞ is a
Hermitian matrix. We note that pμ

1 and pμ
2 are restricted to

the mass-shell p2
1 ¼ p2

2 ¼ m2, leading to the constraint
p · q ¼ 0. The MVSD has previously been used to derive
the equilibrium form of the polarization [6,57]. In this
work, we will derive the Boltzmann equation for the
MVSD that describes its dynamical evolution in a non-
equilibrium system.
For a system of weakly interacting particles, one expects

that f̃rsðp1;p2Þ has nonvanishing values only when
jp1 − p2j ¼ jqj ≪ jpj ¼ jp1 þ p2j. As a consequence,

the gradient of the MVSD (3) satisfies ℏj∇xfrsðx; pÞj ≪
jpfrsðx; pÞj, ensuring the validity of the ℏ expansion, which
we will employ in the following.

III. WIGNER FUNCTION

We now relate the MVSD (3) to the Wigner function
[58,59]

Wðx; pÞ ¼
Z

d4y
ð2πℏÞ4 e

−ip·y=ℏ
�
ψ̄

�
xþ y

2

�
⊗ ψ

�
x −

y
2

��
;

ð4Þ
where ⊗ denotes the Kronecker product. Let us consider
the collisionless case, i.e., we assume that the Dirac-field
operators in Eq. (4) fulfill the noninteracting Dirac equation
[60]. Inserting these operators into the definition (4),
performing a gradient expansion, and keeping terms of
first order in ℏ we arrive at

Wðx; pÞ≡ 1

ð2πÞ3 θðp
0Þδðp2 −m2Þ

×
X
rs

½ūsðpÞ⊗ urðpÞ þ iℏUsrðpÞ ·∇x�frsðx; pÞ:

ð5Þ

The momentum in Eq. (5) is restricted to the mass-shell
p2 ¼ m2, while off-shell corrections arise at second order
in ℏ. The matrix-valued Berry connection for Dirac
fermions is defined as [48,61]

UsrðpÞ≡1

2
f½∇pūsðpÞ�⊗urðpÞ− ūsðpÞ⊗ ½∇purðpÞ�g; ð6Þ

which is a 2 × 2 matrix in spin space and a 4 × 4 matrix in
Dirac space.
We further decompose the Wigner function in terms of

the generators of the Clifford algebra,

W ¼ 1

4

�
F þ iγ5P þ γμVμ þ γ5γμAμ þ

1

2
σμνSμν

�
; ð7Þ

where σμν ≡ i
2
½γμ; γν�. The vector component Vμ has a clear

physical meaning: it is the current density in phase space
[59]. Its zeroth component, V0 ≡ Trðγ0WÞ, where “Tr”
denotes the trace in Dirac space, is given by

V0 ¼ 2

ð2πℏÞ3 θðp
0Þδðp2 −m2ÞEptr½Fðx; pÞ�; ð8Þ

where “tr” denotes the trace in spin space and

Fðx; pÞ≡ fðx; pÞ þ ℏ
4ðu0 · pÞðu0 · pþmÞ

× ϵμναβu0;μpνfnβðpÞ; ∂αfðx; pÞg: ð9Þ
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Here, fA;Bg≡ ABþ BA for two arbitrary 2 × 2 matrices
A, B. The vector uμ0 ≡ ð1; 0; 0; 0Þ defines the rest frame of a
specific system, called “laboratory system” in the follow-
ing. The quantity tr½Fðx; pÞ� in Eq. (8) is therefore the
particle number density observed in the laboratory frame.
The spin-polarization vector nμðpÞ is a 2 × 2 matrix and is
defined as

nμsrðpÞ≡ 1

2m
ūsðpÞγμγ5urðpÞ

¼
�
p · τsr
m

; τsr þ
p · τsr

mðEp þmÞp
�
; ð10Þ

where τsr ¼ χ†sσχr, with σ being the vector of Pauli
matrices and χ†r ; χs the Pauli spinors.
The gradient term in Eq. (9) arises from the Berry

connection (6). It can be absorbed into fðx; pÞ by intro-
ducing a matrix-valued shift δx in space-time and defining
the Taylor expansion up to first order in δx as
fðxþ δxÞ ¼ fðxÞ þ fδxμ; ∂μfðxÞg=2þOðδx2Þ. The new
position xþ δx agrees with the canonical position operator
proposed in Refs. [62–65], which is interpreted as the
energy center for a particle with spin. Then, we identify
tr½Fðx; pÞ� as the particle number density for particles with
momentum p and energy center at xþ δx in the labora-
tory frame.
The vector and axial-vector components of the Wigner

function can be expressed in terms of Fðx; pÞ as

Vμ ¼ C tr½ðpμ þ ℏSμνu0∂νÞF�; ð11Þ

Aμ ¼ C trf½mnμðpÞ þ ℏLμν
u0∂ν�Fg; ð12Þ

where the prefactor C ¼ ½2=ð2πℏÞ3�θðp0Þδðp2 −m2Þ and

Sμνu0 ≡ m
2ðu0 · pÞ

ϵμναβnαðpÞu0;β; ð13Þ

Lμν
u0 ≡ 1

2ðu0 · pÞ
ϵμναβpαu0;β: ð14Þ

Equations (11) and (12) agree with the results derived in
Appendix C of Ref. [52]. In the massless case, the spin-
polarization vector aligns (anti-aligns) with the momentum
for positive (negative) helicity, i.e., one has to replace
mnμðpÞ=2 → λpμ, where λ ¼ �1=2, and the expression
(13) agrees with the spin tensor introduced in Eq. (3) of
Ref. [46]. The vector current (11) has a rather similar form
as the result in the massless case, cf. Eq. (7) of Ref. [46].
In order to clarify the physical meaning of the terms in

Eqs. (11) and (12), we first consider the canonical angular-
momentum tensor

Jλμν ¼ xμTλν − xνTλμ þ ℏSλμν; ð15Þ

where the canonical energy-momentum tensor and the
canonical spin angular-momentum tensor are defined as
Tμν ≡ R

d4ppμVν and Sλμν ≡ −
R
d4pϵλμναAα=2, respec-

tively. The corresponding conserved charge J0μν can be
calculated by substituting Eqs. (11) and (12) into Jλμν and
then take the λ ¼ 0 component. At leading order in ℏ, the
result reads

J0μν ¼
Z

d3p
ð2πℏÞ3 tr½ðx

μpν − xνpμ þ ℏSμνu0ÞF�; ð16Þ

We therefore identify Sμνu0 defined in Eq. (13) as the rank-2
spin tensor in the laboratory frame and the term
∼trðSμνu0∂νFÞ in Eq. (11) as the magnetization current
induced by the inhomogeneity of the distribution F.
On the other hand, Aμ in Eq. (12) is interpreted as the

spin angular-momentum density, which consists of two
parts. The first part is an intrinsic spin density ∼tr½nμðpÞF�,
which is proportional to the polarization vector multiplied
with the distribution function. The second part is a motion-
induced part ∼trðLμν

u0∂νFÞ, which is generated through the
spin-orbit coupling. Considering a Gaussian-type particle
number-density distribution moving to the right with
momentum p at time t ¼ 0, cf. Fig. 1, the local current
density is then given by p tr½Fðx; pÞ�. For the region V1 in
the vicinity of the point x1, the current density nearer to the
center of the distribution is larger than that further away
from the center, leading to a nonvanishing OAM

LV1
¼

Z
V1

d3x0ðx0 − x1Þ × p tr½Fðx0; pÞ�

≃ −
1

3
p × ∇x1 tr½Fðx1; pÞ�

Z
V1

d3x0ðx0 − x1Þ2; ð17Þ

where we have made a gradient expansion for Fðx0; pÞ near
x1. By comparing LV1

with the OAM of a local vortex with
kinetic vorticity ω,

FIG. 1. Local angular momentum density generated by an
inhomogeneous current density.

LORENTZ-COVARIANT KINETIC THEORY FOR MASSIVE SPIN- … PHYS. REV. D 106, L111901 (2022)

L111901-3



Lω ¼ 1

3
ωEptr½Fðx1; pÞ�

Z
V1

d3x0ðx0 − x1Þ2; ð18Þ

one can find that the OAM generated by the inhomo-
geneous current density near point x1 corresponds to that of
an anticlockwise rotating vortex with

ω ¼ −
p × ∇x1 tr½Fðx1; pÞ�

Eptr½Fðx1; pÞ�
: ð19Þ

Similarly, the OAM near the point x2 is equivalent to the
contribution of a clockwise rotating vortex, because the
density gradient at x2 points in the opposite direction than
that at point x1. Through the spin-orbit coupling, the OAM
results in a nonvanishing spin density, i.e., the term
∼trðLμν

u0∂νFÞ in Eq. (12).

IV. LORENTZ TRANSFORMATION

We now study how the MVSD transforms under a
Lorentz boost from the laboratory frame, characterized
by the frame vector uμ0 ¼ ð1; 0; 0; 0Þ, to a new reference
frame called “u-frame” in the following, which moves with
velocity uμ ¼ ðγ; γvÞ with respect to the laboratory frame.
This Lorentz boost is denoted as Λuu0 (without specifying
the particular representation of the Lorentz group that this
boost acts on).
The plane-wave state introduced in Eq. (1) transforms as

UðΛuu0Þjp; si ¼
X
r

jp0; riDrsðRu;pÞ; ð20Þ

where UðΛuu0Þ is a unitary representation for Λuu0 (appro-
priate for acting on the Fock-space state jp; si) and p0 is
the spatial component of the momentum in the u-frame,
satisfying p0μ ¼ ðΛuu0Þμνpν. Note that in general a Lorentz
boost changes the spin of a particle, which is also known
as Wigner rotation Ru;p. The latter is defined as the
product of three Lorentz boosts, Ru;p ≡ Λrest;uΛuu0Λu0;rest,
where “rest” denotes the rest frame with pμ

rest ¼
ðΛrest;u0Þμνpν ¼ ðm; 0Þ. In Eq. (20), the Wigner rotation
is encoded in the unitary 2 × 2 matrix DrsðRu;pÞ in spin
space. For massless particles, this matrix is diagonal and
reduces to a mere phase factor.
The transformation behavior of the Dirac spinors follows

from Eq. (20),

ðΛuu0Þ1
2
usðpÞ ¼

X
r

urðp0ÞDrsðRu;pÞ; ð21Þ

which gives

DrsðRu;pÞ ¼
1

2m
ūrðp0ÞðΛuu0Þ1

2
usðpÞ; ð22Þ

where ðΛuu0Þ1
2
is the spinor representation of the Lorentz

boost Λuu0 .
Demanding that the density matrix in Eq. (2) transforms

as ρ0 ¼ UðΛuu0ÞρU†ðΛuu0Þ and then using Eq. (20), we
obtain the transformation property of the MVSD in
momentum space,

f̃0ðp0
1;p

0
2Þ ¼ DðRu;p1

Þf̃ðp1;p2ÞD†ðRu;p2
Þ; ð23Þ

where f̃0, p0
1, and p0

2 are quantities in the u-frame, with
p0μ
i ¼ ðΛuu0Þμνpν

i for i ¼ 1, 2. Here, bothD and f̃ are 2 × 2
matrices, whose indices are omitted for the sake of
simplicity. Substituting the above relation into Eq. (3),
we derive

f0ðx0; p0Þ ¼ DðRu;pÞfðx; pÞD†ðRu;pÞ

−
iℏ
2
½∇pDðRu;pÞ� · ½∇xfðx; pÞ�D†ðRu;pÞ

þ iℏ
2
DðRu;pÞ½fðx; pÞ∇⃖x� · ½∇pD†ðRu;pÞ�: ð24Þ

Given explicit expressions for the Dirac spinors, we can
derive the matrix D in Eq. (22). Then, we substitute D into
Eq. (24). The Lorentz transform of F, defined in Eq. (9),
can be expressed with the help of Eq. (24) as

F0 ¼ DðRu;pÞ
�
F þ ℏ

2
fΔμ

u0u; ∂μFg
�
D†ðRu;pÞ; ð25Þ

where

Δμ
u0u ≡ Δμ

u0 − Δμ
u: ð26Þ

with the frame-dependent shift term being

Δμ
u ≡ −

1

m2
Sμνu pν ≡ 1

m
Lμν
u nνðpÞ: ð27Þ

Note that, if the u-frame is the rest frame of the particle,
uμrest ¼ pμ=m, we have Δμ

urest ¼ 0 and Δμ
u0urest ¼ Δμ

u0 .
Equation (25) states that, under a Lorentz boost, the
transformed F contains a rotation in spin space and an
additional contribution from the gradient of F. The latter
part arises because the magnetization current induced by an
inhomogeneous spin angular momentum density and the
OAM induced by an inhomogeneous current density are
frame-dependent quantities. The shift term (27) has been
studied for nonrelativistic electron scattering off a central
potential in ferromagnets in Ref. [66], and in this work we
generalize it to the relativistic case.
We now discuss the behavior of Vμ and Aμ in Eqs. (11)

and (12) under Lorentz transformations. In the u-frame, the
vector current reads

V 0μ ¼ C tr½ðp0μ þ ℏS0μνu0 ∂
0
νÞF0ðx0; p0Þ�; ð28Þ
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where S0μνu0 is the spin tensor (13) with nμðpÞ and pμ

replaced by n0μðp0Þ and p0μ, respectively, while the frame
vector uμ0 ¼ ð1; 0; 0; 0Þ is not transformed due to the frame
dependence of S0μνu0 . We now replace all u-frame Lorentz
tensors in Eq. (28) by laboratory-frame tensors, using a0μ ¼
ðΛuu0Þμνaν and uμ0 ¼ ðΛuu0Þμνuν. The Lorentz transforma-
tion of the spin-polarization vector can be deduced from its
definition (10) and the transformation behavior of the Dirac
spinors (21),

n0μðp0Þ ¼ DðRu;pÞðΛuu0ÞμνnνðpÞD†ðRu;pÞ: ð29Þ

Then, using Eq. (25), the Schouten identity for pλϵμναβ [48],
as well as p · nðpÞ ¼ 0, up to first order in ℏ Eq. (28) reads

V 0μ ¼ ðΛuu0ÞμνðVν þ ℏCtrfΔν
u0up · ∂FgÞ: ð30Þ

To lowest order in ℏ, the distribution function F fulfills a
Boltzmann equation of the form p · ∂F ¼ C½F�, cf. Eq. (41)
below. Then, in the absence of collisions, C½F� ¼ 0, the
second term in Eq. (30) vanishes, so the vector current
transforms in a Lorentz-covariant manner [46,52].
In order to ensure the covariance of Vμ in the presence of

collisions, an additional term

δVμ ¼ ℏCtrðΔμ
u0ūp · ∂FÞ ð31Þ

needs to be added to Vμ in Eq. (11), where ūμ is an arbitrary
frame vector and Δμ

ū, cf. Eq. (27), transforms as a Lorentz
vector. Then, defining V̂μ ≡ Vμ þ δVμ one can show that
V̂ 0μ ¼ ðΛuu0ÞμνV̂ν up to order OðℏÞ, i.e., V̂μ transforms as a
Lorentz vector.
To prove the Lorentz covariance of the axial-vector

current, an analogous calculation as in the vector case
yields [52]

A0μ ¼ ðΛuu0ÞμνAν; ð32Þ

using Eqs. (27), (29), as well as the relation

fnμðpÞ; nνðpÞg ¼ −2
�
gμν −

pμpν

m2

�
: ð33Þ

Equation (32) shows that the axial-vector current always
transforms in a Lorentz-covariant manner, even in the case
with collisions.

V. COLLISION TERM

Now we consider the case of binary elastic collisions. In
the classical case, all incoming or outgoing particles have
well-defined positions and the scattering process happens
at one space-time point x. However, for quantum particles
the position has a finite uncertainty and therefore particles
can interact with each other over a finite distance. Such a

nonlocal collision involves a finite OAM, which can be
converted into the particle’s spin, or vice versa.
In the laboratory frame, the conserved angular-momentum

tensor relative to a specific point xμ0 is given by J0μν,

J0μν ¼
Z

d3p
ð2πℏÞ3 trf½ðx

μ − xμ0Þpν

− ðxν − xν0Þpμ þ ℏSμνu0 �Fðx; pÞg: ð34Þ

One can clearly identify the last term as the contribution from
spin angular momentum and the remaining terms as the
OAM part. However, note that the following identity holds
up to order ℏ,

Δμ
u0up

ν − Δν
u0up

μ þ Sμνu0 − Sμνu ¼ 0; ð35Þ

which can be proved by employing Eqs. (26), (27), and the
Schouten identity. Here Sμνu is the spin tensor defined in
Eq. (13) with uμ0 replaced by u

μ. Then it is possible to express
J0μν in another form with the help of the frame vector uμ,

J0μν ¼
Z

d3p
ð2πℏÞ3 trf½ðx

μ − xμ0 − ℏΔμ
u0uÞpν

− ðxν − xν0 − ℏΔν
u0uÞpμ þ ℏSμνu �Fðx; pÞg: ð36Þ

Using theLorentz transform (25) of theMVSD,we can prove
that the last term in Eq. (36) is related to the spin angular
momentum in the reference frame moving with velocity
uμ ¼ ðγ; γvÞ relative to the laboratory frame,

tr½ℏSμνu Fðx;pÞ�¼ðΛu0uÞμαðΛu0uÞνβtr½ℏS0αβu0 F
0ðx0;p0Þ�; ð37Þ

where we have dropped terms of order Oðℏ2Þ. We then
conclude that the conserved angular momentum J0μν is
independent of the reference frame, while the decomposition
of J0μν into spin and OAM depends on the choice of uμ.
Assuming that, at leading order in ℏ, the MVSD satisfies

a Boltzmann equation of the same form as in the classical
case, p ·∂Fðx;pÞ¼C½F�þOðℏÞ, one immediately obtains
the requirement for angular-momentum conservation dur-
ing collisions,

Z
Dptrf½ðxμ − xμ0 − ℏΔμ

u0uÞpν

− ðxν − xν0 − ℏΔν
u0uÞpμ þ ℏSμνu �C½F�g ¼ 0: ð38Þ

In the massless case, there exists a special frame, the so-
called “no-jump” frame [46], where the incoming particles
collide at the same position x. In our case of massive
particles, the analogue is a frame, characterized by a frame
vector ūμ, where the spin angular momentum and thus, by
conservation of total angular momentum, also the OAM are
separately conserved, i.e.,
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ℏ
Z

DptrðSμνū C½F�Þ ¼ 0: ð39Þ

In this frame, the Boltzmann equation is assumed to take
the same form as in the classical case,

p̄ · ∂̄ F̄ðx̄; p̄Þ ¼ C̄½F̄�: ð40Þ
Then, using Eq. (25) we conclude that in the laboratory
frame the Boltzmann equation reads

p · ∂

�
Fðx; pÞ þ ℏ

2
fΔμ

u0ū; ∂μFðx; pÞg
�
¼ C½F�; ð41Þ

where the collision term C½F� is related to C̄½F̄� as

C̄½F̄� ¼ DðRū;pÞC½F�D†ðRū;pÞ þOðℏÞ: ð42Þ

Since the left-hand side of Eq. (41) is Hermitian, the
collision term must also be Hermitian, C†½F� ¼ C½F�. In the
ū-frame, collisions are local, and the collision term C̄½F̄�
has the same form as in the classical case. One can then
show that, in the laboratory frame,

Crs½F� ¼
1

4

X
ri;si

Z
DPMðp1; p2; s1; s2 → p; p3; r0; r3Þ

×M�ðp1; p2; r1; r2 → p; p3; r; s3Þ
× fF̃r1s1ðp1ÞF̃r2s2ðp2Þ½δr0s − F̃r0sðpÞ�
× ½δr3s3 − F̃r3s3ðp3Þ� − F̃r0sðpÞF̃r3s3ðp3Þ
× ½δr1s1 − F̃r1s1ðp1Þ�½δr2s2 − F̃r2s2ðp2Þ�g
þ H:c:; ð43Þ

where the invariant integration measure DP≡
Dp1Dp2Dp3ð2πℏÞ4δð4Þðp1 þ p2 − p − p3Þ and “H.c”
stands for the Hermitian conjugate (complex conjugate
and interchanging r and s) of the first term. In Eq. (43), the
distribution function F̃ is defined as

F̃ðx; pÞ≡ Fðx; pÞ þ ℏ
2
fΔμ

u0ū; ∂μFðx; pÞg; ð44Þ

and we suppressed the x-dependence of F̃ for the sake of
simplicity. Under a Lorentz boost the transition amplitude
transforms as

M̄ ¼
X

s0s1s2s3

Ds0 s̄0Ds3 s̄3D
†
s̄1s1D

†
s̄2s2

×Mðp1; p2; s1; s2 → p; p3; s0; s3Þ: ð45Þ

The Wigner rotation matrices in this equation partially
cancel with those for the MVSDs in Eq. (25), which
ensures that C½F� transforms as in Eq. (42). Note that the
spin-orbit coupling enters the collision term through the
presence of the shift term Δμ

u0ū in the definition of F̃,

making the collision term nonlocal at first order in ℏ,
cf. Refs. [26,29,30].
One can further check that the Boltzmann equation (41)

fulfills the local conservation law for total angular momen-
tum,

ℏ∂λSλμν þ Tμν − Tνμ

¼ −2ℏ
Z

DptrðSμνū C½F�Þ þOðℏ2Þ ¼ 0; ð46Þ

where Sλμν is the canonical spin angular-momentum tensor
defined above, Tμν ≡ R

d4ppμV̂ν, and Sμνū is the spin tensor
defined in Eq. (13) with uμ0 replaced by ūμ. We emphasize
that in the last line in Eq. (46) we have used Eq. (39), which
demands that the spin is conserved in collisions in the
ū-frame.

VI. LOCAL THERMODYNAMICAL EQUILIBRIUM

Usually, local thermodynamical equilibrium is defined by
demanding that the collision term vanishes. This require-
ment leads to the solution F̃ðx; pÞ ¼ fFDðx; p; δEÞ, with
the Fermi-Dirac distribution defined as

fFDðx; p; δEÞ≡ f1þ exp½ðu · pþ δE − μÞ=T�g−1; ð47Þ

where the energy shift δE≡ ℏSμνū Ωμν, with Ωμν being the
spin potential. Using Eq. (44) the MVSD in the lab frame is
then up to order OðℏÞ given by

Fðx;pÞ¼fFDðx;p;δEÞ−
ℏ
2
fΔμ

u0ū;∂μfFDðx;p;δEÞg: ð48Þ

With Eqs. (12), (14), (26), and (33) one then computes the
axial-vector component of the Wigner function as

Aμ¼Ctr

	�
mnμðpÞ− ℏ

2ðū ·pÞϵ
μναβūνpα∂β

�
fFDðx;p;δEÞ



;

ð49Þ
which agrees with the result that includes the thermal-shear
contribution [17–21,67–69]. In the massless limit, Eq. (49)
smoothly reduces to the result of CKT [46,56], which can be
proved by replacing mnμðpÞ → pμ.

VII. CONCLUSIONS

In this work, we have derived a matrix-valued spin-
dependent distribution function Fðx; pÞ for quantum par-
ticles, which describes the particle number density and
intrinsic spin density in phase space. A physical interpreta-
tion of the MVSD is provided by expressing the vector and
axial-vector components of the Wigner function in terms of
Fðx; pÞ. In an inhomogeneous system, the magnetization
current and the OAM contained in an inhomogeneous
momentum distribution result in nontrivial Lorentz-
transformation properties for Fðx; pÞ: in addition to the
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ordinaryWigner rotation,Fðx; pÞ undergoes amatrix-valued
shift Δμ

u0u in space-time. This term ensures that the axial-
vector component, and in the collisionless case, also the
vector component of the Wigner function transform in a
Lorentz-covariant manner. Including collisions, the vector
component requires an additional contribution to preserve
Lorentz covariance. Assuming the existence of a ū-frame
where spin is a collisional invariant, and using the Lorentz
transformation properties of the MVSD, we further con-
structed a manifestly covariant Boltzmann equation includ-
ing nonlocal terms, which give rise to spin-orbit coupling
during collisions. In the ū–frame, we derive a local-
equilibrium solution for Fðx; pÞ and for the axial-vector
component Aμ. The Lorentz-covariant Boltzmann equation
derived in this work provides a solid foundation for studying
spin dynamics in heavy-ion collisions and, ultimately, the
long-sought means to solve the sign problem of the longi-
tudinal polarization.
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