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We exhibit a mechanism that dynamically adjusts the cosmological constant toward 0þ. The adjustment
is quantum mechanical, discharging the cosmological constant in random discrete steps. It renders de Sitter
space unstable and triggers its decay toward Minkowski. Since the instability dynamically stops at Λ ¼ 0,
the evolution favors the terminal Minkowski space without a need for anthropics. The mechanism works for
any quantum field theory coupled to gravity.
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Following the discussion [1,2] generalizing general
relativity (GR) [3,4] to a theory of gravity on the multi-
verse, in this Letter we concentrate on the cosmological
constant adjustment to zero. We focus on a greatly
simplified limit of the theory of [1,2], with fixed Planck
scale.1 We allow dynamical variation of only the cosmo-
logical constant counterterm, mediated by a system of
4-forms and their membrane sources. This theory general-
izes unimodular formulation of GR [5–13] by including
charged membranes and corresponding boundary terms,
which enforce local general covariance. Since the Planck
scale is fixed, we can couple any quantum field theory
(QFT) of matter to gravity minimally, as there is no chance
for ghosts to arise in this limit [1,2]. This suffices to ensure
de Sitter space is unstable to membrane nucleations, which
completely cancel the cosmological constant to 0þ. The
huge numerical disparity between the QFT cutoff and the
observation is irrelevant. It decays away.
This is how it works. Sans membranes, the cosmological

constant is fixed, albeit completely arbitrary. It is not
correlated to the local QFT scales in a calculable way
[5–13]; it is set by initial conditions. However, with
membranes, which source 4-forms, and by extension the
cosmological constant, quantum discharge changes the
physical cosmological constant Λ [14,15]. In a nested
set of expanding bubbles bounded by membranes, Λ scans
a wide range of values, which change randomly, both

increasing and decreasing relative to the exterior. This is a
quantum random walk [1,2], and the variation of Λ
essentially defines a toy model of eternal inflation [16].
On average, Λ decreases inside a sequence of membranes.
To make sure that the range of Λ comes arbitrarily close

to zero without fine tuning, we invoke a system of two
4-forms that are degenerate on shell with Λ. We take their
membrane charges such that their ratio is an irrational
number. In this case the spectrum of values of Λ is a very
fine discretuum [17]. As noted, the general dynamical drift
is to decrease Λ. With the specific choice of membrane
charge to tension ratio,

jqjj ¼
2M4

PljQjj
3T 2

j
< 1; ð1Þ

the only processes that are kinematically allowed for the
discharge favor the terminal value Λ → 0þ. Near it, the
discharges automatically damp down because the discharge

rate Γ ≃ exp
�
− 24π2M4

Pl
Λ

�
has an essential singularity at Λ →

0þ [18]. This solves the “classic” cosmological constant
problem [19–21] (sometimes also called the “old” cosmo-
logical constant problem).
The theory avoids the empty universe problem of [22]

and admits inflation. The empty universe problem of [22]
arose because the dynamical adjustment mechanism
devised there employed a scalar field in permanent slow
roll on an almost-linear potential, with obstacles to classical
motion appearing only near Λ → 0. To get there, the field
had to dominate the cosmic contents eternally, supporting
inflation all the way to almost Minkowski space. This
meant that there was no reheating and no matter was
produced in the terminal geometry.
Here we avoid this problem since the relaxation of Λ

involves large successive jumps, which come from the
chargesQj being large, and the tiny terminal Λ comes from
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1For example, by decoupling the membranes of [1,2] that
might change it.
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the irrational ratio of charges. As a result, the cosmological
constant does not always dominate, but just sometimes
[23]. The relaxation process is not a slow roll, but a
quantum randomwalk. Thus, it is perfectly possible that the
Universe selects the terminal vacuum well before the end of
the last stage of inflation, which solves the usual cosmo-
logical problems and reheats the Universe. Therefore a
“normal” late cosmology can be embedded in our frame-
work. The cosmological constant problem reduces to “why
now?,” for which the answers might involve late time
physics. We leave the questions on how to embed inflation
and model late acceleration for later.
Our action is a simplified version of the theory in [1,2],

given explicitly in terms of the dual magnetic variables,

S ¼
Z

d4x

� ffiffiffi
g

p �
M2

Pl

2
R −M2

Plðλþ λ̂Þ − LQFT

�

−
λ

3
ϵμνλσ∂μAνλσ −

λ̂

3
ϵμνλσ∂μÂνλσ

�

þ Sboundary − T A

Z
d3ξ

ffiffiffi
γ

p
A −QA

Z
A

− T Â

Z
d3ξ

ffiffiffi
γ

p
Â −QÂ

Z
Â: ð2Þ

Sboundary is a generalization of the Israel-Gibbons-Hawking
boundary action [24–26] to include boundary terms for the
two gauge sectors [27,28],

Sboundary ¼
Z

d3ξ

�	
λ

3
ϵαβγAαβγ



þ
	
λ̂

3
ϵαβγÂαβγ


�

−
Z

d3ξ
ffiffiffi
γ

p
M2

Pl½K�; ð3Þ

and ½…� is the jump across a membrane. The charge terms
are

Z
A ¼ 1

6

Z
d3ξAμνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγ; ð4Þ

and likewise for Â. Here T i and Qi are the membrane
tension and charge, while ξα are membrane coordinates and
embedding maps are xμ ¼ xμðξαÞ. The winding direction of
these maps sets the sign of the charge. We will take T i > 0
to exclude negative local energy. Note that the first line of
Eq. (2) is a minute generalization of unimodular formu-
lation of GR [5–13]; our full action (2) generalizes it further
by adding membranes.
Quantum mechanically, the membranes can nucleate in

background fields [14,15]. Hence, these processes change
the distribution of sources and the evolution of bubble
interiors. The classical superselection sectors all mix up.
This induces the evolution in the space of geometries due to
the variation of λ and λ̂. We remind the reader that hereM2

Pl

is fixed. We also note that the charges QA and Q̂A have an
irrational ratio,

QÂ

QA
¼ ω ∈ fIrrational numbersg; ð5Þ

as in the irrational axion proposal [17].
Further note that (2) depends on the flux variables λ and

λ̂ linearly, as opposed quadratically (the latter dependence
being the common case as in [14,15] and follow-up work).
This has crucial importance for ceasing decay of the
cosmological term when it approaches zero. We note that,
even if the higher-order corrections are included, since their
weighing is by MPl, the linear terms remain dominant for
sub-Planckian fluxes and the same behavior as we will
uncover below remains. Finally, the higher-order correc-
tions could come in with different coefficients for the two
flux sectors. This would induce mutually irrational varia-
tion of fluxes even if the actual charge ratio were a rational
number. We will keep this in mind as a possible explanation
of the origin of our framework and for simplicity’s sake
retain only the linear fluxes and irrational ratios below.
Now we can turn to studying the effects of quantum

membrane discharge in the semiclassical limit. This means
that we consider the dynamics described by the action (2) in
Euclidean time, which controls the nucleation processes
and their rates [18,29,30]. As explained in [1,2], we Wick
rotate the action using t ¼ −ix0E, defining the Euclidean
action by iS ¼ −SE and restricting to locally maximally
symmetric backgrounds. Those are the configurations with
local Oð4Þ symmetry that dominate in the semiclassical
limit since they have minimal Euclidean action [18,29,30].
Therefore, we set hLE

QFTi ¼ ΛQFT, with ΛQFT the matter
sector vacuum energy to an arbitrary loop order. The
resulting Euclidean action is

SE ¼
Z

d4xE

� ffiffiffi
g

p �
−
M2

Pl

2
RE þM2

Plðλþ λ̂Þ þΛQFT

�

−
λ

3
ϵμνλσE ∂μAE

νλσ −
λ̂

3
ϵμνλσE ∂μÂ

E
νλσ

�
þ Sboundary

þ T A

Z
d3ξE

ffiffiffi
γ

p
A −

QA

6

Z
d3ξEAE

μνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγE

þ T Â

Z
d3ξE

ffiffiffi
γ

p
Â −

QÂ

6

Z
d3ξEÂ

E
μνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγE :

ð6Þ

From the QFT/gravity couplings, it follows that ΛQFT ¼
M4

UV þ…≡M2
PlH

2
QFT, whereM

4
UV is the QFT UV cutoff

and the ellipsis denotes subleading terms [31,32]. Thus, we
can collect all the terms as Λ ¼ M2

PlðH2
QFT þ λþ λ̂Þ ¼

M2
Plλeff . From here on we drop the index E.
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The membranes serve as boundaries of regions with
Λout=in [where out/in denote exterior (parent) and interior
(offspring) of the membranes, respectively]. Both in and
out have the metrics of the form ds2E ¼ dr2 þ a2ðrÞdΩ3,
where dΩ3 is metric on a unit S3 and a solves ða0aÞ2 − 1

a2 ¼
−Λ=3M2

Pl, and the prime is the r derivative. On a
membrane, the jump of the metric is controlled by the
boundary conditions, which impose that a, A, and Â are
continuous, and the discontinuities are [1,2]

λout − λin ¼
QA

2
; λ̂out − λ̂in ¼

QÂ

2
;

M2
Pl

�
a0out
a

−
a0in
a

�
¼ −

T A þ T Â

2
: ð7Þ

We compactified notation here by writing the junction
conditions as if A and A membranes were nucleated
simultaneously. Generally, in these equations one takes
either A or Â terms.
Now to compute the membrane nucleation rates, Γ ∼

e−Sbounce [18,29,30], we need to construct the Euclidean
instantons—i.e., a section of the parent and an offspring
geometry glued together along a membrane as an interface.
The bounce action is defined by SðbounceÞ ¼
SðinstantonÞ − SðparentÞ. The instanton taxonomy was
proffered in [14,15] for the theories with 4-form fluxes
screening the cosmological constant [14,15,23,28,33]. A
comprehensive related analysis for the case with linear flux
dependence was given in [1,2]. Here we will merely use
those results.
A key result in [1,2] is that when our Eq. (1) holds,

jqjj < 1, the only transitions that are allowed are one
channel where dS → dS (de Sitter) and one where dS →
AdS (Anti-de Sitter). The reason can be gleaned as follows.
Combining the bulk equation for a0 and the junction
conditions on the membrane for either A or Â membrane
processes, we find after a straightforward computation [1,2]

ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3M2
Pl

s
¼ −

T j

4M2
Pl

ð1 − qjÞa;

ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3M2
Pl

s
¼ T j

4M2
Pl

ð1þ qjÞa: ð8Þ

Here ζi ¼ � designates two possible branches of the square
root of ða0aÞ2 − 1

a2 ¼ −Λ=3M2
Pl, and fixing it is required to

solve the junction conditions (7). It is now straightforward
to check that the Eqs. (8) allow only ðζout; ζinÞ ¼ ð−;þÞ
when both jqjj < 1 and both membrane tensions are
positive. Further inspection shows that the parent geometry
must be dS, whereas the offspring can be either dS or AdS.
So it turns out that the conditions jqjj < 1 and T j > 0 are
extremely restrictive: only two nucleation channels are

available to both membrane systems. The other channels
are either kinematically completely prohibited or are sup-
pressed by infinite bounce action [1,2]. Basically, what
happens is that due to the linear dependence of the junction
conditions (8) on charges—instead of quadratic—other
instantons are forbidden when jqjj < 1 [1,2]. This effect
is actually a consequence of the gravitational vacuum
stabilization found by Coleman and De Luccia [18], which
now happens for all values of the curvature radius due to the
linearity of (8) in Qj. Thus, the main process of interest to
us describing dS → dS transitions is given by the instanton
of Fig. 1. When Λout > Λin, this describes a discharge, and
its “time reversal” with Λout < Λin describes an upcharge.
Both are possible, but the decrease of Λ is more likely.
To understand the quantum discharges, it is useful to

solve Eqs. (8) for a2,

1

a2
¼ Λout

3M2
Pl

þ
�

T j

4M2
Pl

�
2

ð1 − qjÞ2

¼ Λin

3M2
Pl

þ
�

T j

4M2
Pl

�
2

ð1þ qjÞ2: ð9Þ

This shows there are two regimes of membrane nucleations
for both A and Â. If a2 is comparable to de Sitter radii, then

from Eq. (9) ∼ð1 − Λja2

3M2
Pl
Þ1=2 ≪ 1 and so the bounce action is

approximately

Sbounce ≃ −
12π2M4

PlΔΛ
ΛoutΛin

;

ΔΛ ¼ Λout − Λin ¼
1

2
M2

PlQj: ð10Þ

Since jqjj < 1, in this regime the discharge of the cosmo-
logical constant is fast because Sbounce < 0, as long as

Λout ≫ 3M2
Pl

�
T j

4M2
Pl

�
2
. The cosmological constant decreases

fast from near the Planckian scales. The reverse processes
increasingΛ (ΔΛ < 0) have a positive action [sign reversed
(10)] and so they are more rare. As claimed above, the
dominant trend is to decrease Λ.

FIG. 1. A qj < 1 instanton comprising two sections of S4.
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This ends when Λ < 3M2
Plð T j

4M2
Pl
Þ2. For smaller cosmo-

logical constants, the discharge nucleations proceed via
production of small bubbles, with the bounce action [2]

Sbounce ≃
24π2M4

Pl

Λout

�
1 −

8

3

M2
PlΛout

T 2
j

�
; ð11Þ

and Sbounce > 0 because Λ < 3M2
Plð T j

4M2
Pl
Þ2. This action has a

remarkable property that it diverges as Λout → 0. As a
result, the bubbling rate Γ ∼ e−Sbounce has an essential
singularity at Λout → 0, where the rate goes to zero.
Hence, when jqjj < 1 small cosmological constants
become very long-lived, and the closer the geometry gets
to a locally Minkowski space, the more stable it becomes to
discharges. If it ends up with zero cosmological constant,
further discharge stops.
To recapitulate, we have given a theory where the

cosmological constant is unstable to quantum-mechanical,
nonperturbative discharge of membranes, whose flux is
degenerate with the cosmological constant due to covari-
ance. The instability stops when Λ=M4

Pl → 0. This feature
is a consequence of Coleman and De Luccia’s “gravita-
tional stabilization” of flat space to nonperturbative insta-
bilities, and it is operational when our Eq. (1) holds. For the
theory (2) this holds throughout its range of validity. This
suffices to relieve the cosmological constant problem. Let
us explain how.
In our theory (2), as noted above, the total cosmological

constant is

Λtotal ¼ M2
Plλeff ¼ M2

PlðH2
QFT þ λþ λ̂Þ: ð12Þ

Since λ and λ̂ change discretely, by Δλj ¼ Qj=2, we have

λj ¼ λj0 þ Nj
Qj

2
. For simplicity, we absorb λj0 into H2

QFT.
This leaves us with, using Eq. (5),

Λtotal ¼ M2
Pl

�
H2

QFT þ
QA

2
ðN þ N̂ωÞ

�
: ð13Þ

Now, since we demand that ω is irrational, there exist
integers N and N̂ for any real number ρ such that N þ N̂ω
is arbitrarily close to ρ [17,34]. Therefore, integersN and N̂

exist such that N þ N̂ω is arbitrarily close to −
2H2

QFT

QA
. As a

consequence, there is a dense set of Λtotal, with values
arbitrarily close to zero. In turn, this implies that, for any
initial value of Λ, there exist many sequences of discharg-
ing membranes, in any order, which will arrive to N and N̂,
at which point the cosmological constant is arbitrarily close
to zero, and the underlying nearly flat space is very long-
lived. The key reason for this is the pole of the bounce
action, Eq. (11), which occurs for the (−þ) instantons of
Fig. 1, which are the only ones allowed in our case because

of Eq. (1). As a consequence, Λ → 0þ is the dynamical
attractor.
This is captured by the semiclassical Euclidean

partition function. Indeed, let us estimate Z ¼R
…DADÂDλDλ̂Dg…e−SE by the semiclassical saddle

point approximation result,

Z ¼
X

instantons

X
λ;λ̂

e−SEðinstantonÞ; ð14Þ

where we sum over classical extrema of the action. This
means that we sum over the Euclidean instantons with any
number of membranes included. Since Oð4Þ invariant
solutions minimize the action [18,29,30], in our case Z
should be dominated by our instantons.
Without the explicit resummation, we can still get a feel

for individual contributions. If we invert the bounce action,
SðinstantonÞ ¼ SðbounceÞ þ SðparentÞ, and recall that,
without offspring, the instanton action is the parent
action—i.e., the negative of the horizon area divided by

4GN , SðparentÞ ¼ −24π2 M4
Pl

Λout
—we can see that every time a

transition occurs we add a bounce action for the process to
the parent action. For example, consider a sequence
of nested segments separated by membranes. By
Eq. (11), a segment’s contribution to the total action is
SðinstantonÞ ≲ −64π2M6

Pl=T
2
i . A long sequence may yield

Sðinstanton; nÞ → −64π2M6
Pl

�
nA
T 2

A
þ nÂ

T 2

Â

�
→ −24π2 M4

Pl
Λterminal

.

Thus, the total instanton action for a large sequence of
nucleations of both types of membranes will be bounded by
a number of contributions, which implies the total cannot

exceed −24π2 M4
Pl

Λterminal
. This happens since nucleations can go

on until Λterminal → 0þ. Beyond it, the processes that
involve a dS → AdS jump are allowed, but there can only
be one such jump if it ever occurs: once a sequence ends up
in AdS, membranes will not nucleate any further because
jqjj < 1. The dynamics stops, and AdS is a terminal
sink [35].
As a consequence, the semiclassical partition function

(14), Z ∼
P

e24π
2
M4
Pl
Λ þ…, is dominated by configurations

for which Λ → 0, given that discharges cease in the
Minkowski limit. Thus, our mechanism superexponentially
favors2

Λ
M4

Pl

→ 0þ; ð15Þ

de Sitter is unstable, and quantum mechanicsþ GR
dynamically relax Λ to zero. The final (near) Minkowski
space is extremely long-lived.

2For earlier arguments, see Refs. [36–38].
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Our mechanism shares some features with the very
insightful paper by Abbott [22], who designed a field-
theoretic adjustment mechanism using a scalar with a
potential given by a linear term and a strong-coupling-
induced harmonic modulation as in Fig. 2. Because of the
universality of gravity, the potential and the cosmological
constant were degenerate, and thanks to an approximate
shift pseudosymmetry the scalar was screening away the
cosmological term. However, since the scalar evolution was
purely classical slow roll, to adjust Λ to zero the scalar had
to dominate the stress energy tensor forever—or at least
until the cosmological constant was nearly zero. Only then
did the harmonic modulations kick in and arrest the scalar.
As a result, the universe was inflating forever, and no
reheating was possible until the Hubble parameter relaxed
to ≃10−34 eV—which means that the universe never
reheated. This made the victory pyrrhic and led to the
empty universe problem.
In our case, the empty universe problem of [22] is

averted since the relaxation of Λ involves large successive
jumps, because the charges Qj are large. Every time a
membrane is nucleated, the cosmological constant jumps
by a large step ∝ M2

PlQj. Since the charges are large, being
only subject to the constraint (1), the cosmological constant

term can change down to its future terminal value faster
than the age of the Universe now. The tiny terminal Λ
comes not from small individual charges, but from their
misalignment, which arises due to the irrational ratio of
charges in Eq. (5). The tiny terminal value is not necessary,
but it is superexponentially favored from all other values by
evolution—because the small values are most long-lived.
As a result, the cosmological constant does not always
dominate, but just early on [23].
A related point is that, for exactly this same reason,

inflation may also be embedded in this framework. Inflation
should happen as the membrane evolutions stop, and the
reason may be that by the time the universe starts to inflate in
slow roll, the remaining relaxation of the net vacuum energy
by slow roll is faster than that by quantum membrane
nucleation. If after the universe exits slow roll inflation, there
is a net large cosmological constant, that will not be a
terminal state and the evolution will continue. The chances
for finding the right history are further assisted by the
possibility that even an empty universe could “restart” itself
by a rare quantum jump. If it increases the cosmological
constant, in subsequent evolution an inflationary stage could
be found [39]. Thus, even a “rare” inflation can be found
eventually [40]. Therefore, it seems that a normal cosmology
can be embedded in our framework. Precisely what the
likelihood is that inflation does occur after the membrane
nucleations end is a question beyond this work. For now we
must take solace from the fact that this is not excluded.
Having a cosmological constant to be, most likely, tiny
without deploying anthropics certainly helps ease the pain.
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