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We derive relativistic dissipative spin hydrodynamics from kinetic theory featuring a nonlocal collision
term using the method of moments. In this framework, the components of the spin tensor are dynamical
variables which obey relaxation-type equations. We find that the corresponding relaxation times are
determined by the local part of the collision term, while the nonlocal part contributes to the Navier-Stokes
terms in these equations of motion. The spin relaxation timescales are comparable to those of the usual
dissipative currents. Finally, the Navier-Stokes limit of the Pauli-Lubanski vector receives contributions
proportional to the shear tensor of the fluid, which implies that the polarization of hadrons observed in
heavy-ion collisions is influenced by dissipative effects.
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I. INTRODUCTION

The Barnett effect, i.e., the polarization of a system
through rotation, is well known from condensed matter
physics [1]. A similar effect has been proposed [2–5] and
subsequently observed [6,7] in the context of high-energy
physics: hadrons, such as Lambda hyperons, are polarized
by the nonvanishing orbital angular momentum in non-
central heavy-ion collisions. This phenomenon has spurred
many new theoretical developments in the past years
[8–30]. A consistent theoretical description requires a
theory of relativistic spin hydrodynamics, which extends
standard hydrodynamics by a dynamical treatment of the
spin tensor [31–33].
Theoretically, the polarization of hadrons is determined

by the Pauli-Lubanski vector [33–35]. So far, calculations
of this quantity have assumed that the system is in local
equilibrium at the point where hadrons decouple from the
system [5,8–14,28]. However, local equilibrium can never
be reached, as it assumes that the Knudsen number Kn,
which is the ratio of a typical microscopic length scale, like
the mean free path λmfp, to a typical macroscopic length
scale, like the hydrodynamic length scale Lhydro, vanishes.
Therefore, in the hydrodynamic description of small
systems, like heavy-ion collisions, the Knudsen number
is never very small and dissipation always plays an
important role [36–38]. Only if spin degrees of freedom
evolve much faster than the bulk, wewould expect them not
to be influenced by dissipative effects. However, results

obtained from perturbative quantum chromodynamics
[39,40] as well as in the framework of effective models
[41–43] suggest that spin dynamics actually happens on the
same or even a much larger timescale than that of the
collision as a whole (see also Refs. [44–47] for related
work). In this case, the Knudsen number for spin degrees of
freedom is actually of the order of one, which would point
toward a large influence of dissipation.
In order to understand (i) how the polarization of hadrons

is influenced by dissipative effects, and (ii) on which
timescale spin degrees of freedom evolve, one requires a
theory of relativistic dissipative spin hydrodynamics. While
a lot of effort has recently been invested toward establishing
such a theory [31–33,48–82], so far a general derivation of
relativistic second-order dissipative spin hydrodynamics
from a microscopic theory is still missing. In this paper, we
close this gap. We start from spin kinetic theory as derived
from quantum field theory [53,83] (see Refs. [51,59,84–91]
for related work), and apply the method of moments
[92,93] appropriately generalized to spin degrees of free-
dom. While a more detailed derivation is presented in
Ref. [78], here we merely outline the main steps and focus
instead on answering questions (i) and (ii) listed above,
which are important for heavy-ion phenomenology.
We use the following notation and conventions,

a ·b¼aμbμ, a½μbν� ≡ aμbν − aνbμ, aðμbνÞ ≡ aμbν þ aνbμ,
gμν ¼ diagðþ;−;−;−Þ, ϵ0123 ¼ −ϵ0123 ¼ 1. The dual of
any rank-2 tensor Aμν is defined as Ãμν ≡ ϵμναβAαβ.
Denoting the fluid 4-velocity as uμ, we define the projector
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onto the subspace orthogonal to uμ as Δμν ≡ gμν − uμuν.
The comoving derivative of a quantity A is denoted as
_A≡ uμ∂μA, while the 3-space gradient is defined as
∇μA≡ Δμν

∂νA. The traceless, symmetric, and orthogonal
projection of any rank-l tensor is defined as
Ahμ1���μli ¼ Δμ1���μl

ν1���νlA
ν1���νl , where the projectors Δμ1���μl

ν1���νl are
constructed from Δμν [94]. In particular, for l ¼ 2 one

obtains Δμν
αβ ≡ ð1=2ÞΔðμ

α ΔνÞ
β − ð1=3ÞΔμνΔαβ.

II. RELATIVISTIC SPIN HYDRODYNAMICS

The equations of motion of relativistic hydrodynamics
read

∂λNλ ¼ 0; ∂λTλμ ¼ 0; ∂λSλ;μν ¼ T ½νμ�; ð1Þ

where Nμ is the particle 4-current, Tμν is the energy-
momentum tensor, and Sλ;μν is the spin tensor. The first two
equations describe the conservation of particle number and
energy-momentum. If spin degrees of freedom are equili-
brated, they only enter the description via the equation of
state of the fluid. However, if spin dynamics occurs on
similar time and length scales as that of the fluid constitu-
ents, one requires additional evolution equations for the
spin degrees of freedom. These are provided by the last
equation in Eq. (1), which follows from the conservation of
total angular momentum. The system (1) of equations of
motion is then referred to as relativistic spin hydrodynam-
ics. Assuming an ideal fluid, the forms of Nμ, Tμν, and Sλ;μν

are severely restricted and feature eleven unknowns: the
inverse temperature β0 ≡ 1=T, the ratio of chemical poten-
tial and temperature α0 ≡ μ=T, the fluid 4-velocity uμ

(which is time-like and normalized to one, uμuμ ¼ 1), and
the so-called spin potential Ωμν ¼ −Ωνμ. Thus, for ideal
hydrodynamics, the above system of equations of motion is
closed (once an equation of state for the fluid is provided)
[31]. In the general case, however, additional equations for
the dissipative quantities have to be specified.

III. BOLTZMANN EQUATION WITH NONLOCAL
COLLISION TERM

We take as underlying microscopic theory the relativistic
Boltzmann equation,

p · ∂f ¼ C½f�; ð2Þ

where C½f� is the collision term. In standard kinetic theory
at order Oðℏ0Þ, the range of interaction lint between
particles is usually considered to be negligible compared
to their mean free path λmfp, lint ≪ λmfp, such that colli-
sions are taken to occur at a single space-time point, and the
collision term is local. However, at order OðℏÞ, the
collision term receives a nonlocal correction of order of
the Compton wavelength of the particles. For Dirac

particles with spin 1=2 it was shown in Ref. [53] that,
for binary elastic collisions, the collision term assumes the
form

C½f� ¼
Z

dΓ1dΓ2dΓ0W½fðxþΔ1; p1;s1ÞfðxþΔ2; p2;s2Þ

− fðxþΔ; p;sÞfðxþΔ0; p0;s0Þ�: ð3Þ

Here, fðx; p; sÞ is the spin-dependent single-particle dis-
tribution function in extended phase space, i.e., ordinary
phase space extended by spin degrees of freedom. We also
defined dΓ≡ dPdSðpÞ as the integration measure over on-
shell momentum space, dP≡ d4pδðp2 −m2Þ, and spin
space, dSðpÞ≡ ð

ffiffiffiffiffi
p2

p
=

ffiffiffi
3

p
πÞd4sδðs · sþ 3Þδðp · sÞ. The

nonlocality of the collision term (3) manifests itself in the
fact that the distribution functions of the collision partners
are taken at shifted space-time points, where the space-time
shift

Δμ ≡ −
ℏ

2mðp · t̂þmÞ ϵ
μναβpνt̂αsβ ð4Þ

is of the order of the Compton wavelength of the particles.
Here, t̂μ ≡ ð1; 0Þ is a timelike unit vector defining the frame
where pμ is measured. Furthermore,W is the transition rate
for the collision; for an explicit expression see Eq. (5)
in Ref. [78].

IV. GENERALIZED LOCAL EQUILIBRIUM

Local equilibrium is usually defined by the condition
that the collision term vanishes. Considering only the local
part of the collision term, i.e., neglecting terms of order
OðΔÞ in Eq. (3), this implies that (for Boltzmann statistics)
the local-equilibrium distribution function must be an
exponential function of a linear combination of quantities
conserved in collisions, i.e., (expanded to first order in ℏ) it
must be of the form

feq ≡ f0p

�
1þ ℏ

4
ΩμνΣ

μν
s

�
þOðℏ2Þ; ð5Þ

with f0p ≡ ½1=ð2πℏÞ3� expð−β0Ep þ α0Þ, where Ep ≡ u ·
p and Σμν

s ≡ −ϵμναβpαsβ=m is the dipole-moment tensor of
particles with momentum pμ and spin sμ. Just like α0 and
β0uμ are Lagrange multipliers for the conservation of
particle number and energy-momentum, respectively, the
spin potential Ωμν is the Lagrange multiplier for the
conservation of total angular momentum.
Expanding the collision term (3) in a Taylor series

around the space-time point x, the local part of the collision
term is the leading term of this Taylor series, while the
nonlocal part is the next-to-leading order term ∼Δ, and
because of Eq. (4) it is also of order OðℏÞ. As usual, the
local part of the collision term vanishes if we insert the
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local-equilibrium distribution function (5). However, as
shown in Ref. [53], to first order in an expansion in powers
of ℏ, the sum of the nonlocal collision term and the order
OðℏÞ contribution to the local collision term rigorously
vanishes only in global equilibrium, i.e., we have to
demand in addition that α0 ¼ const and β0uμ is a Killing
vector, ∂ðμðβ0uνÞÞ ¼ 0. In addition, the spin potential
equals the so-called thermal vorticity, Ωμν ¼ ϖμν≡
− 1

2
∂½μðβ0uν�Þ ¼ const, which follows from the conserva-

tion of total angular momentum in binary elastic collisions.
The local-equilibrium distribution function (5) is not a

solution of the Boltzmann equation (2). However, hydro-
dynamics can be considered to be an effective theory for the
long-wavelength, small-frequency limit of the latter, which
implies a clear separation of microscopic and macroscopic
length scales. If the typical microscopic length scale is
taken as the mean free path λmfp of the particles between
collisions, and the macroscopical length is identified as the
typical scale Lhydro over which the hydrodynamic fields α0,
β0, and uμ vary, then the validity of hydrodynamics is
ensured by the condition λmfp ≪ Lhydro, or equivalently,
that the Knudsen number Kn≡ λmfp=Lhydro ≪ 1. In this
limit, the gradient terms on the left-hand side of the
Boltzmann equation for feq are of the order of the inverse
hydrodynamical length scale, i.e.,

β0∂μα0; ∂ðμðβ0uνÞÞ; β0∂μΩαβ ∼Oðβ0=LhydroÞ: ð6Þ

Consequently, inserting the local-equilibrium form (5) into
the nonlocal collision term, we observe that the sum of the
order OðℏÞ contribution to the local collision term and the
nonlocal collision term is of order

1

f0p

�
ℏ
4
Σμν
s Ωμν þ Δμ

∂μ

�
f0p

¼ 1

2
Δ½μpν�ðϖμν −ΩμνÞ þOðΔ=LhydroÞ; ð7Þ

where we used Eq. (6) as well as the conservation of total
angular momentum, Jμν ≡ Δ½μpν� þ ðℏ=2ÞΣμν

s .
Since Δ ∼ ℏ=m is at most of the order of the range of the

interaction and thus much smaller than the mean free path,
we have the following ordering of scales:

Δ≲ lint ≪ λmfp ≪ Lhydro: ð8Þ

Therefore, the OðΔ=LhydroÞ contribution to the collision
term in Eq. (7) is much smaller than the Knudsen number
Kn≡ λmfp=Lhydro ≪ 1. This leads us to an extension of the
definition of local equilibrium: instead of demanding that
the collision term vanishes exactly, we only demand that it
vanishes up to terms of order Δ=Lhydro. In order for the
whole collision term to fulfill this condition, the first term

in the last line of Eq. (7) must also be of orderOðΔ=LhydroÞ.
This is fulfilled if

Ωμν ¼ ϖμν þOðβ0=LhydroÞ: ð9Þ

This condition is natural: by definition, local equilibrium
constitutes a correction of order Oðβ0=LhydroÞ to global
equilibrium, cf.Eq. (6), andΩμν ¼ ϖμν in global equilibrium.

V. MODIFIED POWER COUNTING

The conditions of global equilibrium do not restrict the
value of the thermal vorticity ϖμν. Assuming that gradients
of inverse temperature,∇αβ0, and fluid acceleration, _uα, are
of orderOð1=LhydroÞ, this is equivalent to the statement that
the fluid vorticity ωαβ ≡ ð1=2Þ∇½αuβ� is not constrained.
Let us introduce the length scale lvort which characterizes
the magnitude of the fluid vorticity, ωαβ ∼Oð1=lvortÞ. In
order for the expansion in powers of ℏ to remain
meaningful, we have to assume that ℏΩμνΣ

μν
s ≪ 1,

cf. Eq. (5). Taking ℏ=m ∼ Δ and the typical momenta
pμ ∼ 1=β0, we then arrive at the condition that
Δ=lvort ≪ 1. In principle, this ratio introduces a new small
parameter for power counting. However, in order to keep
the discussion as simple as possible, in the following
we will assume that Δ=lvort ∼ Kn. Using Eq. (8),
lvort ∼ ðΔ=λmfpÞLhydro ≪ Lhydro, i.e., it can be much
smaller than the scale associated with other hydrodynam-
ical gradients. This means that rapidly rotating systems
sufficiently close to local equilibrium, such as the quark-
gluon plasma in noncentral heavy-ion collisions or rotating
neutron stars, can be described by a hydrodynamic theory
with large values for the fluid vorticity.

VI. MOMENT EXPANSION

The standardmethod ofmoments is based on an expansion
of the single-particle distribution function in terms of irre-
duciblemoments of thedeviationof the latter froma reference
distribution, usually taken to be the one in local thermo-
dynamic equilibrium [93]. In phase space extended by
spin degrees of freedom, this expansion needs to be gener-
alized to also include moments of the spin vector sμ.
Introducing h� � �i≡ R

dΓð� � �Þf, h� � �ieq ≡
R
dΓð� � �Þfeq,

and h� � �iδ ≡ h� � �i − h� � �ieq, the spin moments are defined
as [78]

τμ;μ1���μln ≡ hEn
psμphμ1 � � �pμliiδ: ð10Þ

The distribution function can now be expanded in terms
of the moments (10) as [78]
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fðx; p; sÞ ¼ fð0Þðx; pÞ þ f0p

�
ℏ
4
ΩμνΣ

μν
s −

X∞
l¼0

X
n∈Sl

HðlÞ
pn

×

�
gμν −

phμi
Ep

uν

�
sντhμi;μ1���μln phμ1 � � �pμli

�
;

ð11Þ

where the spin-independent part fð0Þðx; pÞ and the coef-

ficients HðlÞ
pn are given in Ref. [93].

VII. DECOMPOSITION OF THE SPIN TENSOR

Our derivation of dissipative spin hydrodynamics for
Dirac particles is based on the spin tensor in the
Hilgevoord–Wouthuysen (HW) pseudogauge [33,53]

Sλ;μν ¼ 1

2
hpλΣμν

s i − ℏ
4m2

∂
½νhpμ�pλi: ð12Þ

Inserting Eq. (11) into Eq. (12) we find

Sλ;μν ¼ uλÑμν þ Δλ
αP̃

αμν þ uðαH̃λÞμνα þ Q̃λμν

þ ℏ
2m

∂
½ν½ϵuμ�uλ − Δμ�λðP0 þ ΠÞ þ πμ�λ�; ð13Þ

with the energy density ϵ≡ hE2
pi, the thermodynamic

pressure P0, the bulk viscous pressure
Π≡ −ð1=3ÞhΔμνpμpνi − P0, and the shear-stress tensor
πμν ≡ hphμpνii. The quantities in the first line of Eq. (13)
are given by the duals of the spin-energy, spin-pressure,
spin-diffusion, and spin-stress tensors, respectively,

Nμν ≡ −
1

2m
uμhE2

psνieq −
1

2m
uμnν;

Pμ ≡ −
1

6m
hΔρσpρpσsμieq −

1

6m
ðm2pμ − nμÞ;

Hλμ ≡ −
1

2m
hEpphλisμieq −

1

2m
hλμ;

Qλμν ≡ −
1

2m
qλμν; ð14Þ

with the nonequilibrium spin moments

nν ≡ τν2; pμ ≡ τμ0; hλμ ≡ τμ;λ1 ; qλμν ≡ τλ;μν0 :

ð15Þ

Note that the components of all spin moments which are
parallel to uμ in the first index can be expressed as a linear
combination of the orthogonal components, see Eq. (68) of
Ref. [78]. After accounting for this, the moments (15)
contain 24 degrees of freedom, but, as shown in Ref. [78], a
certain combination of these spin moments vanishes after
imposing Landau matching conditions. The remaining 18
independent components of the spin tensor are then

phμi ≡ τhμi0 ; zμν ≡ τðhμi;νÞ1 ; qhλiμν ≡ τhλi;μν0 : ð16Þ

In our framework, these dissipative spin moments are
treated as dynamical variables.

VIII. EQUATIONS OF MOTION FOR
THE SPIN MOMENTS

The equations of motion for the spin moments (10) can
be derived from the Boltzmann equation (2) without any
further approximation, see Ref. [78] for details. Defining
the collision integrals

Cμ;hμ1���μni
r ≡

Z
dΓEr

pphμ1 � � �pμnisμC½f�; ð17Þ

one finally obtains relaxation-type equations for the spin
moments of the form

_τhμi;hμ1���μlir − Chμi;hμ1���μni
r−1 ¼ OðΩ∂Þ þOð∂2Þ; ð18Þ

with OðΩ∂Þ denoting terms of first order in Ωμν and
gradients and Oð∂2Þ denoting terms of first order in the
product of gradients and dissipative quantities. The terms of
order OðΩ∂Þ arise from the OðℏÞ contribution to the local-
equilibrium distribution function. These terms constitute
part of the Navier-Stokes terms for the spin moments. The
other part arises from the OðℏÞ part of the collision term.
However, assuming that the spin potential is small, the
latter terms will give the leading-order contribution on long
timescales. Thus, we will focus on their effects in the
following.

IX. COLLISION TERMS

In order to evaluate the collision term, we assume that the
transition rate W does not depend on the phase-space spin
variables. However, this does not mean that particle spins
cannot change during a collision, since we still have
nonlocal contributions to the collision term which mutually
convert orbital angular momentum and spin. Consequently,
inserting Eq. (3) with Eq. (11) into Eq. (17) and using the
conservation of total angular momentum, the linearized
collision term reads

Cμ;hμ1���μni
r−1 ¼ −

X
n∈Sl

BðlÞ
rn τ

μ;hμ1���νli
n þ

Z
½dΓ�WEr−1

p f0pf0p0

× phμ1 � � �pμnisμ
�
ℏ
4
ðϖαβ − ΩαβÞΣαβ

s

þ 1

2
∂ðββαÞΔβpα

�
; ð19Þ

where ½dΓ�≡ ½dP�½dS�, with ½dP�≡ dPdP0dP1dP2 and
similarly for ½dS�. Furthermore, Sl is the set of indices
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of those spin moments that are treated dynamically. The
scalar collision integrals are defined as

BðlÞ
rn ≡ −

16

2lþ 1
Δν1���νl

μ1���μl

Z
½dP�W0f0pf0p0Er−1

p

× phμ1 � � �pμliHðlÞ
pnphν1 � � �pνli; ð20Þ

where W0 ≡ ð1=2Þ4 R ½dS�W. Performing the integrations
in Eq. (19) and choosing t̂μ ¼ uμ, see Ref. [78] for details,
we find for the three lowest tensor-rank collision terms

Cμ
r−1 ¼ −

X
n∈S0

Bð0Þ
rn τ

μ
n þ gð0Þr ðΩ̃μν − ϖ̃μνÞuν;

Cðμ;νÞ
r−1 ¼ −

X
n∈S1

Bð1Þ
rn τ

ðμ;hνiÞ
n ;

Cμ;νλ
r−1 ¼ −

X
n∈S2

Bð2Þ
rn τ

μ;hνλi
n þ hð2Þr β0σ

hν
ρ ϵλiμαρuα; ð21Þ

with σμν ≡ ∂
hμuνi being the shear tensor and

gð0Þr ≡ 4ℏ
m

Z
½dP�W0Er

pf0pf0p0 ;

hð2Þr ≡ −
16ℏ
15m

Z
½dP� W0

Ep þm
Er−1
p f0pf0p0 ðΔαβpαpβÞ2:

ð22Þ

The first term on the right-hand sides of Eq. (21) is a linear
combination of all spin moments of the same tensor rank,
respectively, which originates from the local collision term.

Inverting the coefficient matrices BðlÞ
rn one obtains the

relaxation times for the spin moments. On the other hand,
the remaining terms in Eq. (21) appear due the nonlocality
of the collision term and do not depend on the spin
moments themselves, but on gradients of fluid velocity
and temperature, or the difference between the spin
potential and the thermal vorticity. While in global equi-
librium all these terms vanish, they will contribute to the
Navier-Stokes limit of the components of the spin tensor.

X. 14 + 24-MOMENT APPROXIMATION

For a viable theory of spin hydrodynamics, the infinite
system (18) of equations of motion for the spin moments
has to be truncated and closed. The lowest possible
truncation involves the 24 components of the spin tensor
listed in Eq. (15). All other spin moments can be expressed
in terms of these via a linear relation, see Eq. (107) of
Ref. [78]. We refer to this truncation as the 14þ 24-
moment approximation, since it adds the 24 degrees of
freedom of the spin tensor to the 14 dynamical moments of
Israel-Stewart theory. Introducing TðlÞ ≡ ðBðlÞÞ−1, multi-

plying Eq. (18) for the moments of interest with TðlÞ
nr and

summing over r with S0 ¼ f0g, S1 ¼ f1g, and S0 ¼ f0g

[corresponding to the indices pertaining to the dynamically
treated moments (16)], the resulting equations of motion
for the moments (16) are

τpΔ
μ
ν
d
dτ

phνi þ phμi ¼ eðΩ̃μν − ϖ̃μνÞuν þOðΩ∂; ∂2Þ;

τzΔ
μ
λΔν

ρ
d
dτ

zλρ þ zμν ¼ OðΩ∂; ∂2Þ;

τqΔ
μ
ρΔνλ

αβ

d
dτ

qhρiαβ þ qhμiνλ ¼ −dβ0σ
hν
ρ ϵλiμαρuα þOðΩ∂; ∂2Þ;

ð23Þ

where the spin relaxation times are given by

τp ¼ Tð0Þ
00 ; τz ¼ Tð1Þ

11 ; τq ¼ Tð2Þ
00 ; ð24Þ

and we furthermore defined e ¼ τpg
ð0Þ
0 and d ¼ τqh

ð2Þ
r .

While the full second-order equations of motion are shown
in Ref. [78], for the following discussion only the terms
given in Eq. (23) are relevant. One can see from these
equations that the dynamical spin moments relax on the
timescales (24) to the Navier-Stokes terms on the right-
hand sides of Eq. (23). Note that on account of Eq. (9),
these terms are of the same order as the Navier-Stokes
terms for the standard dissipative quantities (up to a factor
of ℏ contained in the functions eð0Þ and d, which arises from
the nonlocal collision term). At this point, we remark that
also the terms ∼OðΩ∂Þ contribute to the Navier-Stokes
limit, as the spin potential is an equilibrium quantity. Hence
the Navier-Stokes term for zλρ is in general nonvanishing,
although for small spin potential it is smaller than those of
the other spin moments.

XI. SPIN RELAXATION TIMES

For a constant cross section, Eq. (24) can be straight-
forwardly computed, see Ref. [78] for details. The resulting
spin relaxation times are shown in Fig. 1 in units of the
mean free path λmfp for different values of mass over
temperature. We find that they are of the same order of
magnitude, but slightly smaller than those for the usual
dissipative currents. It should be noted that in our frame-
work the condition (8) forms a lower bound on the mass.
Thus, the latter cannot be taken to be arbitrarily small, and
mβ0 → 0 actually corresponds to the limit T → ∞, and not
m → 0. The convergence of the spin relaxation times in this
limit is most likely an artifact of our assumption of a
constant cross section.

XII. PAULI-LUBANSKI VECTOR

In the context of heavy-ion collisions, the observable
polarization, the so-called Pauli-Lubanski vector, is given
by [33,34]
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ΠμðpÞ ¼ 1

2N

Z
dΣ · pdSðpÞsμfðx; p; sÞ; ð25Þ

with dΣμ denoting the integration over the freeze-out
hypersurface and N ≡ R

dΣ · pdSðpÞfðx; p; sÞ. In order
to obtain the leading-order contribution in the Navier-
Stokes limit, we insert Eq. (11) into Eq. (25) and replace all
nondynamical spin moments by the dynamical ones phμi,
zμν, and qhμiνλ. For the latter, we then insert the right-hand
sides of Eq. (23). Thus we find up to order OðΩ∂; ∂2Þ

Πμ
NSðpÞ¼

Z
dΣ ·p

f0p
2N

�
−

ℏ
2m

Ω̃μνpνþ
�
gμν−

uμphνi
Ep

�

× ½eχpðΩ̃νρ−ϖ̃νρÞuρ−χqdβ0σ
hα
ρ ϵβiνσρuσphαpβi�

�
;

ð26Þ

with χp and χq being functions of Ep, α0, and β0 [78]. We
see from Eq. (26) that, through the nonlocal collision term,
the Pauli-Lubanski vector obtains contributions from the
difference between the spin potential and thermal vorticity,
as well as from the shear tensor. Terms proportional to
the shear tensor have recently been found to be important
for the experimentally measured Lambda polarization in
heavy-ion collisions [26–29,95,96] (see also Refs. [97,98]
for related work in the massless case). Although the form of
this term in our approach is similar to the one obtained in
Refs. [26–29], it may have a different origin, since in our
framework it emerges from the nonlocal collision term. We
note that a term ∼Ω̃νρ − ϖ̃νρ was also found in Ref. [99].
We furthermore remark that, although the form of the

Pauli-Lubanski vector (25) is independent of the pseu-
dogauge, the pseudogauge choice implicitly enters Eq. (26)
through the truncation of the moment expansion (10), for
which only the components of the HW spin tensor are
considered. If we had chosen a different pseudo-gauge, also
our truncation of the moment expansion would be different.

XIII. CONCLUSIONS

In this paper, we derived the equations of motion of
dissipative spin hydrodynamics [78], starting from the
Boltzmann equation with a nonlocal collision term, which
required us to extend the concept of local thermodynamical
equilibrium and to devise a new power-counting scheme.
We then applied the method of moments in the 14þ 24-
moment approximation to derive relaxation-type equations
for the dissipative spin moments. Interestingly, the relax-
ation timescales emerge from the local part of the collision
term in the Boltzmann equation, while the nonlocal part of
the latter contributes to the Navier-Stokes values for the
spin moments.
We found that the spin relaxation times are of the same

order of magnitude as those of the usual dissipative
currents, which answers question (ii) posed in the
Introduction. Qualitatively, we may compare this result
to the findings of Refs. [39–41], which studied helicity-
changing processes to estimate the timescale for spin
relaxation, with the result that these processes lead to
comparably large spin relaxation times. However, these are
not necessarily the only processes which lead to spin
relaxation. Namely, spin dynamics is also influenced by
collisions which only exchange momentum, but not spin,
since the polarization of a fluid element can also change
through the mere transport of particles, carrying the
polarization to a different fluid element. This effect
provides the main contribution to spin diffusion and
naturally leads to spin relaxation times comparable to those
of other dissipative currents equilibrating through the
standard (spin-independent) collision term.
The nonlocal collision term is responsible for aligning

the spin with the vorticity [53]. As long as global
equilibrium is not reached, the nonlocal collision term
contributes to the Navier-Stokes values of the spin
moments, with terms proportional to the difference between
the spin potential and the thermal vorticity, and propor-
tional to the shear tensor. The precise way in which
dissipative effects enter the polarization answers question
(i) posed in the Introduction. Since the timescale of a
heavy-ion collision is too short to reach global equilibrium,
the polarization of particles in such collisions cannot only
be determined by the thermal vorticity. Finally, it was found
that thermal shear may play an important role in the
description of Lambda polarization [26–29,95,96]. The
findings of this paper confirm the importance of such
terms and provide an interpretation of their origin in the
context of kinetic theory.

FIG. 1. Relaxation times for pμ, zμν, qλμν (full lines), in
comparison to those for the standard dissipative quantities Π,
nμ, πμν (dashed lines), computed within the standard 14-moment
approximation [93], as a function of mβ0 [78].
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