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In this paper, we perform partial wave decomposition on coupled-channel scattering amplitudes,
J=ψJ=ψ-J=ψψð2SÞ-J=ψψð3770Þ, to study the resonance appears in these processes. Effective Lagrangians
are used to describe the interactions of four charmed vector mesons, and the scattering amplitudes are
calculated up to the next-to-leading order. Partial wave projections are performed, and unitarization is
implemented by Padé approximation. Then we fit the amplitudes to the J=ψJ=ψ invariant mass spectra
measured by LHCb and determine the unknown couplings. The pole parameters of the Xð6900Þ are
extracted asM ¼ 6861.0þ6.3

−8.8 MeV and Γ ¼ 129.0þ5.6
−3.4 MeV. Our analysis implies that its quantum number

prefers to be 0þþ. The pole counting rule and phase shifts show that it is a normal Breit-Wigner resonance
and, hence, should be a compact tetraquark.

DOI: 10.1103/PhysRevD.106.L111502

I. INTRODUCTION

Searching for multiquark states plays an important role in
understanding QCD. Once its existence is confirmed, the
inner structure of hadrons would be changed: They can be
composed of not only the traditional components, q̄q for
meson and qqq for baryon as suggested by the quark model
[1–3], but also q̄ q̄ qq and q̄qqqq, etc. For some recent
reviews on this topic, we refer to Refs. [4–7]. In the past
decade, some hidden-charm resonances were discovered in
the spectra of J=ψπ and/or J=ψp, e.g., Zc states by BESIII
[8] and Belle [9] and Pc states by LHCb [10,11]. These may
start a new era of particle physics, as the resonances
mentioned above contain at least four or five quark compo-
nents. Very recently, big progress in this field has been made
by LHCb again, where a fully heavy tetraquark candidate
was found [12]. This narrow structure near 6900 MeV=c2,
labeled as Xð6900Þ, is found in J=ψJ=ψ invariant mass
spectra with statistical significance of the signal more than
5σ. The mass and width are determined to be either

m½Xð6900Þ� ¼ 6905� 11� 7 MeV=c2;

Γ½Xð6900Þ� ¼ 80� 19� 33 MeV=c2

or

m½Xð6900Þ� ¼ 6886� 11� 11 MeV=c2;

Γ½Xð6900Þ� ¼ 168� 33� 69 MeV=c2;

with different treatments on the contribution of nonresonant
single-parton scattering continuum [12]. This fueled further
interests of the community; see, e.g., Refs. [13–22]. Several
natural following questions would be: What is the quantum
number of this state, and what is the structure? These are the
critical concerns of our paper.
One needs partial wave decomposition to extract the

information and the quantum number of the resonance
[23,24]. Furthermore, phase shifts help study hadronic
scattering as well as resonances appearing in the inter-
mediate states [25]. In another aspect, the pole counting
rule [32,33] helps to distinguish the inner structure of
resonances: molecule or Breit-Wigner-type resonance.
Combining these methods, we can comprehensively ana-
lyze the property of the Xð6900Þ.

II. FORMALISM

To study the Xð6900Þ, we focus on the energy
region from 2MJ=ψ to 7200 MeV. In our analysis, we
consider the triple-channel scatterings J=ψJ=ψ-J=
ψψð2SÞ-J=ψψð3770Þ, as the thresholds of J=ψψð2SÞ
and J=ψψð3770Þ are the closest to the resonant structure
around 6900 MeV. As a comparison, we also consider
coupled-channel scatterings J=ψJ=ψ-J=ψψð2SÞ. The
interactions of four heavier vectors, e.g., ψð2SÞ×
ψð2SÞψð3770Þψð3770Þ, are ignored, as the thresholds of
ψð2SÞψð2SÞ and ψð3770Þψð3770Þ are much heavier. The
ηcηc and hchc channels are suppressed by heavy quark spin
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symmetry (HQSS) and are neglected [13,34], too. The
effective Lagrangians of interactions are

L ¼ c1VμVαVμVα þ c2VμVαVμV 0α þ c3VμV 0
αVμV 0α

þ c4VμV 0μVαV 0α þ c5VμVαVμV 00α þ c6VμV 00
αVμV 00α

þ c7VμV 00μVαV 00α þ c8VμV 0
αVμV 00α þ c9VμV 0μVαV 00α;

ð1Þ

where V, V 0, and V 00 represent for J=ψ, ψð2SÞ, and
ψð3770Þ, respectively. It satisfies the discrete sym-
metries C, P, and T. These effective Lagrangians are
indeed the same as the leading-order (LO) Lagrangians
constructed from HQSS [35]. For example, one has
LLO
HQSS ¼ g1hJJ̄JJ̄i ¼ 2NCg1VμVαVμVα. The higher-order

Lagrangians will be suppressed by 1=mQ [36].
With Eq. (1), we calculate the scattering amplitudes up to

next-to-leading order (NLO) [37]; see Fig. 1. The scattering
amplitudes Tij can be expressed as

Tij ¼ Fij
ðaÞðε1 · ε2Þðε�3 · ε�4Þ þ Fij

ðbÞðε1 · ε�3Þðε2 · ε�4Þ
þ Fij

ðcÞðε1 · ε�4Þðε2 · ε�3Þ; ð2Þ

where the superscripts i and j are channel labels, with the
numbers 1, 2, and 3 specified as J=ψJ=ψ , J=ψψð2SÞ, and
J=ψψð3770Þ, respectively. The subscripts 1, 2, 3, and 4 of
the polarization vectors are labels of mesons. The sub-
scripts (a, b, and c) are used to tag form factors related to
different polarization structures.

To clarify the quantum number of the Xð6900Þ, partial
wave projections are needed. The partial wave amplitudes
can be obtained via the decomposition of helicity ampli-
tudes [38]:

TJ;ij
μ1μ2;μ3μ4ðsÞ ¼

1

32πN

Z
1

−1
Tij
μ1μ2;μ3μ4ðs; zsÞdJμμ0 ðθsÞdzs; ð3Þ

where s is the Mandelstam variable, s ¼ ðp1 þ p2Þ2. θs is
the scattering angle in the center of mass frame (c.m.f.) in
the s channel, and zs ¼ cos θs. μ ¼ μ1 − μ2 and μ0 ¼ μ3 −
μ4 are the initial and final states’ helicity, respectively.
dJμμ0ðθsÞ is the standard Wigner function for rotation. N is
the normalization factor caused by the property of identical
particles, with N ¼ 2 for T11 amplitude, N ¼ ffiffiffi

2
p

for T12;13

amplitudes, and N ¼ 1 for others. For each angular
momentum J, parity and time reversal conservation can
reduce the number of independent helicity amplitudes.
With parity conservation, one has 41 independent helicity
amplitudes for TJ;ij

μ1μ2;μ3μ4ðsÞ. With time reversal, the elastic
scattering amplitudes will be reduced again, resulting in 25
independent ones. Furthermore, one needs to transfer the
amplitudes from jJMμ1μ2i representation into the jJMLSi
one [38]:

Tμ1μ2;μ3μ4ðs; zsÞ ¼ 16πN
X
J

ð2J þ 1ÞdJμμ0 ðθsÞ

X
LS;L0S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Lþ 1Þð2L0 þ 1Þp
2J þ 1

hLS0μjJμihJμ0jL0S00μ0i

hs1s2μ1;−μ2jSμihS0μ0js3s4μ3;−μ4iTJ
LS;L0S0 : ð4Þ

The Clebsch-Gordan coefficients can be found in PDG [39].
For J=ψJ=ψ system, the eigenvalues of charge

conjugation and parity transformations are given by
C ¼ ð−1ÞLþS ¼ þ, P ¼ ð−1ÞL. Higher partial waves can
be ignored, and only the lowest ones with L ¼ 0, 1 are
considered. Therefore, five partial waves are left: S waves,
0þþ and 2þþ; and P waves, 0−þ, 1−þ, and 2−þ [40]. See
Table I. Notice that there is no coupling between partial
waves with different orbit momentum (for example,
1S0 − 5D0). The partial wave amplitudes are given as

FIG. 1. Feynman diagrams of the scattering amplitudes.
The intermediate states include J=ψJ=ψ , J=ψψð2SÞ, and
J=ψψð3770Þ.

TABLE I. Quantum number JPC of J=ψJ=ψ partial waves. The
number in the bracket is in the form of 2Sþ1LJ . The � � � denotes
other possible quantum numbers of J=ψψð2SÞ and J=ψψð3770Þ
waves that are neglected as they are forbidden in the J=ψJ=ψ
system.

L S ¼ 0 S ¼ 1 S ¼ 2

0 0þþð1S0Þ � � � 2þþð5S2Þ
1 � � � 0−þð3P0Þ1−þð3P1Þ2−þð3P2Þ � � �
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Tij
1S0
ðsÞ ¼ 2

3
T0;ij
þþþþðsÞ þ

2

3
T0;ij
þþ−−ðsÞ −

2

3
T0;ij
þþ00ðsÞ

−
2

3
T0;ij
00þþðsÞ þ

1

3
T0;ij
0000ðsÞ;

Tii
1S0
ðsÞ ¼ 2

3
T0;ii
þþþþðsÞ þ

2

3
T0;ii
þþ−−ðsÞ −

4

3
T0;ii
þþ00ðsÞ

þ 1

3
T0;ii
0000ðsÞ; ð5Þ

where we give only the expressions of 1S0 waves for
simplicity. As can be checked, the partial wave scat-
tering amplitudes obtained from Lagrangians of Eq. (1)
can produce the correct threshold behavior TJ

LS;L0S0 ∝
pL
cmp0L0

cm, with pcm and p0
cm the modulus of the three

momenta for initial and final states, respectively, in c.m.f.,
e.g., pcm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðma þmbÞ2Þðs − ðma −mbÞ2Þ

p
=2. For

instance, one has T11;LO
3P1

ðsÞ ¼ −c1ðs − 4m2
VÞ=ð12πm2

VÞ
and T12;LO

3P1
ðsÞ ¼ −c2ðmV þmV 0 Þpcmp0

cm=ð12
ffiffiffi
2

p
πm2

VmV 0 Þ.
The unitarity of the partial wave amplitudes in terms of

the jJMLSi representation is given as [38,41,42]

hL0S0jTJjLSi − hL0S0jTJ†jLSi

¼ i
4jp⃗00j
E00
cm

X
L00S00

hL0S0jTJ†jL00S00ihL00S00jTJjLSi; ð6Þ

where the quantum number J and M in the kets has been
ignored for simplicity. The summation symbol in Eq. (6) can
be removed, since L ≤ 1. On the other hand, the coupled-
channel scatterings of J=ψJ=ψ-J=ψψð2SÞ-J=ψψð3770Þ are
included, and, finally, the unitarity relation is given as

ImTij
JLS ¼

Xa
k¼1

Tik
JLSρkT

kj�
JLS; ð7Þ

where ρk is the phase space factor for the kth channel
ρkðsÞ ¼ 2jp⃗kj=

ffiffiffi
s

p
[43]. In the summation symbol, a ¼ 2

is for the coupled-channel case and a ¼ 3 for the triple-
channel case. The scattering amplitudes given in Eq. (5)
are calculated in the spirit of perturbation theory and
work only in the low-energy region. Padé approximation
[33,44,45] is applied to extend the amplitudes to a
higher-energy region concerning for unitarity:

T ¼ TLO · ½TLO − TNLO�−1 · TLO; ð8Þ

where it is written in matrix form. Equation (8) can
restore the perturbation amplitudes up to NLO in the
low-energy region. Similar approaches, such as the
inverse amplitude method, have been applied success-
fully in unitarizing chiral amplitudes [46–48]. Three
partial wave scattering amplitudes, 1S0, 5S2, and 3P1, are
unitarized with this approach. For the partial wave

amplitudes of 3P0 (0−þ) and 3P2 (2−þ), the tree diagrams
vanished, and their loop corrections are small. Hence,
we do not perform unitarization on them but use the
perturbative amplitudes instead. With these five partial
waves, one can extract the pole information and deter-
mine the quantum number of the resonance. See dis-
cussions below.

III. FIT RESULTS AND DISCUSSION

We fit the partial wave amplitudes to the J=ψJ=ψ
invariant mass spectra, and the couplings of the effective
Lagrangians can be fixed. To specify the contribution to
the invariant mass spectra of each channel [Ti1ðsÞ], we
simply assume that the ith channel contributes a ratio αi,
with the normalization

P
i α

2
i ≡ 1. One then has such a

formula to fit the J=ψJ=ψ invariant mass spectra [49]

d events
d

ffiffiffi
s

p ¼ ÑpcmðsÞ
X

μ1μ2μ3μ4

Z
1

−1
dzs

����
Xa
i¼1

αiTi1
μ1μ2μ3μ4ðs; zsÞ

����
2

;

ð9Þ

where the superscripts i and 1 are channel labels. Ñ is a
normalization factor, with other factors such as the
integration on the azimuthal angle ϕ absorbed.
Though Ñ is correlated with αkðsÞ, and they will be
dependent on each other in the fitting procedure, this
problem has been solved due to the normalization,P

i α
2
i ≡ 1. With Eq. (5), the integration on the square

of the helicity amplitudes can be expressed by partial
wave amplitudes:

X
μ1μ2μ3μ4

Z
1

−1

����
Xa
i¼1

αiTi1
μ1μ2μ3μ4ðs; zsÞ

����
2

dzs

¼ 512π2½jF1
1S0
ðsÞj2 þ 5jF1

5S2
ðsÞj2 þ jF1

3P0
ðsÞj2

þ 3jF1
3P1
ðsÞj2 þ 5jF1

3P2
ðsÞj2�; ð10Þ

where F1
JLSðsÞ ¼

P
a
i¼1 αiNiTi1

JLSðsÞ, with Ni given in
Eq. (3). This amplitude is consistent with the Au-
Morgan-Pennington method [23,50,51], where contribu-
tions of the left-hand cut and distant right-hand cut are
absorbed into αi concerning for coupled-channel uni-
tarity and final state interactions. At last, we consider
both coupled-channel scattering J=ψJ=ψ-J=ψψð2SÞ (fit I)
and triple-channel scatterings J=ψJ=ψ-J=ψψð2SÞ-J=
ψψð3770Þ (fit II). Indeed, it is found that the third channel
J=ψψð3770Þ contributes only a bit. See discussions below.
The input parameters, such as the masses of the

particles, are taken from PDG [39], which are
given as mJ=ψ ¼ 3096.9 MeV, mψð2SÞ ¼ 3686.1 MeV,
and mψð3770Þ ¼ 3770.7 MeV. The renormalization scale of
one-loop amplitudes is taken as μ ¼ 1 GeV. The other
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parameters, the couplings of the effective Lagrangians
and the normalization factor, are fixed by fits, with the
MINUIT procedure [52]. See Table II. The errors of the
parameters are mainly from bootstrap [53], where they
are counted by varying the experimental data within its
uncertainty by multiplying a normal distribution func-
tion. The uncertainties from MINUIT are much smaller
and thus ignored.
As presented in Table II, the χ2d:o:f: of fits I and II are

similar to each other, while the solution of the triple
channels fits a bit better in the energy region from 6400
to 6800 MeV; see Fig. 2. This is not surprising, as fit II
includes more contributions from different channels.

Nevertheless, both solutions fit the data around the
Xð6900Þ rather well.
The individual contribution of each partial wave of fit II

is shown in Fig. 3, and that of fit I is quite similar, and we
do not plot it here. As can be seen, the 1S0 wave contributes
a resonant structure around 6900 MeV, and the 5S2 wave
contributes a smooth background in the whole energy
region. This suggests that the Xð6900Þ is more likely to
be a 1S0 (0þþ) state. As expected, the 3P1 wave contributes
a little background. The other two waves, 3P0 and 3P2, are
relatively small and can be ignored.
To study the property of the Xð6900Þ more carefully,

we extract out pole locations, i.e., the masses and widths
of the resonance from the scattering amplitudes. First,
the amplitudes are continued into the complex-s plane.
Then the poles are searched in each partial wave. The
pole information for coupled and triple channels is
shown in Tables III and IV, respectively. In both fits,
only one resonance is found [54]. For the coupled-
channel case, fit I, two poles are found in Riemann
sheet (RS) RS-II and RS-III, with the quantum number
0þþ. The pole in RS-III is the one closest to the
physical sheet, and the location is given as M ¼
6884.2þ8.2

−4.0 MeV and Γ ¼ 58.2þ3.0
−0.2 MeV. Because of

the pole counting rule [32,33], a pair of poles in RS-
II and RS-III suggest that the Xð6900Þ should be a
Breit-Wigner-type particle. Meanwhile, this resonance
contains at least four quarks, ccc̄ c̄, and, hence, it is

TABLE II. Parameters of our solution. Unit of the normaliza-
tion factor Ñ is 10−4 MeV−2. The uncertainties of the parameters
are taken from bootstrap.

Parameter Fit I Fit II

c1 −0.1232þ0.0001
−0.0001 −0.1263þ0.0007

−0.0002
c2 −0.5359þ0.0021

−0.0001 −0.5859þ0.0001
−0.0001

c3 −0.3250þ0.0171
−0.0001 0.1607þ0.0024

−0.0013
c4 −0.6277þ0.0234

−0.0002 −1.0326þ0.0055
−0.0022

c5 � � � −0.0707þ0.0001
−0.0001

c6 � � � −0.2808þ0.0006
−0.0003

c7 � � � 0.5998þ0.0007
−0.0003

c8 � � � 0.2361þ0.0003
−0.0001

c9 � � � −0.2162þ0.0007
−0.0001

Ñ 1.2589þ0.6284
−0.0850 3.2546þ1.5452

−0.2999
α1 0.3691þ0.0104

−0.0052 0.3307þ0.0529
−0.0254

α2 −0.9294þ0.0089
−0.0022 −0.7711þ0.1072

−0.0511
α3 � � � −0.5441þ0.1085

−0.0633
χ2d:o:f: 1.29 1.28

FIG. 2. Fit to the invariant mass spectra of LHCb [12]. The
dashed blue line is for fit I, and the solid black line is for fit II. The
cyan band is the uncertainty of fit II estimated from the bootstrap
method within 1σ.

FIG. 3. Individual contribution of each partial wave for the
triple-channel case. The solid blue, dashed brown, dash-dotted
olive, dotted gray, and solid pink lines are for 1S0, 5S2, 3P1, 3P0,
and 3P2, respectively.

TABLE III. Pole locations for fit I.

RS Pole location (MeV) jg1j (MeV) jg2j (MeV)

II (−þ) 6886.8þ8.3
−4.6 -i17.6

þ2.5
−0.3 998.6þ43.1

−4.2 688.1þ6.9
−2.1

III (−−) 6884.2þ8.2
−4.0 -i29.1

þ1.5
−0.1 992.0þ20.0

−4.2 680.9þ4.5
−1.9
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likely to be a compact tetraquark. Its couplings to the
J=ψJ=ψ , J=ψψð2SÞ channels are given in Table III. The
magnitudes of g1 and g2 are large and in the same order.
It implies that both channels J=ψJ=ψ and J=ψψð2SÞ
couple strongly to the Xð6900Þ.
Similarly, in the triple-channel case, we find four poles

in RS-II, RS-III, RS-IV, and RS-VII, with the quantum
number 0þþ. See Table III. The magnitudes of the
residues, g3, are much smaller than that of g1 and g2.
This confirms that the J=ψψð3770Þ channel contri-
butes only a bit to the Xð6900Þ and can be ignored
somehow. The pole closest to the physical sheet locates
in RS-IV, and it gives M ¼ 6861.0þ6.3

−8.8 MeV and
Γ ¼ 129.0þ5.6

−3.4 MeV, while the other three accompanying
shadow poles are in RS-II, RS-III, and RS-VII, and they
are not far away. According to the pole counting rule of
triple channels [32,45], it again should be a Breit-Wigner
particle, that is, a compact tetraquark.
We produce the phase shifts of δ1 (J=ψJ=ψ ) of each

partial wave; see Fig. 4. As can be seen, the phase shift
of the 1S0 wave is smooth and looks very likely to be
produced by a normal Breit-Wigner resonance. Others are
small. Specifically, that of the 5S2 wave is negative and
quite flat, and that of the 3P1 wave is positive and also
contributes a small background, while the phase shifts of
the other two partial waves are even more minor.
Correspondingly, we do not find any poles in these
partial waves. It again supports the Xð6900Þ to be a
compact tetraquark.

IV. SUMMARY

In this paper, coupled-channel scatterings of J=ψJ=
ψ-J=ψψð2SÞ and J=ψJ=ψ-J=ψψð2SÞ-J=ψψð3770Þ are
studied. The lowest-order effective Lagrangians are con-
structed, and the scattering amplitudes are calculated up to
NLO. Partial wave decomposition is performed, and Padé
approximation is applied to restore unitarity. By fitting to
the J=ψJ=ψ invariant mass spectra measured by LHCb, we
fix the couplings and extract out pole information of the
Xð6900Þ: M ¼ 6884.2þ8.2

−4.0 MeV and Γ ¼ 58.2þ3.0
−0.2 MeV

for the coupled-channel case and M ¼ 6861.0þ6.3
−8.8 MeV

and Γ ¼ 129.0þ5.6
−3.4 MeV for the triple-channel case. Its

quantum number is likely to be 0þþ. By the pole counting
rule and analysis on phase shifts of J=ψJ=ψ scattering
amplitudes, it is realized that theXð6900Þ should be a Breit-
Wigner-type particle (a compact tetraquark). It would be
rather helpful if future experiments could measure the
relevant angular distributions to refine this analysis.

ACKNOWLEDGMENTS

We thank Professors M. Shi and W. Shan for helpful
discussions. This work is supported by Joint Large
Scale Scientific Facility Funds of the National Natural
Science Foundation of China (NSFC) and ChineseAcademy
of Sciences (CAS) under Contract No. U1932110,
NSFC Grants No. 11805059, No. 11675051, and
No. 12061141006.

[1] M. Gell-Mann, Phys. Lett. 8, 214 (1964).
[2] G. Zweig, Report No. CERN-TH-401.
[3] G. Zweig, Report No. CERN-TH-412.
[4] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao,

and B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018).

[5] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P.
Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, Phys. Rep.
873, 1 (2020).

[6] D.-L. Yao, L.-Y. Dai, H.-Q. Zheng, and Z.-Y. Zhou, Rep.
Prog. Phys. 84, 076201 (2021).

FIG. 4. Phase shifts of each partial wave of fit II. The one of fit I
is similar, and we do not show it.

TABLE IV. Pole locations for fit II.

RS
Pole location

(MeV) jg1j (MeV) jg2j (MeV) jg3j (MeV)

II 6872.7þ6.0
−8.6 1352.7þ28.1

−11.7 946.5þ18.8
−8.0 14.4þ0.9

−0.3ð−þþÞ -i46.5þ2.1
−1.0

III 6861.0þ6.3
−8.8 1326.2þ24.7

−11.3 917.9þ15.1
−7.9 16.0þ0.8

−0.4ð− −þÞ -i64.5þ2.8
−1.7

IV 6861.0þ6.3
−8.8 1322.9þ26.2

−14.6 915.6þ16.9
−9.3 16.1þ0.8

−0.4ð− − −Þ -i64.5þ2.8
−1.7

VII 6872.7þ6.0
−8.6 1349.7þ29.1

−10.8 944.4þ19.9
−7.6 14.5þ0.9

−0.3ð−þ −Þ -i46.5þ2.1
−1.0

NATURE OF THE Xð6900Þ IN PARTIAL WAVE … PHYS. REV. D 106, L111502 (2022)

L111502-5

https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1088/1361-6633/abfa6f
https://doi.org/10.1088/1361-6633/abfa6f


[7] H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu,
arXiv:2204.02649 [Rep. Prog. Phys. (to be published)].

[8] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
110, 252001 (2013).

[9] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110,
252002 (2013); 111, 019901(E) (2013).

[10] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,
072001 (2015).

[11] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,
222001 (2019).

[12] R. Aaij et al. (LHCb Collaboration), Sci. Bull. 65, 1983
(2020).

[13] X.-K. Dong, V. Baru, F.-K. Guo, C. Hanhart, and A.
Nefediev, Phys. Rev. Lett. 126, 132001 (2021); 127,
119901(E) (2021).

[14] J.-Z. Wang, D.-Y. Chen, X. Liu, and T. Matsuki, Phys. Rev.
D 103, L071503 (2021).

[15] C. Gong, M.-C. Du, Q. Zhao, X.-H. Zhong, and B. Zhou,
Phys. Lett. B 824, 136794 (2022).

[16] Q.-F. Cao, H. Chen, H.-R. Qi, and H.-Q. Zheng, Chin. Phys.
C 45, 103102 (2021).

[17] Z.-H. Guo and J. A. Oller, Phys. Rev. D 103, 034024 (2021).
[18] Z.-R. Liang, X.-Y. Wu, and D.-L. Yao, Phys. Rev. D 104,

034034 (2021).
[19] X.-Y. Wang, Q.-Y. Lin, H. Xu, Y.-P. Xie, Y. Huang, and X.

Chen, Phys. Rev. D 102, 116014 (2020).
[20] H.-W. Ke, X. Han, X.-H. Liu, and Y.-L. Shi, Eur. Phys. J. C

81, 427 (2021).
[21] H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Sci. Bull. 65,

1994 (2020).
[22] J.-Z. Wang and X. Liu, Phys. Rev. D 106, 054015 (2022).
[23] L.-Y. Dai and M. R. Pennington, Phys. Lett. B 736, 11

(2014).
[24] L.-Y. Dai and M. R. Pennington, Phys. Rev. D 90, 036004

(2014).
[25] For instance, in the ππ; πK scatterings, the phase shifts

[26,27] help to confirm the existence of the light scalars σ, κ
[28–31].

[26] B. Hyams et al., Nucl. Phys. B64, 134 (1973).
[27] D. Aston et al., Nucl. Phys. B296, 493 (1988).
[28] S. Ishida, M. Ishida, H. Takahashi, T. Ishida, K. Takamatsu,

and T. Tsuru, Prog. Theor. Phys. 95, 745 (1996).
[29] S. Ishida, M. Ishida, T. Ishida, K. Takamatsu, and T. Tsuru,

Prog. Theor. Phys. 98, 621 (1997).
[30] Z. Xiao and H. Q. Zheng, Nucl. Phys. A695, 273 (2001).
[31] Z. Y. Zhou, G. Y. Qin, P. Zhang, Z. Xiao, H. Q. Zheng, and

N. Wu, J. High Energy Phys. 02 (2005) 043.
[32] D. Morgan, Nucl. Phys. A543, 632 (1992).
[33] L. Y. Dai, X. G. Wang, and H. Q. Zheng, Commun. Theor.

Phys. 57, 841 (2012).
[34] C. Gong, M.-C. Du, and Q. Zhao, Phys. Rev. D 106, 054011

(2022).

[35] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F.
Feruglio, and G. Nardulli, Phys. Rep. 281, 145 (1997).

[36] Higher-order Lagrangians with derivatives will be sup-
pressed by HQSS, too. The momentum coming from
derivatives will be carried mainly by the velocity
v ¼ ð1; 0⃗Þ, and one has v · Vð0;00Þ ¼ 0.

[37] Notice that the NLO results would supply not only higher -
order energy-dependent potentials, but also the left-hand cut
contributions.

[38] A. D. Martin and T. D. Spearman, Elementary Partical
Theory (North-Holland, Amsterdam, 1970), p. 70–97206.

[39] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

[40] Higher-order Lagrangians with derivatives could contribute
to the higher partial waves. However, they are suppressed by
HQSS. Furthermore, a reliable description of them relies on
the angular distributions, and it is expected that future
experiments can supply more measurements to ensure a
more detailed analysis.

[41] S. U. Chung, Report No. CERN-71-08, 10.5170/CERN-
1971-008.

[42] J. A. Oller, Prog. Part. Nucl. Phys. 110, 103728 (2020).
[43] S.-Q. Kuang, L.-Y. Dai, X.-W. Kang, and D.-L. Yao, Eur.

Phys. J. C 80, 433 (2020).
[44] T. N. Truong, Phys. Rev. Lett. 61, 2526 (1988).
[45] L.-Y. Dai, X.-G. Wang, and H.-Q. Zheng, Commun. Theor.

Phys. 58, 410 (2012).
[46] A. Dobado and J. R. Pelaez, Phys. Rev. D 56, 3057

(1997).
[47] J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80,

3452 (1998).
[48] A. Gomez Nicola and J. R. Pelaez, Phys. Rev. D 65, 054009

(2002).
[49] L.-Y. Dai, X. Sun, X.-W. Kang, A. P. Szczepaniak, and J.-S.

Yu, Phys. Rev. D 105, L051507 (2022).
[50] K. Au, D. Morgan, and M. Pennington, Phys. Rev. D 35,

1633 (1987).
[51] L.-Y. Dai and M. R. Pennington, Phys. Rev. D 94, 116021

(2016).
[52] F. James and M. Roos, Comput. Phys. Commun. 10, 343

(1975).
[53] B. Efron, Ann. Statist. 7, 1 (1979).
[54] Very recently, another state, Xð6600Þ was found in di-J=ψ

invariant mass spectra by CMS [55]. In contrast, it is not
clear in the 4μ [J=ψJ=ψ and J=ψψð2SÞ] spectra as
measured by ATLAS [56]. Here, the resonant structure
around 6600 MeVof LHCb is not obvious, and, in practice,
we do not find such a resonance; see Fig. 2.

[55] Zhang Jingqing and Yi Kai CMS Collaboration, Proc. Sci.
ICHEP2022 (2022) 775.

[56] Xu Yue ATLAS Collaboration, ATLAS results on exotic
hadronic resonances, 2022, arXiv:2209.12173.

ZHOU, GUO, KUANG, YANG, and DAI PHYS. REV. D 106, L111502 (2022)

L111502-6

https://arXiv.org/abs/2204.02649
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.111.019901
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1016/j.scib.2020.08.032
https://doi.org/10.1016/j.scib.2020.08.032
https://doi.org/10.1103/PhysRevLett.126.132001
https://doi.org/10.1103/PhysRevLett.127.119901
https://doi.org/10.1103/PhysRevLett.127.119901
https://doi.org/10.1103/PhysRevD.103.L071503
https://doi.org/10.1103/PhysRevD.103.L071503
https://doi.org/10.1016/j.physletb.2021.136794
https://doi.org/10.1088/1674-1137/ac0ee5
https://doi.org/10.1088/1674-1137/ac0ee5
https://doi.org/10.1103/PhysRevD.103.034024
https://doi.org/10.1103/PhysRevD.104.034034
https://doi.org/10.1103/PhysRevD.104.034034
https://doi.org/10.1103/PhysRevD.102.116014
https://doi.org/10.1140/epjc/s10052-021-09229-y
https://doi.org/10.1140/epjc/s10052-021-09229-y
https://doi.org/10.1016/j.scib.2020.08.038
https://doi.org/10.1016/j.scib.2020.08.038
https://doi.org/10.1103/PhysRevD.106.054015
https://doi.org/10.1016/j.physletb.2014.07.005
https://doi.org/10.1016/j.physletb.2014.07.005
https://doi.org/10.1103/PhysRevD.90.036004
https://doi.org/10.1103/PhysRevD.90.036004
https://doi.org/10.1016/0550-3213(73)90618-4
https://doi.org/10.1016/0550-3213(88)90028-4
https://doi.org/10.1143/PTP.95.745
https://doi.org/10.1143/PTP.98.621
https://doi.org/10.1016/S0375-9474(01)01100-9
https://doi.org/10.1088/1126-6708/2005/02/043
https://doi.org/10.1016/0375-9474(92)90550-4
https://doi.org/10.1088/0253-6102/57/5/15
https://doi.org/10.1088/0253-6102/57/5/15
https://doi.org/10.1103/PhysRevD.106.054011
https://doi.org/10.1103/PhysRevD.106.054011
https://doi.org/10.1016/S0370-1573(96)00027-0
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.5170/CERN-1971-008
https://doi.org/10.5170/CERN-1971-008
https://doi.org/10.1016/j.ppnp.2019.103728
https://doi.org/10.1140/epjc/s10052-020-8008-5
https://doi.org/10.1140/epjc/s10052-020-8008-5
https://doi.org/10.1103/PhysRevLett.61.2526
https://doi.org/10.1088/0253-6102/58/3/15
https://doi.org/10.1088/0253-6102/58/3/15
https://doi.org/10.1103/PhysRevD.56.3057
https://doi.org/10.1103/PhysRevD.56.3057
https://doi.org/10.1103/PhysRevLett.80.3452
https://doi.org/10.1103/PhysRevLett.80.3452
https://doi.org/10.1103/PhysRevD.65.054009
https://doi.org/10.1103/PhysRevD.65.054009
https://doi.org/10.1103/PhysRevD.105.L051507
https://doi.org/10.1103/PhysRevD.35.1633
https://doi.org/10.1103/PhysRevD.35.1633
https://doi.org/10.1103/PhysRevD.94.116021
https://doi.org/10.1103/PhysRevD.94.116021
https://doi.org/10.1016/0010-4655(75)90039-9
https://doi.org/10.1016/0010-4655(75)90039-9
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.22323/1.414.0775
https://doi.org/10.22323/1.414.0775
https://arXiv.org/abs/2209.12173

